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1. Introduction A central modeling primitive in mathematical optimization is the disjunc-
tive constraint: any feasible solution must satisfy at least one of some fixed, finite collection of
alternatives. This type of constraint is general enough to capture structures as diverse as boolean
satisfiability, complementarity constraints, special ordered sets, and (bounded) integrality. The
special case of polyhedral disjunctive constraints corresponds to the form

x2
[

d

i=1

P i, (1)

where we have that each P i ✓Rn is a polyhedron. In this work, we will focus on V-polyhedra; that
is, we have a description of the P i in terms of their extreme points ext(P i).
We are particularly interested in the case where constraint (1) is primitive, or a basic building

block for a much more complex optimization problem. For this reason, we are interested in mod-
eling it in a generic, composable way. In particular, if (1) is embedded in a larger, more complex
optimization problem

min
(x,y)2Q:(1)

f(x, y), (2)

we hope for a mathematical description su�ciently structured such that we may use more advanced
algorithmic approaches, beyond näıve enumeration, to solve (2). In particular, Q could be described
by any number of di↵erent types of constraints: linear inequalities, conic constraints, integrality
conditions, or additional disjunctive constraints. In this context, it is well known that merely con-
structing the convex hull Conv(

S

d

i=1

P i) is not su�cient for solving (2); we will need a formulation
for
S

d

i=1

P i directly.
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Mixed-integer programming (MIP) has emerged as an incredibly expressive modeling methodol-
ogy, with advanced computational methods capable of solving many problems of practical interest,
often at very large scale [13, 30]. Constraint (1) with polyhedral sets P i is particularly well-suited
for a mixed-integer programming approach. Indeed, standard formulations for (1) were presented
in [29], and are ideal, or as strong as possible with respect to their continuous linear programming
relaxations (see Section 4.1 for a formal definition). However, this formulation requires introducing
d auxiliary binary variables, which may be impractically large, especially in the context of the
larger problem (2).
However, it is sometimes possible to construct ideal formulations with considerably fewer auxil-

iary variables. In particular, a string of recent work [3, 42, 53, 57] has presented ideal formulations
for certain highly structured constraints such as SOS2 [9] with only O(log(d)) auxiliary binary vari-
ables and additional constraints (excluding variable bounds). Moreover, these formulations have
proven practically useful, and indeed are the most performant by a significant margin for a large
swath of instances of the problem classes to which they have been applied [55]. However, building
these formulations is complex and ad-hoc, hindering the construction, analysis, and implementation
of such formulations for new constraints.
One relatively generic and versatile approach to construct small ideal formulations is the indepen-

dent branching (IB) scheme framework introduced by Vielma and Nemhauser [57]. The approach
is to find some (particularly structured) polyhedra Q1,j and Q2,j such that (1) can be rewritten as

[

d

i=1

P i =
\

t

j=1

�

Q1,j [Q2,j

�

. (3)

This represents the disjunctive constraint in term of a series of simple choices between two alter-
natives. Given such a representation, it is often straightforward to construct a simple, small, and
ideal formulation for (1) by formulating each of the t alternatives separately, and then combining
them. Furthermore, when the polyhedra P i are V-polyhedra, the construction of the independent
branching scheme-based formulation is purely combinatorial, based on the extreme points that are
shared between the di↵erent polyhedra P i. As we will see, we can therefore approach formulating
(1) combinatorially, by studying the shared structure amongst the extreme points.
In this work we generalize and provide a systematic study of the applicability and limitations

of the independent branching approach. The contributions of this work can be categorized in the
following way.
1. We generalize the notion of independent branching schemes to allow for multiple alternatives,

and provide an exact characterization of when there exists any independent branching represen-
tation for (1), in terms of the graphical representation of the shared extreme points amongst the
polyhedra P i. In particular:

(a) We demonstrate that the widely-used cardinality constraints cannot be expressed by any
independent branching scheme with few alternatives. We argue that this negative result provides
theoretical justification for the practical observation that both MIP formulations and simple con-
straint branching schemes struggle with modeling cardinality constraints e↵ectively.

(b) We show that arbitrary piecewise linear functions in the plane can be modeled with at
most three alternatives, and provide a polynomial-time verifiable condition for representability
with two alternatives.

(c) We argue that nonconvex polygonal set avoidance constraints are always representable
with two alternatives.
2. We provide an exact characterization for when there exists a two-alternative independent

branching representation for (1) of size t, in terms of the classical biclique covering problem.
This relation allows the algorithmic construction of small independent branching formulations
for (1). In particular, we study and apply simple properties of biclique covers and their composition
to systematically construct explicit descriptions of small independent branching formulations for
special structures.
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3. We apply our framework to a variety of constraints of the form (1) to give an indication of the
expressive power of the IB scheme approach and the advantage of using biclique cover techniques
to construct formulations. In particular:

(a) We review and develop several generic properties of biclique covers that lead to systematic
construction techniques. Using these techniques we construct explicit, small (i.e. logarithmic in d),
ideal formulations for generalizations of the special ordered sets of Beale and Tomlin [9], piece-
wise linear functions over arbitrary 2-dimensional grid triangulations, and outer-approximating
discretizations of multilinear terms. This last formulation generalizes the popular logarithmically-
sized formulation of Misener et al. [40, 41] for nonconvex quadratic optimization, which we show
is not ideal in general.

(b) We provide matching lower bounds for these constructions, showing that they are asymp-
totically optimal with respect to the size of any possible MIP formulation.

2. Preliminaries: Definitions, notation, and nomenclature A (bounded) V-polyhedra
(or polyhedra in V-form) is a set P ⇢Rn that can be expressed as

P =Conv(V )
def
=

(

X

v2V

�
v

v : �2�V

)

for some finite set of vectors V ⇢Rn, where �V

def
= {�2RV

+

:
P

v2V

�
v

= 1} is the standard simplex.
According to the celebrated Minkowski-Weyl Theorem (e.g. [15, Corollary 3.14]), any polyhedral
disjunctive constraint (1) can be expressed as the union of V-polyhedra in terms of their extreme
points ext(P i)1.
When the disjunctive constraint (1) is a union of V-polyhedra, it su�ces to consider only the

combinatorial structure of the extreme points of the polyhedra P i. To see why, consider J =
S

d

i=1

ext(P i) as the ground set and take S= {ext(P i)}d
i=1

✓ 2J as the collection of extreme points
for each of the polyhedra. We can then define a corresponding disjunctive constraint that is purely
combinatorial on the sets S.
Definition 1. A combinatorial disjunctive constraint (CDC) induced by the sets S is

�2CDC(S)
def
=
[

S2S

Q(S),

where Q(S)
def
= {�2�J : �

J\S  0} is the face that S ✓ J induces on the standard simplex.
Combinatorial disjunctive constraints may also appear as natural primitive constraints that do

not explicitly arise from unions of V-polyhedra, as we will see in Sections 3.2 and 3.3. However,
when they do arise from unions of V-polyhedra, it is straightforward to construct a corresponding
formulation for (1) as

(

X

v2J

�
v

v : �2CDC(S)

)

. (4)

One advantage of this approach is that formulation (4) allows us to divorce the problem-specific
data (i.e. the values v 2 J) from the underlying combinatorial structure encapsulated in CDC(S).
As such, we can construct a single, strong formulation for a given structure CDC(S) and this formu-
lation will remain valid for transformations of the data, so long as this transformation su�ciently
preserves the combinatorial structure of CDC(S). For instance, if {P i}d

i=1

are the polyhedra for the
original constraint represented by CDC(S), and {P̂ i}d

i=1

are those associated with the new data,

1 For the moment we are assuming that the P

i are bounded; the unbounded case is more delicate, as we will discuss
shortly.
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then a su�cient condition for the formulation of CDC(S) yielding a valid formulation for
S

d

i=1

P̂ i

is the existence of a bijection ⇡ : J ! Ĵ (with J =
S

d

i=1

ext(P i) and Ĵ =
S

d

i=1

ext(P̂ i)) such that

v 2 ext(P i)() ⇡(v)2 ext(P̂ i) 8i2 JdK, v 2 J, (5)

where JdK def
= {1, . . . , d}. In this way, we can construct a single small, strong formulation for CDC(S),

and use it repeatedly for many di↵erent “combinatorially equivalent” instances of the same con-
straint.
We note that one subtle disadvantage of this data-agnostic approach is that, even if condition

(5) is satisfied, the resulting formulation for
S

d

i=1

P̂ i may be larger than necessary. An extreme
manifestation of this would be when the new polyhedra {P̂ i}d

i=1

are such that P̂
i

✓ P̂
1

for all i2 JdK.
In this case,

S

d

i=1

P̂ i = P̂ 1, and so formulating this does not require a MIP formulation at all. Less
pathological cases could occur where some subset of the disjunctive sets become redundant after
changing the problem data. However, we note that in many of the applications considered in this
work, the combinatorial representation leads to redundancy of this form only in rare pathological
cases (e.g. Sections 3.1 and 3.5). In the remaining cases we will take care to consider, for example,
the geometric structure of the data before constructing the disjunctive constraint (e.g. Section 6.2).
Finally, we also note that if we wish to model the case where the polyhedra P i are unbounded, a

result of Jeroslow and Lowe [29] [52, Proposition 11.2] tells us that we may only construct a (binary)
MIP formulation for (1) if the recession cones coincide for each P i. In the case this condition is
met, we may formulate (1) with

(

X

v2J

�
v

v+
X

r2R

µ
r

r : �2CDC(S), µ2RR

+

)

, (6)

where R is the shared set of extreme rays for each of the P i. Therefore, we will restrict our
attention to the case where each of the P i are bounded, as formulating the unbounded case is a
straightforward extension.
In the remainder of the paper, we will make the following assumptions on S that are without

loss of generality.

Assumption 1. We assume the following about S.
• S is irredundant: there do not exist distinct S,T 2 S such that S ✓ T .
• S covers the ground set:

S

S2SS = J .

We will say that a set S ✓ J is a feasible set with respect to CDC(S) if Q(S)✓CDC(S) (equiv-
alently, if S ✓ T for some T 2 S) and that it is an infeasible set otherwise.

3. Motivating examples As mentioned, we can represent any polyhedral disjunctive con-
straint (1) as the union of V-polyhedra. However, there are many disjunctive constraints for which
the V-form of (1) is especially natural. We now present some as running examples that we will
return to throughout.
One motif to appear repeatedly will be the graph of a continuous piecewise linear function. That

is, given some bounded domain ⌦⇢Rn and some polyhedral partition
S

d

i=1

P i =⌦ (i.e. the relative
interiors do not overlap2), we are interested in modeling a continuous function f :⌦!R such that
x 2 P i =) f(x) = ai·x+ b

i

for some appropriate ai 2 Rn and b 2 R. In order to model the graph
gr(f ;⌦)

def
= {(x, f(x)) : x 2⌦}, we can construct a formulation for CDC(S) (with S= {ext(P i)}d

i=1

)
and express

gr(f) =

(

X

v2J

�
v

(v, f(v)) : �2CDC(S)

)

, (7)

2 Formally, relint(P i)\ relint(P j) = ; for each i 6= j.
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where we will use the notation gr(f)⌘ gr(f ;⌦) when ⌦ is clear from context.3

3.1. Univariate piecewise linear functions and the SOS2 constraint Consider a uni-
variate (nonconvex) piecewise linear function f characterized by N breakpoints x1 <x2 < . . . < xN .
We may model the graph of this function via (7), where S= {{xj, xj+1} : j 2 JN � 1K}.
As long as the ordering of the breakpoints is preserved, it is easy to see that condition (5) will

be satisfied for any transformations of the problem data. Furthermore, the only case in which
knowledge of the specific data {(xj, f(xj))}n

j=1

allows the simplification of the original disjunctive
representation of gr(f) is when f is a�ne in on two adjacent intervals, e.g. a�ne over [xj, xj+2]
for some j 2 JN � 2K. Therefore, the potential disadvantage of disregarding the specific data when
formulating the constraint occurs only in rare pathological cases which are easy to detect.
For this reason, we will strip out the problem data and instead express the constraint with

respect to the indices j of the vertices {xj}N
j=1

. That is, we take J = JNK and write S= {{⌧, ⌧ +1} :
⌧ 2 JN �1K} to emphasize the data independence of the constraint and highlight the combinatorial
structure. In this form, we can recognize the special ordered set of type 2 (SOS2(N)) constraint of
Beale and Tomlin [9], which requires that at most two components of � may be nonzero, and that
these nonzero components must be consecutive in the ordering on J .

3.2. SOSk A generalization of the special ordered sets considers the case where at most k
consecutive components of � may be nonzero at once. In particular, if J = JNK, we have S =
{{⌧, ⌧ + 1, . . . , ⌧ + k � 1} : ⌧ 2 JN � k + 1K}. This constraint may arise, for example, in chemical
process scheduling problems, where an activated machine may only be on for k consecutive time
units and must produce a fixed quantity during that period [21, 33].

3.3. Cardinality constraints An extremely common constraint in optimization is the car-
dinality constraint of degree `, where at most ` components of � may be nonzero. This corresponds
to S = {I ✓ J : |I| = `}. A particularly compelling application of the cardinality constraint is in
portfolio optimization [11, 12, 14, 54], where it is often advantageous to limit the number of invest-
ments to some fixed number ` to minimize transaction costs, or to allow di↵erentiation from the
performance of the market as a whole.

3.4. Discretizations of multilinear terms Consider a multilinear function f(x
1

, . . . , x
⌘

) =
Q

⌘

i=1

x
i

defined over some box domain ⌦
def
= [l, u]⇢R⌘. This function appears often in optimization

models [22], but is nonconvex, and often leads to problems which are di�cult to solve to global
optimality in practice [5, 47, 58]. As a result, computational techniques will often “relax” the graph
of the function gr(f) with a convex outer approximation, which is easier to optimize over [49].4

For the bilinear case (⌘= 2), the well-known McCormick envelope [38] describes the convex hull
of gr(f). Although traditionally stated in an inequality description, we may equivalently describe
the convex hull via its four extreme points, which are readily available in closed form. For higher-
dimensional multilinear terms, the convex hull has 2⌘ extreme points, and can be constructed in a
similar manner (e.g. see equation (3) in [36] and the associated references).
Misener et al. [40, 41] propose a computational technique for optimizing problems with bilinear

terms where, instead of modeling the graph over a single region ⌦= [l, u]⇢R2, they discretize the
region in a regular fashion and apply the McCormick envelope to each subregion. They model this
constraint as a union of polyhedra, where each subregion enjoys a tighter relaxation of the bilinear

3 We note that the results to follow can potentially be extended to certain discontinuous piecewise linear functions
by working instead with the epigraph of f ; we point the interested reader to [55, 56] for further discussion.
4 Note that these relaxations are useful in the context of global optimization, coupled with algorithmic techniques
such as spatial branch-and-bound.
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term. Additionally, they propose a logarithmically-sized formulation for the union. However, it is
not ideal (see Appendix A), it only applies for bilinear terms (⌘ = 2), and it is specialized for
a particular type of discretization (namely, only discretizing along one component x

1

, and with
constant discretization widths {h1

j+1

�h1

j

}d1�1

j=1

).
For a more general setting, we have that the extreme points of the convex hull of the graph

Conv(gr(f)) are given by {(x, f(x)) : x 2 ext(⌦)} [36, equation (3)], where it is easy to see that
ext(⌦) =

Q

⌘

i=1

{l
i

, u
i

}. Consider a grid imposed on [l, u]⇢R⌘; that is, along each component i2 J⌘K,
we partition [l

i

, u
i

] along the points l
i

⌘ hi

1

< hi

2

< · · ·< hi

d

i

�1

< hi

d

i

⌘ u
i

. This yields
Q

⌘

i=1

(d
i

� 1)

subregions; denote them by R
def
=
�

Q

⌘

i=1

[hi

k

i

, hi

k

i

+1

] : k 2
Q

⌘

i=1

Jd
i

� 1K
 

.

We can then take the polyhedral partition of ⌦ given by PR

def
=Conv(gr(f ;R)) for each subregion

R, the sets as S= {ext(PR)}
R2R, and the ground set as J =

S

{S 2 S}. In particular, we have that
J =

Q

⌘

i=1

{hi

1

, . . . , hi

d

i

}. Analogously to the notational simplification we took with the SOS2 con-
straint, for the remainder we will take J =

Q

⌘

i=1

Jd
i

K and S= {
Q

⌘

i=1

{k
i

, k
i

+1} : k 2
Q

⌘

i=1

Jd
i

� 1K}.
We also note that condition (5) is satisfied as long as the ordering of the discretization is respected
along each dimension.

3.5. Piecewise linear functions in the plane and grid triangulations Consider a
(potentially nonconvex) region ⌦ ⇢ R2. We would like to model a (also potentially nonconvex)
piecewise linear function f with domain over ⌦. Take {P i}d

i=1

as the set of pieces of the domain,
and the corresponding ground set as J =

S

d

i=1

ext(P i) and sets as S= {ext(P i)}d
i=1

. We may then
model the piecewise linear function via the graph representation (7).
An important special case occurs when the function f is a�ne over a triangulation of a grid

similar to the one used for multilinear terms. A description of the associated CDC that emphasizes
its combinatorial structure can be obtained through the same simplification from Section 3.4 as
follows. Consider a rectangular region in the plane ⌦= [1,M ]⇥ [1,N ], and the regular grid points
J = {1, . . . ,M}⇥ {1, . . . ,N}. A grid triangulation S of ⌦ is then a set S where:

• Each S 2 S is a triangle: |S|= 3.
• S partitions ⌦:

S

S2SConv(S) =⌦ and relint(Conv(S))\ relint(Conv(T )) = ; for each distinct
S,T 2 S.

• S is on a regular grid: S ⇢ J for each S 2 S, and ||v�w||1  1 for each v,w 2 S.
As concrete examples, consider Figure 1, where we depict three di↵erent triangulations with M =
N = 3. Grid triangulations are often used to model bivariate, non-separable, piecewise linear func-
tions using (7) [55, 57]. Furthermore, any formulation constructed for a given grid triangulation
can be readily applied to any other grid triangulation obtained by shifting the grid points in the
plane, so long as the resulting triangulation is strongly isomorphic to, or compatible with, the
original triangulation [4].

Figure 1. Three grid triangulations of ⌦= [1,3]⇥ [1,3]: the Union Jack (J1) [51] (Left), the K1 [34] (Center), and
a more idiosyncratic construction (Right).
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3.6. Obstacle avoidance Consider an unmanned aerial vehicle (UAV) which you would like
to navigate through an area with fixed obstacles. At any given time, you wish to impose the
constraint that the location of the vehicle x 2 R2 must lie in some (nonconvex) region ⌦ ⇢ R2,
which is the plane, less any obstacles in the area. MIP formulations of this constraint has received
interest as a useful primitive for path planning [10, 19, 46, 39].
We may model x 2⌦ by partitioning the region ⌦ with polyhedra such that ⌦=

S

d

i=1

P i. Tra-
ditional approaches to modeling constraints (1) of this form use a linear inequality description for
each of the polyhedra P i and construct a corresponding big-M formulation [45, 46], which will not
be ideal in general. In the V-polyhedra framework, we will instead take the P i as V-polyhedra that
partition ⌦, and be able to construct small, ideal formulations.

4. MIP formulations for combinatorial disjunctive constraints Using standard MIP
formulation techniques, we now present formulations for CDC(S) for comparison with our approach.
In particular, we will argue that the framework we will present later can lead to formulations that
are smaller (in terms of the number of auxiliary variables), and enjoy other favorable properties
we enumerate in Section 5.

4.1. MIP formulations: Definitions, size, and strength Formally, we say that a (binary)
MIP formulation F for a constraint x2Q✓Rn1 is the composition of linear inequalities (the linear
programming (LP) relaxation, or just relaxation in the context of this work)

R
def
= {(x, y, z)2 [lx, ux]⇥ [ly, uy]⇥ [0,1]n3 :Ax+By+Cz  d}

with (binary) integrality conditions

F
def
=R\ (Rn1 ⇥Rn2 ⇥ {0,1}n3) (8)

such that Proj
x

(F ) =Q.5 Finally, we assume R is line-free (i.e. has at least one extreme point),
which is satisfied by essentially all practical formulations.
Throughout, we will be interested in ways of understanding both the strength of a given formu-

lation, as well as in quantifying the size or complexity of a formulation. We say that a formulation
is ideal if each extreme point of the relaxation naturally satisfies the integrality conditions, i.e.
Proj

z

(ext(R))✓ {0,1}n3 . The choice of name is apt, as this is the strongest possible MIP formula-
tion we can expect.6

As a measure of the complexity of the formulation, we count the number of auxiliary continuous
variables y and continuous binary variables z used by the formulation, as well as the number of
inequalities in our description of R. We ignore the size of x, since this is intrinsic to the constraint we
wish to model. We will say that a formulation is extended if there are auxiliary continuous variables
y in the representation F (that is, n

2

> 0) and non-extended otherwise (n
2

= 0). Furthermore, as
suggested by the definition of R, we distinguish between variable bounds (e.g. ly  y  uy) and
general inequalities (Ax+By+Cz  d), as modern MIP solvers are able to incorporate variable
bounds with minimal extra computational cost. Finally, we note that from now on (with a single
exception), any statements regarding formulation properties or size will be with respect to the
combinatorial disjunctive constraint CDC(S), rather than the V-polyhedral disjunctive constraints
itself. In other words, all statements are with respect a fixed combinatorial structure, with no
possible simplifications from the specific data as discussed in Section 2. The sole exception will be
in Section 6.2, where we will make use of some geometric properties inherent in a given realization
of the data.

5 To handle the unbounded case, we allow the variable bounds lx  x u

x and l

y  y u

y to take infinite values.
6 An ideal formulation is also sharp, i.e. its relaxation projects down to the convex hull of the set we are formulating
(Proj

x

(R) =Conv(Q)).
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4.2. Existing formulations for combinatorial disjunctive constraints A standard for-
mulation for CDC(S) adapted from Jeroslow and Lowe [29] is

�
v

=
X

S2S:v2S

�S

v

8v 2 J (9a)

z
S

=
X

v2S

�S

v

8S 2 S (9b)

X

S2S

z
S

= 1 (9c)

�S 2�S 8S 2 S (9d)
(�, z)2�J ⇥ {0,1}S. (9e)

This formulation has d = |S| auxiliary binary variables,
P

S2S |S| auxiliary continuous variables,
and no general inequalities. Additionally, it is ideal.
Using Proposition 9.3 from [52], we can construct an ideal MIP formulation with fewer auxiliary

binary variables:

�
v

=
X

S2S:v2S

�S

v

8v 2 J (10a)

X

S2S

X

v2S

�S

v

= 1 (10b)

X

S2S

X

v2S

hS�S

v

= z (10c)

�S � 0 8S 2 S (10d)
z 2 {0,1}r, (10e)

where {hS}
S2S ✓ {0,1}r is some set of distinct binary vectors. This formulation is actually a

generalization of (9), which we recover if we take hS = eS 2 RS as the canonical unit vectors. If
instead we take r to be as small as possible (while ensuring that the vectors {hS}

S2S are distinct),
we recover r = dlog

2

(d)e. Therefore, formulation (10) yields an ideal extended formulation for (1)
with dlog

2

(d)e auxiliary binary variables,
P

S2S |S| auxiliary continuous variables, and no general
inequalities. The following corollary shows that this is the smallest number of auxiliary binary
variables we may hope for.

Proposition 1. If the sets S are irredundant, then any binary MIP formulation for CDC(S)
must have at least dlog

2

(d)e auxiliary binary variables.

Proof See Appendix B. ⇤
The formulations thus far have been extended formulations, as they are constructed by formu-

lating each polyhedra Q (S) separately and then aggregating them, rather than working with the
combinatorial structure underlying the shared extreme points. Therefore, each of these formulations
requires a copy of the multiplier �S

v

for each set S 2 S for which v 2 S, and so
P

d

i=1

|S| auxiliary
continuous variables total.
In contrast, we can construct non-extended formulations for CDC(S) that work directly on

the � variables and the underlying combinatorial structure of S. An example of a non-extended
formulation for CDC is the widely used ad-hoc formulation (see [52, Section 6] and the references
therein) given by

�
v


X

S2S:v2S

z
S

8v 2 J (11a)

X

S2S

z
S

= 1 (11b)

(�, z)2�J ⇥ {0,1}S. (11c)
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This formulation is not necessarily ideal, and it requires no auxiliary continuous variables, d aux-
iliary binary variables, and |J | general inequalities.
In summary, we have seen an ideal extended formulation (10) for CDC(S) with relatively few

auxiliary binary variables, but relatively many auxiliary continuous variables. On the other end
of the spectrum, we have a non-extended formulation (11) with no auxiliary continuous variables,
but which requires relatively many auxiliary binary variables and which may fail to be ideal.
However, we know that in special cases we can construct ideal, non-extended formulations with
only O(log(d)) auxiliary variables and constraints (e.g. SOS1, SOS2, and particular 2-dimensional
grid triangulations [53, 57]). This work provides a framework for constructing such small, strong,
non-extended MIP formulations for CDC(S), which are automatically ideal, and in the best case
will have O(log(d)) auxiliary binary variables and general inequality constraints.

5. Independent branching schemes Vielma and Nemhauser [57] introduced the notion
of an independent branching scheme as a natural framework for constructing formulations for
combinatorial disjunctive constraints. The independent branching scheme is a logically equivalent
way of expressing a CDC in terms of a conjunction of dichotomies: that is, as a series of choices
between two (simple) options. This approach is parsimonious: if you are given an independent
branching scheme for a particular CDC, it is straightforward to construct an ideal formulation
whose size is on the order of the number of dichotomies. For our purposes, we present a generalized
notion, where we allow potentially more than two alternatives.
Definition 2. A k-way independent branching (IB) scheme of depth t for CDC(S) is given by

a family of sets (Lj

1

, . . . ,Lj

k

) (where each Lj

i

✓ J) for j 2 JtK, where

CDC(S) =
t

\

j=1

 

k

[

i=1

Q(Lj

i

)

!

. (12)

We say that such an IB scheme has depth t, and that each j 2 JtK yields a corresponding level of
the IB scheme

S

k

i=1

Q(Lj

i

), given by the k alternatives Q(Lj

i

).
An equivalent way of understanding these representations, which we will be using for the remain-

der of this work, is by eschewing the polyhedra Q(Lj

i

) and working directly on the underlying set
Lj

i

. That is, a valid k-way IB scheme satisfies the condition that

T ✓ J is a feasible set()8j 2 JtK, 9i2 JkK s.t. T ✓Lj

i

.

First, we observe that, due to our assumption that S covers the ground set, we have that for each
element v 2 J and level j 2 JtK, there will be at least one alternative i 2 JkK such that v 2 Lj

i

.
We will use this extensively in the analysis to come, as it simplifies some otherwise tedious case
analyses. Second, we see that this definition can capture potential schemes with a variable number of
alternatives in each level by adding empty alternatives Lj

i

= ;, provided we take k as the maximum
number of alternatives for all levels. For notational simplicity, we say that a 2-way IB scheme is a
pairwise IB scheme, and in this case we write the sets as {(Lj,Rj)}t

j=1

as in [57]. In contrast, we
will call the case with k > 2 a multi-way IB scheme.
In this form, we have replaced the monolithic constraint CDC(S) by t constraints, each of which

require the selection between k alternatives. We may then use standard techniques to construct a
corresponding mixed-integer formulation.

Proposition 2. Given an independent branching scheme {(Lj

1

, . . . ,Lj

k

)}t
j=1

for CDC(S), the
following is a valid formulation for CDC(S):

X

v 62L

j

i

�
v

 1� zj
i

8j 2 JtK,8i2 JkK (13a)
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k

X

i=1

zj
i

= 1 8j 2 JtK (13b)

�2�J (13c)
zj 2 {0,1}k 8j 2 JtK. (13d)

The formulation is known to be ideal for k= 2 [55, 57]. It has no auxiliary continuous variables, kt
auxiliary binary variables, and kt general inequalities.

5.1. Constraint branching via independent branching-based formulations The
canonical algorithmic technique for solving mixed-integer programming problems is some variation
of branch-and-bound [35], which implicitly enumerates all possible values for the binary variables.
In its simplest form, a sequence of problems are solved, starting with the relaxation of the MIP
formulation, after which a binary variable z

i

is chosen for branching. That is, the current problem
is branched into two subproblems: one with the additional constraint z

i

 0, another with z
i

� 1.
Repeating this procedure, the subproblems form a (binary) tree whose leaves correspond to all
2n3 possible values for the n

3

binary variables in formulation (8). At any given subproblem, the
augmented relaxation to be solved is described by the set of binary variables fixed to zero, and the
set of those fixed to one.
The spirit of constraint branching is to allow richer branching decisions. For example, a branch-

ing decision might be between k alternatives of the form {Qi}k
i=1

, where each Qi is formed by
adding a general inequality constraint to the existing relaxation at the current node. This con-
cept has significant overlap with the broader field of constraint programming [7, 28], which has
been recognized and exploited in the mixed-integer programming literature [1, 6, 25, 44, 48]. More
complex constraint branching can often lead to a more balanced branch-and-bound tree, which
can significantly improve computational performance (see, for example, [52, Section 8] and [59] for
more discussion). Combinatorial disjunctive constraints are a natural setting to apply constraint
branching directly on the continuous � variables [9, 18, 31, 32, 37]. Indeed, the classical examples
of the SOS1 and SOS2 constraints [9] show that we do not necessarily require a MIP formulation
(or the auxiliary binary variables z) for modeling combinatorial disjunctive constraints, as the
disjunction can be enforced directly through constraint branching on the � variables. These con-
straint branching approaches without auxiliary binary variables can be implemented in an ad-hoc
branch-and-bound procedure, or through branching callbacks available in some MIP solvers, such
as CPLEX. In theory, this approach should outperform a MIP formulation like (11) that introduces
additional variables and constraints. However, realizing this performance advantage in practice can
require significant e↵ort and technical expertise. For instance, Vielma et al. [55, 56] observe that
the basic formulation (11) clearly outperformed the SOS2 branching implementation in CPLEX
v9.1. However, CPLEX v11 implemented an optimized version of SOS2 branching that used the
advanced branch selection techniques available for variable branching, reversing this performance
gap with respect the MIP formulation approach.
One way to avoid re-implementing the advanced branching selection techniques for a new

constraint branching approach is by constructing a MIP model that automatically inherits the
advanced constraint branch selection, but using the solvers traditional variable branching [6, 57].
For simplicity, assume that the constraint branching approach has t branching options, each of
which creates k branches, and that each constraint added has support on the � variables, with
variable coe�cients in {0,1} and a zero right-hand-side. That is, branch i2 JkK of branching option
j 2 JtK adds a constraint of the form

P

v 62L

j

i

�
v

 0. This is equivalent to a multi-variable branching
approach that fixes groups of variables to zero, and it includes as special cases most constraint
branching approaches, including SOS1/SOS2 branching. Then (13) is a MIP formulation for this
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multi-variable constraint branching scheme, as variable branching on {zj
i

}k
i=1

enforces constraint
branching option j on the � variables.
This connection highlights the natural theoretical equivalence between a multi-variable branch-

ing and an independent branching formulation. A practical di↵erence between the two is that
direct multi-variable branching must implement an explicit branch selection and implementation
routine, while an independent branching formulation inherits the variable branching selection and
implementation routines of the MIP solver. The upshot of this is that the independent branching
formulation must provide a complete catalog of all possible branching options up-front (i.e. through
the formulation), while direct multi-variable branching can have a large catalog of branching options
that are implicitly defined by the branching routines.
We finally note that, as discussed by Vielma and Nemhauser [57, Section 3], variable branching

on a non-IB formulation such as (10) can fix components of � to zero in a fashion that is dependent
on previous branching decisions. This is not the case with independent branching formulations,
hence the name. We review this independence property in detail in Appendix C.

6. Independent branching scheme representability To start, we observe that the inde-
pendent branching approach is not su�ciently general to capture every possible formulation for
CDC(S). In particular, there is the restriction that each alternative Q(Lj

i

) restricts the � variables
to lie on a single face of the standard simplex. A natural first question is then: given a family of
sets S, do any k-way IB schemes exist for CDC(S)? We provide an answer, based on a graphical
characterization of the constraint.
Definition 3. Let H

def
= (J,E) be a hypergraph with hyperedge set E ✓ 2J .

• The rank of H is r (H)
def
=max{|E| : E 2 E}.

• A (weakly) independent set of H is a set U ✓ J that does not contain any element of E as a
subset.

• The conflict hypergraph of S isHc

S

def
= (J,ES), where ES

def
= {E ✓ J : E is a minimal infeasible set}.

Lemma 1. The maximal independent sets S in Hc

S are exactly the sets S 2 S.

Proof If S 2 S, it is obviously a feasible set, and so we have immediately that S is an independent
set in Hc

S. If it is not maximal, then we could add some v 2 J\S and maintain feasibility, which
would violate our nunredundancy assumption (i.e. S [ {v}✓ S0 2S, S 2 S, and S ( S ✓ S0).
If S is a maximal independent set in Hc

S, then it must be a feasible set with respect to S as well.
As it is maximal, there is no set Ŝ 2 S with S ( Ŝ, and so we must have S 2 S as well. ⇤

Theorem 1. A k-way IB scheme exists for CDC(S) if and only if r (Hc

S) k. In particular, if

ES =
n

Ej = {ej
1

, . . . , ej|Ej |}
o

t

j=1

is the hyperedge set for the conflict hypergraph Hc

S, then an r (Hc

S)-

way IB scheme for CDC(S) is given by

Lj

i

=

(

J\{ej
i

} i |Ej|
; o.w.

8i2 Jr (Hc

S)K, j 2 JtK. (14)

Proof To show the “if” direction, it su�ces to show the validity of (14). First note that every
minimally infeasible set Ej 2 ES is rendered infeasible by level j, which implies that every infeasible
set is rendered infeasible as well. Then note that for any S 2 S and for any j 2 JtK, we have Ej 6✓ S,
so there exists i2 J|Ej|K such that ej

i

2Ej \S. Hence, S 2Lj

i

and S is feasible for level j.
To show the “only if” direction, assume for a contradiction that there exists a k-way IB scheme

with k r (Hc

S)�1. Take a minimal infeasible set E = {e
1

, . . . , e
r

}2 ES, where r= r(Hc

S). Then take
j 2 JtK as a level of the IB scheme that renders E infeasible. By the minimality of E, we have that,
for all `2 JrK, there exists some i(`)2 JkK such that E(`)

def
=E \{e

`

}✓Lj

i(`)

. As k < r, we may apply



Huchette and Vielma: A combinatorial approach for disjunctive constraints
12 Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the manuscript number!)

the pigeonhole principle to see that there must exist some distinct `1, `2 2 JrK such that i(`1) = i(`2),
and such that E(`1)✓Lj

i(`

1
)

and E(`2)✓Lj

i(`

2
)

. As E =E(`1)[E(`2) and Lj

i(`

1
)

=Lj

i(`

2
)

, this implies

that E ✓Lj

i(`

1
)

, which contradicts our supposition that level j rendering E infeasible. ⇤
Throughout, we will say that CDC(S) is k-way IB-representable (or pairwise IB-representable

for k= 2) if it admits a k-way IB scheme.

6.1. Cardinality constraints Our first application of Theorem 1 is to derive a strong restric-
tion on the existence of multi-way IB schemes for the cardinality constraint.

Corollary 1. A cardinality constraint of degree ` is k-way IB-representable if and only if
k > `.

Proof Direct from Theorem 1 by observing that r (Hc

S) = `+1. ⇤
We observe that the IB scheme (14), when applied to the cardinality constraint, is a natural MIP

formulation for the “conjunctive normal form” [8], and is unlikely to be practical for even moder-
ately large `. In addition, both specialized constraint branching schemes for cardinality constraints
[27] and the binary variable branching induced by standard formulations for cardinality constraints
are quite imbalanced. The existence of a pairwise independent branching scheme for cardinality
constraints would likely have finally produced the sought-after balanced constraint branching. How-
ever, Corollary 1 implies that such a balanced constraint branching cannot be produced via IB
schemes, or equivalently by constraint branchings that do not use general inequalities (i.e. are only
multi-variable branchings).

6.2. Polygonal partitions of the plane Consider a (nonconvex) bounded region in the
plane ⌦⇢R2 that describes all possible locations for a UAV, as described in Section 3.6. Assume
that ⌦ can be partitioned into polyhedra {P i}d

i=1

such that
S

d

i=1

P i =⌦ and relint(P i)\relint(P j) =
; for each distinct i, j 2 JdK. We note that this partition will not, in general, be unique, and its
selection can have a significant e↵ect on questions of representability or formulation size. Figure 2
illustrates this for a convex region with a “hole.” The figure shows three ways to partition the
resulting nonconvex region into convex polyhedra. Once this partition is fixed, we describe the
associated polyhedra in V-form, and so the corresponding combinatorial disjunctive constraint is
given by S = {ext(P i)}d

i=1

and J =
S

{S 2 S}. We additionally forbid polyhedra with “internal
vertices” by requiring that

v 2 P i () v 2 ext(P i) 8i2 JdK, v 2 J, (15)

so that S corresponds to the maximal elements of a polyhedral complex [60, Section 5.1]. For
example, the second and third partitions in Figure 2 satisfy this condition, while the first does not.
In this setting, minimal infeasible sets have a natural characterization.

Theorem 2. Take bounded ⌦⇢R2 and a polyhedral partition {P i}d
i=1

of ⌦ satisfying the inter-
nal vertex condition (15). If S= {ext(P i)}d

i=1

, then r (Hc

S) 3.

Proof Take some minimal infeasible hyperedge E 2 ES of Hc

S, assuming for contradiction that
r= |E|> 3, and label the points E = {vi}r

i=1

. First, we show that the points may not be in general
position, i.e. that w.l.o.g. vr 2Conv({vi}r�1

i=1

). Then, we argue that the points not being in general
position implies that {vi}r�1

i=1

is also an infeasible set, violating the minimality condition.
Assume for contradiction that the points are in general position; that is, that none can be written

as a convex combination of the others. This implies that ext(Conv(E)) = E. Assume that the
ordering {v1, . . . , vr} forms a path around the edges of Conv(E); that is, vi and vj both lie on an
edge of Conv(E) if and only if |i� j|= 1 or {i, j}= {1, r}.
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Choose some set S1 2 S and some 2< j < r such that v1, vj 2 S1 and v2 62 S1; the associated poly-
hedron is P 1. Such a set exists, else E is not a minimal infeasible set (choose instead E\{v2}). Now
choose S2 2 S such that v2, vr 2 S2; the associated polyhedron is P 2. Such as set exists, as {v2, vr}(
E and E is minimal. As the nodes v1, v2, vj, vr are interlaced along the boundary of Conv(E), we
have that Conv({v1, vj})\Conv({v2, vr})⇢Conv(E) is nonempty. As each of the four points is on
the boundary of Conv(E), and the points are in general position, it follows that Conv({v1, vj})\
Conv({v2, vr}) = relint(Conv({v1, vj})) \ relint(Conv({v2, vr})). Therefore, there must exist some
point y with y 2 relint(Conv({v1, vj})) ✓ relint(P 1) and y 2 relint(Conv({v2, vr})) ✓ relint(P 2).
However, this implies that relint(P 1)\ relint(P 2) 6= ;, which contradicts the assumption that our
sets partition the region ⌦.
Finally, it just remains to show that {vi}r�1

i=1

is also an infeasible set, and therefore {vi}r
i=1

cannot
be a minimal infeasible set. Assume for contradiction that it is not: i.e. that there exists some j

such that {vi}r�1

i=1

✓ ext(P j). But this implies that vr 2 J and vr 2Conv(E)✓ P j, yet vr 62 ext(P j),
a contradiction of the internal vertices assumption. ⇤
In other words, every polyhedral partition of the plane is 3-way independent branching-

representable, and pairwise IB representability can be checked in time polynomial in |J | (for exam-
ple, by enumerating the subsets of J of cardinality 3). To illustrate, in Figure 2 we depict the three
possible cases for a partition with respect to Theorem 2: 1) it does not satisfy the internal vertices
condition, 2) it admits a pairwise IB scheme (r(Hc

S) = 2), or 3) it does not admit a pairwise IB
scheme, but does admit a 3-way IB scheme (r(Hc

S) = 3).

Figure 2. Partitions of a nonconvex region in the plane obtained by removing a central non-convex portion from a
convex polyhedron. The first partition does not satisfy the internal vertices condition (15) (Left), the second partition
admits a pairwise IB scheme (Center), and the third partition admits a 3-way IB scheme but not a pairwise one
(Right).

Furthermore, we can argue that we can always represent a obstacle avoidance constraint in
such a way that it admits a pairwise IB scheme. Inspecting Figure 2, we see that the region ⌦ is
the same in each, and it is only the partition of ⌦ that can potentially lead to constraints that
are not pairwise IB-representable. Therefore, the obstacle avoidance constraint is invariant to the
specification of the partition, and if any polyhedral partitioning exists, then it is always possible
to construct one that satisfies the conditions of Theorem 2.7

7 Note that this result does not carry over to piecewise linear functions over ⌦, as the choice of the partition is
intimately connected with the values the function may take.
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6.3. SOS2 Our first example of a constraint that is always pairwise IB-representable is the
SOS2(N) constraint. Recall that J = JNK and S = {{⌧, ⌧ + 1} : ⌧ 2 JN � 1K} for SOS2. Then
ES = {{⌧, ⌧ + t} : ⌧, ⌧ + t2 JNK, t� 2}, r (Hc

S) = 2, and formulation (14) has depth t=
�

N

2

�

�N +1.
However, Vielma and Nemhauser [57] construct a pairwise IB scheme for SOS2(N) constraints of
depth logarithmic in N . The construction is built around a Gray code [50], or sequence of distinct
binary vectors {hi}N�1

i=1

✓ {0,1}dlog2(N�1)e where each adjacent pair (hi, hi+1) di↵ers in exactly one
component. Notationally, here and throughout, take h0

def
= h1 and hN

def
= hN�1. The pairwise IB

scheme is then given by

Lj =
�

⌧ 2 JNK : h⌧�1

j

= 1 or h⌧

j

= 1
 

, Rj =
�

⌧ 2 JNK : h⌧�1

j

= 0 or h⌧

j

= 0
 

8j 2 Jdlog
2

(N�1)eK.

We observe that the resulting formulation matches the lower bound from Proposition 1 with respect
to the number of auxiliary binary variables and is significantly smaller than formulation (14).
Indeed, formulation (14) is likely to be unnecessarily large for the other constraints we consider

as well, so we turn our attention to finding smaller IB schemes in Section 7. We end this section by
applying Theorem 1 to succinctly prove the pairwise IB-representability of two other constraints.

6.4. Other pairwise IB-representable constraints

SOSk In this case ES = {{⌧, ⌧ + t} : ⌧, ⌧ + t2 JNK, t� k+1} and r (Hc

S) = 2.

Grid triangulations We show that r (Hc

S) = 2 by seeing that for any infeasible set T ✓ J
there exist some distinct v,w 2 T such that {v,w} is infeasible. Indeed, if there are some v,w 2 T
such that ||v�w||1 > 1, then there does not exist any triangle on the grid that contains both, so
{v,w} is also an infeasible set. Otherwise, we have that T ⇢ {r, r+1}⇥{s, s+1} for some r, s, and
that T contains elements in both of the triangles in this square. For each of the two triangles, we
can select an element of T that is not contained in the other triangle, which yields an infeasible
pair contained in T . Therefore, any grid triangulation is pairwise IB-representable.

7. Pairwise independent branching schemes The pairwise independent branching
scheme framework was initially introduced by Vielma and Nemhauser [57], where it was used to
model particularly structured piecewise linear functions. In the remainder of this work, we will
focus on pairwise IB schemes and o↵er a complete picture of their expressive powers, along with
an algorithmic framework for constructing them.

7.1. Graphical representations of pairwise IB-representable CDCs From our covering
assumption J =

S

{S 2 S}, we can see that |E|� 2 for each E 2 ES. By applying Theorem 1, we
then immediately have that CDC(S) is pairwise IB-representable if and only if Hc

S is (equivalent
to) a graph. Along this line, for any constraint we may define a conflict graph for any CDC(S)
as Gc

S

def
= (J, Ē), where Ē = ĒS

def
= {{u, v} 2 [J ]2 : u 6= v, {u, v} is an infeasible set} is the set of all

infeasible pairs of elements of J . Checking for pairwise IB-representability then reduces to verifying
if ES = ĒS. The following corollary of Theorem 1 shows that this can also be verified by only
working with Gc

S.

Corollary 2. CDC(S) is pairwise IB-representable if and only if the sets S are exactly the
maximal independent sets of Gc

S.

Proof If CDC(S) is pairwise IB-representable, then Gc

S is equivalent to Hc

S. By applying Theo-
rem 1, the maximal independent sets of Gc

S are exactly the elements of S. For the converse, assume
for a contradiction that S is exactly the maximal independent sets of Gc

S, but that there exists
some E 2 ES with |E| � 3. By the minimal infeasibility of E, we have that {r, s} /2 ĒS for any
distinct r, s2E, and therefore E is an independent set in Gc

S. This implies that E is contained in
a maximal independent S. By assumption, S 2 S, which contradicts the infeasibility of E. ⇤
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Therefore, verifying general pairwise IB-representability reduces to enumerating the maximal
independent sets of Gc

S and identifying them to exactly the sets S. As an example, we can see that,
for cardinality constraint of degree ` with 2 `< |J |, the only maximal independent set of Gc

S is
the entire ground set J , which certainly cannot be identified with S= {S ⇢ J : |S|= `}.

7.2. Representation at a given depth Once a CDC has been shown to be pairwise IB-
representable, a natural next question is: what is the smallest possible depth at which we may
construct an IB scheme? That is, we ask if there exists a pairwise IB scheme for CDC(S) of some
given depth t. The answer to this question reduces to the existence of a graphical decomposition
of the conflict graph Gc

S.
Definition 4. A biclique cover of the graph G = (J,E) is a collection of complete bipartite

subgraphs
n

Gj

def
= (Aj [Bj,Ej)

o

t

j=1

of G that cover all the edges of G. Formally, this means that

for each t2 JtK, ;(Aj,Bj ( J , Aj \Bj = ;, and Ej =Aj ⇤Bj

def
= {{a, b} : a2Aj, b2Bj}, and that

S

t

j=1

Ej = E. For notational simplicity, we will often refer to the sets {(Aj,Bj)}t
j=1

as a biclique
cover, as we can recover the graphs Gj directly.
The following theorem formalizes the equivalence between biclique covers and pairwise IB

schemes.

Theorem 3. If {(Aj,Bj)}t
j=1

is biclique cover of the conflict graph Gc

S for pairwise IB-
representable CDC(S), then a pairwise IB scheme for CDC(S) is given by

Lj = J\Aj, Rj = J\Bj 8j 2 JtK. (16)

Conversely, if {(Lj,Rj)}t
j=1

is a pairwise IB scheme for CDC(S), then a biclique cover of the
conflict graph Gc

S is given by

Aj = J\Lj, Bj = J\Rj 8j 2 JtK. (17)

Proof For the first part, take Ē as the edge set of Gc

S. To see that any S 2 S is feasible for the
IB scheme (16), note that if S 6✓Lj and S 6✓Rj, then there exist some u 2Aj \S and v 2Bj \S.
However, this implies that {u, v}2Aj ⇤Bj ✓ Ē, which is a contradiction of feasibility as {u, v}✓ S
and S 2 S. Furthermore, as {(Aj,Bj)}t

j=1

is a biclique cover of Gc

S, for every {u, v} 2 Ē we have
that there exists some level j 2 JtK such that w.l.o.g. u 2Aj and v 2Bj. This implies that u /2 Lj

and v /2Rj by their construction, and as CDC(S) is pairwise IB-representable, then any infeasible
set for CDC(S) is also infeasible for the proposed IB scheme. Therefore, (16) is a valid pairwise IB
scheme.
For the second part, note that Aj \ Bj = ; for all j 2 JtK, and that the covering portion of

Assumption 1 implies that Lj[Rj = J . Therefore, it only remains to show that Ē =
S

t

j=1

Ēj, where
Ēj =Aj ⇤Bj. For that, first note that as Lj [Rj = J , we have that Aj =Rj \Lj and Bj =Lj \Rj.
The containment Ē ✓

S

t

j=1

Ēj then follows by noting that, as {(Lj,Rj)}t
j=1

is a valid pairwise IB
scheme, each minimal infeasible set {u, v} 2 Ē has some level j 2 JtK such that {u, v} 6✓ Lj and
{u, v} 6✓ Rj. Then, as Lj [Rj = J , we have (w.l.o.g.) that u 2 Lj\Rj ⌘ Bj and b 2 Rj\Lj ⌘ Aj,
and so {a, b}2 Ēj. For the reverse containment

S

t

j=1

Ēj ✓ Ē, take some arbitrary j 2 JtK and some
edge {a, b} 2 Ēj. From the definition of our biclique cover, we have that w.l.o.g. a 2 Aj ⌘ Rj\Lj

and b 2Bj ⌘Lj\Rj. Therefore, {a, b} is an infeasible set for the IB scheme, and thus for CDC(S)
as well, and so {a, b}2 Ē. ⇤
We can now naturally frame the problem of finding a minimum depth pairwise IB scheme as

the minimum biclique cover problem [20, 23]. Unfortunately, the decision version of this problem
is known to be NP-complete [43] and inapproximable within a factor of |J |1/3�✏ if P 6=NP [24],
even for bipartite graphs. However, we note that it is simple to construct a MIP feasibility problem
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for finding a pairwise IB scheme of a given depth t, which gives us a way to algorithmically find
the smallest pairwise IB scheme for a specific (fixed) CDC. We present such a formulation in
Proposition 7 in Appendix D. Additionally, Cornaz and Fonlupt [16] present a MIP formulation
(with an exponential number of constraints that can be e�ciently separated) to find the minimum
level biclique cover of a graph.
Furthermore, we can restate the MIP formulation from [57] (which is a special case of (13) with

k= 2) in terms of biclique covers of Gc

S.

Proposition 3 (Theorem 5, [57]; Theorem 1, [55]). If CDC(S) is pairwise independent
branching-representable and {(Aj,Bj)}t

j=1

is a biclique cover for Gc

S, then the following is an ideal
formulation for CDC(S):

X

v2A

j

�
v

 z
j

8j 2 JtK (18a)

X

v2B

j

�
v

 1� z
j

8j 2 JtK (18b)

(�, z)2�J ⇥ {0,1}t. (18c)

We end the section by noting that the relation between biclique covers and independent sets
has also been exploited in the study of boolean functions, particularly in the equivalence between
posiforms and maximum weighted stable sets (e.g. [17, Theorem 13.16]). In fact, formulation (18) is
reminiscent of formulation (13.45–13.50) in [17, Theorem 13.13]. The main di↵erence between these
formulations is that in the context of [17] the � variables will be binary variables not constrained to
lie in the unit simplex. For this reason inequalities (18a–18b) appear disaggregated in [17, Theorem
13.13] in the form �

v

 z
j

for all v 2 Aj, j 2 JtK. However, the resulting formulation is not ideal
(See [57, Section 5] for more details). Still, the combinatorial aspects of this connection could prove
useful for constructing small IB schemes.
In the next section, we will explore instances where we can, in closed form, construct small

(asymptotically optimal) IB schemes for families of particularly structured CDCs.

8. Illustrative examples With a framework to construct pairwise independent branching
schemes for arbitrary pairwise IB-representable CDCs, we now return to some of our motivating
examples. We will apply our methodology to these specific structures, and produce small, closed-
form IB schemes. In particular, this allows us to construct novel, small MIP formulations for these
constraints.

8.1. A simple IB scheme and its limitations To start, we show that any pairwise IB-
representable CDC admits an IB scheme of depth |J |. If |J | is smaller than |S|, this already o↵ers
a drop in size from (11). This IB scheme covers all edges incident to node with the simple biclique
corresponding to the star centered at that node.

Proposition 4 (Covering with Stars). For pairwise IB-representable CDC(S), a biclique
cover for Gc

S is given by:

Av = {v}, Bv =
�

u2 J : {u, v}2 Ē
 

8v 2 J.

Proof By construction of the sets, we see that each {r, s} 2 Ēv ⌘ Av ⇤Bv corresponds to an
infeasible edge: that is, Ēv ✓ Ē for each v, and so

S

v2J

Ēv ✓ Ē. Furthermore, each infeasible edge
{r, s}2 Ē is infeasible for levels r and s, and so Ē ✓

S

v2J

Ēv. Therefore, this construction forms a
valid biclique cover of the conflict graph. ⇤
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This gives us an upper bound of |J | on the minimum depth for any pairwise IB-representable
CDC. However, if we exploit the specific structure of a CDC, we can typically get much
smaller formulations. For instance, consider the following two instances of the SOS3(N) con-
straint for small values of N . First, consider the instance with N = 6, where |J | = 6 and S =
{{1,2,3},{2,3,4},{3,4,5},{4,5,6}}. Therefore, |S|= 4, yielding a lower bound of depth log

2

(4) = 2
from Proposition 1. However, there does not exist a biclique cover of depth 2 (which can be verified
via Proposition 7), though one of depth 3 does exist:

A1 = {1}, B1 = {4,5,6}
A2 = {1,2}, B2 = {5,6}
A3 = {1,2,3}, B3 = {6}.

We can see the proposed IB scheme on the left side of Figure 3. For clarity, the associated MIP
formulation for the CDC from Proposition 3 is

�
1

 z
1

�
4

+�
5

+�
6

 1� z
1

�
1

+�
2

 z
2

�
5

+�
6

 1� z
2

�
1

+�
2

+�
3

 z
3

�
6

 1� z
3

(�, z)2�6 ⇥ {0,1}3.

Next, we consider N = 10, where we also cannot attain the log
2

(8) = 3 lower bound. However, a
biclique for this the conflict graph of this constraint is

A1 = {1,8,9,10}, B1 = {4,5} (20a)
A2 = {1,2,10}, B2 = {5,6,7} (20b)
A3 = {1,2,3,9,10}, B3 = {6} (20c)
A4 = {1,2,3,4}, B4 = {7,8,9,10}, (20d)

as seen on the right side of Figure 3. The corresponding MIP formulation is

�
1

+�
8

+�
9

+�
10

 z
1

�
4

+�
5

 1� z
1

�
1

+�
2

+�
10

 z
2

�
5

+�
6

+�
7

 1� z
2

�
1

+�
2

+�
3

+�
9

+�
10

 z
3

�
6

 1� z
3

�
1

+�
2

+�
3

+�
4

 z
4

�
7

+�
8

+�
9

+�
10

 1� z
4

(�, z)2�10 ⇥ {0,1}4.

The ad-hoc construction for SOS3(6) suggests a more general construction for SOSk(N) when
kN/2 (assume for convenience that N is even). Consider the sets given by

Aj = {1, . . . , j}[ {j+N/2+ k, . . . ,N}, Bj = {j+ k, . . . , j+N/2}

for each j 2 JN/2K. It is straightforward to see that this yields a biclique cover of the conflict
graph for SOSk(N) of depth N/2. Therefore, with this simple operation, we have constructed an
ideal formulation for SOSk(N) with size strictly smaller than N , the size of the näıve nonextended
formulation (11).
Based on the second example (20), we know that this construction is, in general, not the smallest

possible. In Section 8.4.2, we will see how we can systematically construct small biclique covers (and
MIP formulations) for SOSk(N) with arbitrary k and N , using techniques we will now develop.
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1 65432 1 6 7 8 9 105432

1 65432 1 6 7 8 9 105432

1 65432 1 6 7 8 9 105432

1 6 7 8 9 105432

Figure 3. Visualizations of the biclique covers presented in the text for SOS3(6) (Left) and SOS3(10) (Right). Each
row corresponds to some level j, and the elements of Aj and B

j are the blue squares and green diamonds, respectively.

8.2. Systematic construction of biclique covers As discussed in Section 6.3, there exists
an IB scheme for the SOS2 constraint of optimal depth that can be constructed using a Gray
code. The following proposition shows how the validity of this scheme can easily be proven by
reinterpreting it via a biclique cover.

Proposition 5. Take a Gray code {hi}N�1

i=1

✓ {0,1}dlog2(N�1)e and let h0

def
= h1 and hN

def
= hN�1.

If Gc

S is the conflict graph of SOS2(N), then a biclique cover for Gc

S of depth dlog
2

(N �1)e is given
by

Aj =
�

⌧ 2 JNK : h⌧�1

j

= h⌧

j

= 0
 

, Bj =
�

⌧ 2 JNK : h⌧�1

j

= h⌧

j

= 1
 

8j 2 Jdlog
2

(N � 1)eK. (21)

Proof For the SOS2(N) constraint we have that ĒS = {{r, s}2 JNK2 : r+2 s}. Take any infea-
sible pair {r, s} 2 ĒS. As r+2 s, we conclude that r� 1< r < s� 1< s, and so it must be that
hr�1, hr 6= hs�1, hs. The set of components which flip values between the two pairs of adjacent codes
(hr�1, hr) and (hs�1, hs) is I = {j 2 Jdlog

2

(N �1)eK : hr�1

j

6= hr

j

or hs�1

j

6= hs

j

}, and |I| 2 as we have
selected a Gray code. Now it must be the case that there is some component j 2 Jdlog

2

(N �1)eK\I
wherein hr�1

j

= hr

j

6= hs�1

j

= hs

j

, else we conclude that two of the vectors hi = h` coincide for some
i2 {r� 1, r} and `2 {s� 1, s}, a contradiction of their uniqueness. Then {r, s}2Ej, i.e. it is cov-
ered by the j-th level of the biclique. Furthermore, we observe that no edges of the form {r, r+1}
will be contained in the biclique cover, as it is not possible that hr�1

j

= hr

j

= 0 (resp. = 1) and
hr

j

= hr+1

j

= 1 (resp. = 0) simultaneously.
⇤

Interestingly, we can also view this construction recursively if we use a specific Gray code known
as the reflected Gray code [50]. For SOS2(2k), we will take Ek as the edge set for the corresponding
conflict graph. With k= 1, d= 2k= 2, N = 2k +1= 3, and E1 = {{1,3}}. A complete biclique cover
is given by the single biclique A1,1 = {1} and B1,1 = {3}. As we see in Figure 4, we can construct a
biclique cover for SOS2 with k = 2 by stitching together two copies of the biclique. We construct
two copies of the node set for k= 1, invert the second, and identify the last node from the first set
with the first node with the second set. Then we can readily construct a mapping of the biclique
(A1,1,B1,1) for k = 1 to a biclique for k = 2, using the node identification, as A2,1 = {1,5} and
B2,1 = {3}. This will cover all edges in E2 with both incident nodes in the first half of the nodes,
or both in the second half of the nodes (along with some other edges in E2, as well). To cover all
edges with one adjacent node in the first half, and the other in the second half, we construct a
second biclique of the form A2,2 = {1,2} and B2,2 = {4,5}.
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1 32

1 32

13 2

1 3 4 52 1 3 4 52

Figure 4. The recursive construction for biclique covers for SOS2. The first row is a single biclique that covers the
conflict graph for SOS2(3) (A1,1 in blue, B1,1 in green). The second row shows the construction which duplicates the
ground set {1,2,3} and inverts the ordering on the second copy. The third row shows the identification of the nodes
that yields a valid biclique for SOS2(5). This biclique is then combined with a second that covers all edges between
nodes identified with the first copy and those identified with the second, giving a biclique cover for SOS2(5) with two
levels.

We can repeat this construction with k= 3 to get the three level biclique cover

A3,1 = {1,5,9}, B3,1 = {3,7}
A3,2 = {1,2,8,9}, B3,2 = {4,5,6}
A3,3 = {1,2,3,4}, B3,2 = {6,7,8,9}.

We can repeat this recursively to get a biclique cover for Ek+1 as {(Ak+1,i,Bk+1,i)}k+1

i=1

, where

Ak+1,i =
[

u2A

k,i

�

u,2k+1 +2�u
 

, Bk+1,i =
[

v2B

k,i

�

v,2k+1 +2� v
 

8i2 JkK

Ak+1,k+1 =
�

1, . . . ,2k
 

, Bk+1,k+1 =
�

2k +2, . . . ,2k+1 +1
 

.

In fact, we can readily state this recursive construction in a more general form, where we adapt a
biclique cover for one graph into a biclique cover for another graph that is created in some specific
way.

Lemma 2. Take some graph G= (Jm+1K,E), and define G2 = (J2m+1K,E2) for

E2 =E [
�

{2m+2�u,2m+2� v} : {u, v}2E
 

[
�

JmK ⇤ Jm+2,2m+1K
�

where Ja, bK def
= {a, . . . , b}. If {(Aj,Bj)}t

j=1

is a biclique cover of G, then {(Ãj, B̃j)}t+1

j=1

is a biclique
cover of G2, where

Ãj =
[

u2A

j

{u,2m+2�u}, B̃j =
[

v2B

j

{v,2m+2� v} 8j 2 JtK

Ãt+1 = {1, . . . ,m}, B̃t+1 ={m+2, . . . ,2m+1}.

In the remainder of this work, we will see how we may apply similar graphical results to system-
atically construct small biclique covers for the conflict graphs of constraints by exploiting their
specific structure.
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8.3. Biclique covers for graph products and discretizations of multilinear terms
Consider the discretization of multilinear terms described in Section 3.4, given by J =

Q

⌘

i=1

Jd
i

K
and S= {

Q

⌘

i=1

{k
i

, k
i

+1} : k 2
Q

⌘

i=1

Jd
i

� 1K}. We can interpret this constraint as a ⌘-dimensional
version of the SOS2 constraint, or as the Cartesian product of ⌘ SOS2 constraints. This can be
formalized through the following definition and straightforward lemma.
Definition 5. The (disjunctive) graph product of a family of graphs {Gi = (J i,Ei)}⌘

i=1

is
W

⌘

i=1

Gi

def
= (J

P

,E
P

), where J
P

=
Q

⌘

i=1

J i and

E
P

=
�

{u, v}2 J
P

⇤J
P

: 9i2 J⌘K s.t. {u
i

, v
i

}2Ei

 

.

Lemma 3. Let J =
Q

⌘

i=1

Jd
i

K and S= {
Q

⌘

i=1

{k
i

, k
i

+1} : k 2
Q

⌘

i=1

Jd
i

� 1K} be the ⌘-dimensional
discretization of multilinear terms, and Gc

S be the corresponding conflict graph. If Gi is the conflict
graph of SOS2(d

i

) for each i2 J⌘K, then Gc

S =
W

⌘

i=1

Gi.

Using this characterization, we can easily construct an IB scheme for discretizations of multilinear
terms by taking the graph products of IB schemes for the SOS2 constraint.

Lemma 4. Take a family of graphs {Gi = (J i,Ei)}⌘
i=1

, and a biclique cover {(Ãi,j, B̃i,j)}ti
j=1

for
each Gi. Then a biclique cover for

W

⌘

i=1

Gi is given by
S

⌘

i=1

{(Ai,j,Bi,j)}ti
j=1

, where

Ai,j =

 

i�1

Y

`=1

J `

!

⇥ Ãi,j ⇥
 

⌘

Y

`=i+1

J `

!

, Bi,j =

 

i�1

Y

`=1

J `

!

⇥ B̃i,j ⇥
 

⌘

Y

`=i+1

J `

!

8i2 J⌘K, j 2 Jt
i

K.

Corollary 3. Let J =
Q

⌘

i=1

Jd
i

K and S= {
Q

⌘

i=1

{k
i

, k
i

+1} : k 2
Q

⌘

i=1

Jd
i

� 1K} describe the ⌘-
dimensional discretization of multilinear terms, and take Gc

S as its conflict graph. If for each i2 J⌘K
we have a biclique cover {(Ãi,j, B̃i,j)}ti

j=1

for the conflict graph of SOS2(d
i

), then a biclique cover
for Gc

S of depth
P

⌘

i=1

t
i

is given by
S

⌘

i=1

{(Ai,j,Bi,j)}ti
j=1

, where

Ai,j =
n

x2 J : x
i

2 Ãi,j

o

, Bi,j =
n

x2 J : x
i

2 B̃i,j

o

8i2 J⌘K, j 2 Jt
i

K.

In particular, if we take {hi,j}di�1

j=1

✓ {0,1}dlog2(di�1)e as a Gray code for each i 2 J⌘K, where

hi,0

def
= hi,1 and hi,d

i

def
= hi,d

i

�1, then a biclique cover for Gc

S of depth
P

⌘

i=1

dlog
2

(d
i

� 1)e is given by:

Âi,j =
�

x2 J : 9� s.t. x
i

= �, hi,��1

j

= hi,�

j

= 0
 

, B̂i,j =
�

x2 J : 9� s.t. x
i

= �, hi,��1

j

= hi,�

j

= 1
 

for each i2 J⌘K and j 2 Jdlog
2

(d
i

� 1)eK.
We note that, since |S|=

Q

⌘

i=1

(d
i

�1), by Proposition 1 this construction yields a formulation that
is asymptotically optimal (with respect to number of auxiliary binary variables) for any possible
MIP formulation, up to an additive factor of at most ⌘.
Furthermore, we can specialize this to the bilinear case studied by Misener et al. [41].

Corollary 4. There exists a biclique cover for a the grid discretization of a bilinear function
(⌘= 2) with d

2

= 1 of depth dlog
2

(d
1

� 1)e.
This result yields an ideal MIP formulation for the outer-approximation of bilinear terms with
dlog

2

(m)e auxiliary binary variables, 2(m+1) auxiliary continuous variables (the � variables, one
for element in J), and 2dlog

2

(m)e general inequality constraints. In contrast, the logarithmic for-
mulation from Misener et al. [41] has dlog

2

(m)e auxiliary binary variables, 2dlog
2

(m)e+1 auxiliary
continuous variables, at least 2dlog

2

(m)e+6 general inequality constraints, and is not ideal in gen-
eral (see Appendix A). Therefore, we gain an ideal formulation with a naturally induced constraint
branching at the price of a modest number of additional auxiliary continuous variables. Further-
more, our formulation generalizes readily to discretization along the second dimension (d

2

> 1), for
non-uniform discretizations, and for higher dimensional multilinear functions (⌘> 2).
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8.4. Completing biclique covers via graph unions Another useful graphical technique
for our heuristic constructions will be to combine together biclique covers, each of which is designed
to cover a substructure of the constraint. For example, the conflict graph of a grid triangulation of
the plane is equivalent to the conflict graph of the 2-dimensional grid discretization of multilinear
terms, with one extra edge added for each subrectangle in the grid. Therefore, a biclique cover
of a grid triangulation can be obtained from a biclique cover of 2-dimensional discretization of
multilinear terms (i.e. from Corollary 3) by completing it with some number additional bicliques
that cover those extra edges. This construction can be formalized in the following way.
Definition 6. The graph union of a family of graphs {Gi = (J i,Ei)}⌘

i=1

is
S

⌘

i=1

Gi

def
= (J

U

,E
U

),
where J

U

=
S

⌘

i=1

J i and E
U

=
S

⌘

i=1

Ei.

Lemma 5. Take a family of graphs {Gi = (J i,Ei)}⌘
i=1

and a corresponding biclique cover
{(Aj

i

,Bj

i

)}ti
j=1

of Gi for each i2 J⌘K. Then
S

⌘

i=1

{(Aj

i

,Bj

i

)}ti
j=1

is a biclique cover of
S

⌘

i=1

Gi.

We can apply Lemma 5 to construct biclique covers for the grid triangulations depicted in
Figure 1. First, we apply the biclique cover construction from Corollary 3 to cover all edges not
sharing a subrectangle. This is depicted in the first two subfigures of each row in Figure 5. To cover
the remaining 4 edges created by the triangulation, we see that the number of additional levels
needed is dependent on the combinatorial structure. Additionally, in all three cases we can verify
through Proposition 7 that the resulting biclique cover is of the smallest possible depth. The first

Figure 5. Independent branching schemes for the three triangulations presented in Figure 1, each given its own
row.The sets A

j and B

j are given by the blue boxes and green diamonds vertices, respectively, in the i-th subfigure
of the corresponding row.

example is the “Union Jack” triangulation [51] for N =M = 3 and the results in [57] show that for
this triangulation the biclique cover from Corollary 3 can be completed with a single additional
biclique cover for any N and M . The second triangulation is a K1 triangulation [34] for N =M = 3,
and an early version of [53] showed that for this triangulation the biclique can always be completed
with two additional bicliques (See Section 8.5 for a generalization of these results).
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In contrast, for generic triangulations such as the third one, it was not previously known if the
biclique cover can always be completed with fewer than the trivial (M � 1)(N � 1) levels needed
to cover each “diagonal” edge with its own additional biclique. First, we can adapt Proposition 4
to cover the extra edges with stars, but in general this will result in ⇥(M ·N) stars, and hence the
same number of additional levels. To reduce this, we need a way to stick the stars together into
more complicated bicliques. In section 8.5 we will see how we may use graph colorings for a broad
class of triangulations (subsuming the Union Jack and K1 triangulations as special cases), to cover
the extra edges with either one or two additional bicliques. In general, it turns out that we may
cover the remaining edges for any grid triangulation with a constant number of additional levels
by applying the simple following lemma.

Lemma 6. Let {(Aj,Bj)}t
j=1

be a family of bicliques of a graph G. If (Ak,B`) is also a biclique

of G for each k, `2 JtK, then
⇣

S

t

j=1

Aj,
S

t

j=1

Bj

⌘

is a biclique of G.

The strength of Lemma 6 comes from the fact that many CDCs of practical interest have a local
structure (i.e. sets in S have small cardinality, or, equivalently, the minimum degree of the conflict
graph is close to the total number of nodes). In this case, the condition of Lemma 6 will hold for
families of stars centered at nodes that are located “su�ciently far apart.”

8.4.1. Grid triangulations of the plane We may now present a biclique cover construction
for generic grid triangulations, with no further assumptions on the structure of the triangles such
as in [55, 57], whose depth scales like log

2

(M) + log
2

(N) + O(1). In the same way as depicted
in Figure 5, we construct the biclique cover by using Lemma 5 to complete the construction of
Corollary 3. For this, we will use the following corollary of Lemma 6 that shows how to combine
certain stars centered at su�ciently separated nodes.

Corollary 5. Take a regular grid J = JMK ⇥ JNK, let S be a grid triangulation of [1,M ]⇥
[1,N ], and take Gc

S = (J, Ē) as its conflict graph. For all w 2 J , define A(w)
def
= {w} and B(w)

def
=

n

w+ v : v 2 {�1,1}2 ,{w,w+ v}2 Ē
o

. Then

0

@

[

w2J\(u+3Z2
)

A(w),
[

w2J\(u+3Z2
)

B(w)

1

A

is a biclique of Gc

S for any u2 J .

Proof Direct from Lemma 6 by taking u2 J and the family of bicliques {(A(w),B(w)}
w2J\(u+3Z2

)

and noting that, if u, v 2 J \ (u+3Z2), then ||u� v||1 � 3, and so (A(u),B(v)) is also a biclique
for Gc

S. ⇤
Figure 6 shows two possible bicliques that can be obtained from Corollary 5.
We can now use Lemma 5 and Corollary 5, along with the biclique cover derived in Corollary 3,

to obtain a biclique cover for any triangulation with an asymptotically optimal number of levels.

Theorem 4. Take J = JMK ⇥ JNK, and let S be a grid triangulation of [1,M ] ⇥ [1,N ]
with J =

S

{S 2 S}. Take Gc

S = (J, Ē) as its conflict graph. Presume that {(Ã1,j, B̃1,j)}t1
j=1

and

{(Ã2,j, B̃2,j)}t2
j=1

are biclique covers for the conflict graphs of the SOS2(M) and SOS2(N) con-
straints, respectively. Furthermore, define

A3,u = J \ (u+3Z2)

B3,u =
[

w2J\(u+3Z2)

n

w+ v : v 2 {�1,1}2 , {w,w+ v}2 Ē
o
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Figure 6. Two bicliques constructed via Corollary 5 for a grid triangulation with M = N = 8. On the left the
construction follows by taking u= (1,1); on the right, with u= (2,3). For each level, the sets A(u) and B(u) are given
by the blue squares and green diamonds, respectively.

for each u2 {0,1,2}2. Then {(A1,j,B1,j)}t1
j=1

[{(A2,j,B2,j)}t2
j=1

[{(A3,u,B3,u)}
u2{0,1,2}2 is a biclique

cover for Gc

S, where

A1,j = Ã1,j ⇥ JNK, B1,j = B̃1,j ⇥ JNK,
A2,j

0
= JMK⇥ Ã2,j

0
, B2,j

0
= JMK⇥ B̃2,j

0
,

for each j 2 Jt
1

K and j0 2 Jt
2

K.
In particular, if {h1,i}M�1

i=1

✓ {0,1}dlog2(M�1)e and {h2,i}N
i=1

✓ {0,1}dlog2(N�1)e are Gray codes,

where h1,0

def
= h1,1, h1,M

def
= h1,M�1, h2,0

def
= h2,1, and h2,N

def
= h2,N�1, then a biclique cover of Gc

S of depth
dlog

2

(M � 1)e+ dlog
2

(N � 1)e+9 is given by:

A1,` =
�

(x, y)2 J : h1,x�1

`

= h1,x

`

= 1
 

(22a)
B1,` =

�

(x, y)2 J : h1,x�1

`

= h1,x

`

= 0
 

(22b)

A2,`

0
=
�

(x, y)2 J : h2,y�1

`

= h2,y

`

= 1
 

(22c)

B2,`

0
=
�

(x, y)2 J : h2,y�1

`

= h2,y

`

= 0
 

(22d)
A3,u = J \ (u+3Z2) (22e)

B3,u =
[

w2J\(u+3Z2)

n

w+ v : v 2 {�1,1}2 , {w,w+ v}2 Ē
o

(22f)

for all `2 Jdlog
2

(M � 1)eK, `0 2 Jdlog
2

(N � 1)eK, and u2 {0,1,2}2.
Proof Let Gx

def
= (JMK,Ex) and Gy

def
= (JNK,Ey) be the conflict graphs for SOS2(M) and

SOS2(N), respectively. Furthermore, let

G3

def
=

[

u2{0,1,2}2
(J,A3,u⇤B3,u) =

0

@J,
[

u2{0,1,2}2
(A3,u ⇤B3,u)

1

A .

Then we see that GS = (Gx ⇥Gy) [G3 by noting that all diagonal edges of E (i.e. those of the
form {w,w+ v} 2 E for w 2 J and v 2 {�1,1}2) are included in G3, and observing that G3 is a
subgraph of Gc

S. The result then follows from Lemma 4, Lemma 5, and Corollary 5. ⇤
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By referring to Proposition 1, we recover a dlog
2

(2(M �1)(N �1))e � dlog
2

(M �1)e+ dlog
2

(N �
1)e lower bound on the depth of any biclique cover for a grid triangulation, and see that our
construction yields a MIP formulation that is within a constant additive factor of the smallest
possible. Finally, we note that similarly to the results in [55, 57] for the Union Jack triangulation,
formulation (18) for biclique cover (22) can provide a significant computational advantage for
general grid triangulations [26].

8.4.2. SOSk In this subsection, we will see how we may use the graph union construction to
produce an IB scheme for SOSk(N) of depth log

2

(N/k) +O(k), for any k and N . Similar to the
construction for grid triangulations, we first construct an initial family of bicliques based on the
SOS2 constraint. Next, we expand this onto a larger node set by the graph product construction.
Finally, we complete the biclique cover by combining a family of su�ciently separated stars. For
grid triangulations, this approach meant applying SOS2 constraints horizontally and vertically,
and taking a graph product of the two. One way to interpret this is as an SOS2 constraint applied
to groups of aggregated nodes in the ground set (e.g. when SOS2 is applied horizontally, we group
all elements with the same horizontal coordinate into a single group). For the SOSk(N) constraint,
we will apply the SOS2 constraint to the groups obtained by partitioning the N original ground
elements into dN/ke subsets of k consecutive elements. The following simple lemma shows how
this grouping can also be represented through a graph product. For the remainder of the section,
we assume that N/k is integer; if this is not true, we artificially introduce dN/kek�N nodes such
that this is the case, construct the formulation in Theorem 5, and remove the artificial nodes from
the formulation afterwards.

Lemma 7. Let J = JNK, k N , S correspond to the SOSk(N) constraint, and Gc

S = (J, Ē) be
the corresponding conflict graph. Let G1 = (JN/kK,E1) be the conflict graph for SOS2(N/k) and
G2 = ({0, . . . , k� 1},;) be the empty graph on k nodes. Then G1 ⇥G2 is isomorphic to a subgraph
Ĝ= (J, Ê) of Gc

S wherein Ê ✓ Ē, and each edge {u, v}2 Ē with |u�v|� 2k is contained {u, v}2 Ê.

Proof Let G1 ⇥ G2 = (J 0,E0). Consider the bijection f : J ! J 0 given by f(u) =
(div(u,k),mod(u,k)), where div(u,k) = bu/kc and mod(u,k) = u�k div(u,k) are the quotient and
remainder of the division of u by k, so that f�1 (m,r) = km+ r. We have that {(m,r), (m0, r0)} 2
E0 if and only if {m,m0} 2 E1, which in turn is equivalent to |m �m0| � 2. Therefore, for any
{(m,r), (m0, r0)}2E0, we have
�

�f�1(m,r)� f�1(m0, r0)
�

�= |(km+r)�(km0+r0)|= |k(m�m0)+(r�r0)|� k|m�m0|+ |r�r0|� 2k,

and hence {f�1(m,r), f�1(m0, r0)} 2 Ē, i.e. Ê ✓ Ē. For the second condition, see that if u, v 2 J
are such that |u� v|� 2k, then |div(u)� div(v)|� 2, and therefore {f(u), f(v)}2E0. ⇤
We can then cover the remaining edges with the following bicliques obtained by stitching together

families of su�ciently separated stars.

Corollary 6. Let J = JNK, k  N , S correspond to the SOSk(N) constraint, and

Gc

S be the corresponding conflict graph. For all w 2 J , define A(w)
def
= {w} and B(w)

def
=

{u2 J : k |u�w|< 2k}. Then
0

@

[

w2J\(u+3kZ)

A(w),
[

w2J\(u+3kZ)

B(w)

1

A

is a biclique of Gc

S for any u2 J .

Proof Direct from Lemma 6 by considering the family of bicliques {(A(w),B(w)}
w2J\(u+3kZ)

and noting that, for distinct u, v 2 J \ (u+3kZ), |u�v|� 3k, and so (A(u),B(v)) is also a biclique
for Gc

S. ⇤
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Finally, we can combine both classes of bicliques with Lemma 5 to construct a complete biclique
cover for SOSk(N). See Figure 7 for an example of the resulting construction.

Theorem 5. Let J = JNK, k N , S correspond to the SOSk(N) constraint on J , and Gc

S be
the corresponding conflict graph. Let {(Ã1,j, B̃1,j)}t1

j=1

be a biclique cover for the conflict graph of
the SOS2(N/k) constraint, and take

A2,j

0
=

d N

3ke
[

i=0

{⌧ 2 J : ⌧ = j0 +(3i� 3)k}

B2,j

0
=

d N

3ke
[

i=0

{⌧ 2 J : j0 +(3i� 2)k ⌧  j0 +(3i� 1)k}

for all j0 2 J3kK. Then {(A1,j,B1,j)}t
j=1

[ {(A2,j

0
,B2,j

0
)}J3kK

j

0
=1

is a biclique cover for Gc

S, where

A1,j =
n

⌧ 2 J : d⌧/ke 2 Ã1,j

o

, B1,j=
n

⌧ 2 J : d⌧/ke 2 B̃1,j

o

,

for each j 2 JtK.
In particular, if {hi}dN/ke�1

i=1

✓ {0,1}dlog2(dN/ke�1)e is a Gray code where h0

def
= h1 and

hdN/ke def
= hdN/ke�1, then a biclique cover of Gc

S of depth dlog
2

(dN/ke � 1)e + 3k is given by
{(A1,j,B1,j)}dlog2(dN/ke�1

j=1

[ {(A2,j

0
,B2,j

0
)}J3kK

j

0
=1

, where

A1,j =
n

⌧ 2 J : hd⌧/ke�1

j

= h
d⌧/ke
j

= 0
o

, B1,j =
n

⌧ 2 J : hd⌧/ke�1

j

= h
d⌧/ke
j

= 1
o

for all j 2 Jdlog
2

(dN/ke� 1)eK.
Proof Take G1

def
= (JN/kK,E1) as the conflict graph for SOS2(N/k), G2

def
= ({0, . . . , k � 1},;) as

the empty graph on k nodes, and G3

def
=
⇣

J,
S

3k

j

0
=1

A2,j

0 ⇤B2,j

0
⌘

. Let Ĝ be the subgraph of Gc

S from

Lemma 7, which is isomorphic to G1⇥G2 through the bijection g : JN/kK⇥{0, . . . , k�1}! J with
g (m,r) = km+r. Then we have that Gc

S = Ĝ[G3, after applying Lemma 7 and using the fact that
the edges of G3 contain the edges of Gc

S not included in Ĝ. The result then follows from Lemma 4,
Lemma 5, Lemma 7, and Corollary 5. ⇤
We note that, when k=O(log(N)), this biclique cover yields a MIP formulation that is asymp-

totically tight (with respect to the number of auxiliary binary variables) with our lower bound of
dlog

2

(N � k+ 1)e from Proposition 1. We can also show an absolute lower bound of depth k for
any biclique cover for SOSk. This implies that when k= !(log(N)), although the formulation from
Theorem 5 is not tight with respect to the lower bound from Proposition 1, it is asymptotically
the smallest possible formulation in the pairwise IB framework.

Proposition 6. Any biclique cover for the conflict graph of SOSk(N) must have depth at least
min{k,N � k}.

Proof Define �
def
= min{k,N � k} and consider any possible biclique cover {(Aj,Bj)}t

j=1

. The
biclique cover must separate the edges {(⌧, ⌧ +k)}�

⌧=1

. Consider a level j of the biclique cover that
contains edge {⌧, ⌧ + k} for some ⌧ 2 J�K; w.l.o.g., ⌧ 2Aj and ⌧ + k 2Bj. Consider the possibility
that the same level j separates another such edge in the set, e.g. (⌧ 0, ⌧ 0 + k) for ⌧ 0 2 J�K, where
w.l.o.g. ⌧ < ⌧ 0. That would imply that either ⌧ 0 2Aj or ⌧ 0 2Bj. In the case that ⌧ 0 2Aj, we have
that Ēj contains the edge {⌧ 0, ⌧ + k}. However, since |(⌧ + k)� ⌧ 0|=⌧ + k� ⌧ 0 < ⌧ + k� ⌧ = k, this
implies that the biclique cover separates a feasible edge, a contradiction. In the case where ⌧ 0 2Bj,
we have that Ēj contains the edge {⌧, ⌧ 0}, and as ⌧ 0 � ⌧ < k � from the definition of our set of
edges, a similar argument holds. Therefore, each edge {{⌧, ⌧ + k}}�

⌧=1

must be uniquely contained
in some level of the biclique cover, giving the result. ⇤
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1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

Figure 7. Visualizations of the biclique cover from the proof of Theorem 5 for SOS3(26). Each row corresponds to
some level j, and the sets A

j and B

j are the blue squares and green diamonds, respectively. The first three rows
correspond the the “first stage” of the biclique cover {(A1,j

,B

1,j)}3
j=1, and the second nine correspond to the “second

stage” {(A2,j
,B

2,j)}9
j=1.

Furthermore, when k = bN/2c, this proposition gives a lower bound on the depth of a biclique
cover that is asymptotically tight with the upper bound of N from Proposition 4. In other words, in
this particular regime, we have that the SOSk constraint admits a pairwise IB-based formulation,
but only one that is relatively large (⌦(|S|) =⌦(|J |) auxiliary binary variables and constraints).

8.5. Covering edges with a chromatic characterization of bicliques Our final contri-
bution is to adapt a result of Cornaz and Fonlupt [16] that gives a chromatic characterization of
the set of edges that can be covered by a biclique.

Theorem 6 ([16]). Take the graph G = (J, Ē), along with some edge subset F̄ ✓ Ē. Define
V (F̄ ) =

S

{{u, v}2 F̄} as all nodes incident to F̄ , and take F = [(F̄ ⇤ F̄ )\Ē as all pairs incident to
the edges V (F̄ ) not contained in Ē. Define both E0 = F [ F̄ and p : E0 ! {0,1} such that p(e) =
1[e2 Ē]8. Finally, take C (E0) as the family of all cycles in G0. Then the following are equivalent:

1. There exists a biclique (A,B) of G covering (V (F̄ ), F̄ ).
2. For all C 2 C (E0),

P

u2C

p(u) is even.
3. There exists some f : V (F̄ )! {0,1} such that

8 Where 1[e2 Ē] = 1 if e2 Ē and 1[e2 Ē] = 0 otherwise.
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• f(u) = f(v) for all {u, v}2 F ,
• f(u) 6= f(v) for all {u, v}2 F̄ , and
•
��

u2 V (F̄ ) : f(u) = 0
 

,
�

u2 V (F̄ ) : f(u) = 1
 �

is a biclique of G covering (V (F̄ ), F̄ ).

Using this result, we can sometimes exploit the structure of a grid triangulations to obtain
biclique covers that are smaller than those derived in Theorem 4.

Theorem 7. Take a regular grid J = JMK ⇥ JNK, the sets S given by a grid triangulation of
[1,M ] ⇥ [1,N ] with

S

{S 2 S} = J , and take Gc

S = (J, Ē) to be the corresponding conflict graph.
Furthermore, let {(Ã1,j, B̃1,j)}t1

j=1

and {(Ã2,j, B̃2,j)}t2
j=1

be biclique covers for the conflict graphs of

the SOS2(M) and SOS2(N) constraints, respectively. Also define J
even

def
= {u2 J : u

1

⌘ u
2

mod 2}
and J

odd

def
= {u2 J : u

1

6⌘ u
2

mod 2} as the set of nodes whose sum of components is either even

and odd, respectively. For each s2 {even, odd}, let E
s

def
= {{u, v}2 [J

s

]2 : ku� vk1 = 1}, F̄
s

def
=E

s

\Ē,

and F
s

def
= ([V

�

F̄
s

�

]2 \E
s

)\Ē.
If, for each s2 {even, odd}, there exists f

s

: J
s

! {0,1} such that

f
s

(u) = f
s

(v) 8{u, v}2 F
s

and f
s

(u) 6= f
s

(v) 8{u, v}2 F̄
s

, (23)

then {(A1,j,B1,j)}t1
j=1

[ {(A2,j,B2,j)}t2
j=1

[ {(A3,i,B3,i)}
i2J2K is a biclique cover for Gc

S, where

A1,j = Ã1,j ⇥ JNK, B1,j = B̃1,j ⇥ JNK,
A2,j

0
= JMK⇥ Ã2,j

0
, B2,j

0
= JMK⇥ B̃2,j

0
,

A3,s = {u2 J
s

: f
s

(u) = 0} , B3,s = {u2 J
s

: f
s

(u) = 1}

for each j 2 Jt
1

K, j0 2 Jt
2

K, and s2 {even, odd}.
If we select {(Ã1,j, B̃1,j)}t1

j=1

and {(Ã2,j, B̃2,j)}t1
j=1

to correspond to the Gray code construction for
SOS2 in Proposition 5, then the resulting biclique cover has depth dlog

2

(M�1)e+dlog
2

(N�1)e+2.
Furthermore, if for some s 2 {even, odd} we have that f

s

(u) = ↵ for all u 2 J
s

and some constant
↵, we may reduce the depth to dlog

2

(M � 1)e+ dlog
2

(N � 1)e+1.
Finally, if we fix s2 {even, odd} and r 2 {even, odd}\{s}, a su�cent condition for the existence

of f
s

: J
s

! {0,1} satisfying (23) is that

d
F

r

(u)
def
= |{e2 F

r

: 9v 2 J
r

s.t. e= {u, v}}| is even 8u2 J
r

\ J2,M � 1K⇥ J2,N � 1K. (24)

Proof Let Gx

def
= (JMK,Ex) and Gy

def
= (JNK,Ey) be the conflict graphs for the SOS2(M) and

SOS2(N) constraints, respectively. Furthermore, let G3

def
= (JMK⇥ JNK, (A3,even ⇤B3,even)[ (A3,odd ⇤

B3,odd)). Then we may see that Gc

S = (Gx ⇥Gy)[G3 by noting that all diagonal edges of Ē (i.e.
those of the form {w,w+ v} 2 Ē for w 2 J and v 2 {�1,1}2) are included in G3, and that G3

is a subgraph of Gc

S. The first part of the theorem then follows from Lemma 4, Lemma 5, and
Theorem 6.
For the su�cient condition, w.l.o.g. consider the case where s= even and r= odd. Define p

even

:
E

even

! {0,1} as p
even

(e) = 1[e 2 Ē]. The result will follow from Theorem 6 by showing that (24)
satisfies condition 2 in the equivalence of the theorem. Let E0

even

= F
even

[ F̄
even

, and assume for
contradiction that there exists C 2 C (E0

even

) such that
P

u2C

p
even

(u) is odd. If |C| = 4, we may
assume without loss of generality that V (C) = {u,u+(1,1), u+(1,�1), u+(2,0)}⇢ J

even

for some
u2 J

even

. Then v= u+(0,1)2 J
odd

is such that d
E

odd

(v) is odd, a contradiction of (24). If |C|> 4,
note that C 2 C (E

even

) and that there exists e2C such that p
even

(e) = 1. In addition, there exists
C

0

2 C (E
even

) such that e 2 C
0

, |C
0

| = 4, C
1

= (C
0

[C) \ (C
0

\C) 2 C (E
even

) and Conv(C
1

) (
Conv(C). If

P

u2C0
p
even

(u) is odd, we may make the same argument above as |C
0

|= 4 to derive
a contradiction of (24). If not, then C

1

and C have the same parity, and therefore
P

u2C1
p
even

(u)
is odd. We may then repeat this shrinking procedure recursively on C

1

until either the 4-cycle C
0

has odd parity, or C
1

is itself a 4-cycle. In either case, we have a 4-cycle with odd parity, which
implies some u2 J

odd

that violates (24), giving the result. ⇤
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We note that we may use this coloring characterization to recover the biclique covers for both
the Union Jack and K1 triangulation example in Figure 5. For the Union Jack example, we have
that

F̄
even

= ;, F̄
odd

= {{(1,2), (2,1)}, {(2,1), (3,2)}, {(1,2), (2,3)}, {(2,3), (3,2)}} ,

and so we may apply the simplification in Theorem 7 to construct a biclique cover of depth
log

2

(2) + log
2

(2) + 1 = 3. Indeed, the original formulation of Vielma and Nemhauser [57] for the
Union Jack triangulation can be reinterpreted analogously through the chromatic characterization
of Theorem 7.
For the K1 triangulation example, we have

F̄
even

= {{(1,3), (2,2)}, {(2,2), (3,1)}} , F̄
odd

= {{(1,2), (2,1)}, {(2,3), (3,2)}} ,

giving a biclique cover of depth log
2

(2)+ log
2

(2)+ 2= 4.
Furthermore, we close by noting that the su�cient condition in Theorem 7 is, in general, not

necessary. For example, in Figure 8 we see a grid triangulation that does not satisfy (24), but for
which there exists a coloring given by {f

even

, f
odd

} that satisfies (23). That is, (2,3) has odd degree
(i.e. d

F

odd

((2,3)) = 1), and so the su�cient condition is not satisfied. However, a coloring satisfying
the conditions of Theorem 7 exists. This o↵ers a generalization of the result that originally appeared
in a preliminary version of [53], which only showed the su�cient condition (24).

Figure 8. (Left) A grid triangulation that does not satisfy the su�cient condition of Theorem 7, as (2,3) (red circle)
has odd degree. However, there a coloring of the form described in Theorem 7, leading to two bicliques (Center and
Right) that cover all “diagonal” edges of the conflict graph.
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M. Laguna, J. L. González , eds., Computing tools for modeling, optimization, and simulation: interfaces
in computer science and operations research, Operations research / computer science interfaces series ,
vol. 12. Kluwer, 245–261.

[7] Apt, Krzysztof R. 2003. Principles of Constraint Programming . Cambridge University Press.

[8] Balas, Egon. 1985. Disjunctive programming and a hierarchy of relaxations for discrete optimization
problems. SIAM J. Alg. Disc. Meth. 6(3) 466–486.

[9] Beale, E. M. L., J. A. Tomlin. 1970. Special facilities in a general mathematical programming system
for non-convex problems using ordered sets of variables. J. Lawrence, ed., OR 69: Proceedings of the
Fifth International Conference on Operational Research. Tavistock Publications, 447–454.

[10] Bellingham, John Saunders. 2002. Coordination and control of uav fleets using mixed-integer linear
programming. Master’s thesis, Massachusetts Institute of Technology.

[11] Bertsimas, Dimitris, Romy Shioda. 2009. Algorithm for cardinality-constrained quadratic optimization.
Comput. Optim. Appl. 43 1–22.

[12] Bienstock, Daniel. 1996. Computational study of a family of mixed-integer quadratic programming
problems. Mathematical Programming 74 121–140.

[13] Bixby, R., E. Rothberg. 2007. Progress in computational mixed integer programming—A look back
from the other side of the tipping point. Annals of Operations Research 149 37–41.

[14] Chang, T.-J., N. Meade, J.E. Beasley, Y.M. Sharaiha. 2000. Heuristics for cardinality constrained
portfolio optimization. Computers and Operations Research 27 1271–1302.
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Appendix A: Logarithmic formulation from Misener et al. [41] is not ideal We show
that the logarithmic formulation (16) from Misener et al. [41] is not, in general, ideal. Using their
notation, we take N

P

= 3, xL = yL = 0, and xU = yU = 3 (and so a= 1). Then formulation (16) is

�
1

+2�
2

 x (25a)
x 1+�

1

+2�
2

(25b)
1+�

1

+2�
2

 3 (25c)
�y

1

 3�
1

(25d)
�y

2

 3�
2

(25e)
�y

1

= y� s
1

(25f)
�y

2

= y� s
2

(25g)
s
1

 3(1��
1

) (25h)
s
2

 3(1��
2

) (25i)
z ��y

1

+2�y
2

(25j)
z � 3x+(y� 3)+ (�y

1

� 3�
1

)+ 2(�y
2

� 3�
2

) (25k)
z  y+�y

1

+2�y
2

(25l)
z  3x+(�y

1

� 3�
1

)+ 2(�y
2

� 3�
2

) (25m)
�2 {0,1}2 (25n)
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(x, y)2 [0,3]⇥ [0,3]. (25q)

The feasible point for the relaxation x= 3, y= 3, z = 9, �= (1,0.5), �y= (3,1.5), and s= (0,1.5) is
a fractional extreme point, showing that the formulation is not ideal. Indeed, it satifies at equality
the set of linear independent constraints of the relaxation given by x 3, y  3, �

1

 1, �y
1

 3,
s
1

� 0, (25b), (25e), (25g) and (25k).
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Appendix B: Proof of Proposition 1 First, we present a more general lemma.

Lemma 8. If there do not exist polyhedra {Qi}d0
i=1

with d0 < d and
S

d

i=1

P i =
S

d

0

i=1

Qi, then any

binary MIP formulation for
S

d

i=1

P i must have at least dlog
2

(d)e binary variables.

Proof Presume that formulation F takes the form (8). For each h2 {0,1}n3 , consider the preim-
age Pre(h)

def
= {x2Rn1 : 9y 2Rn2 s.t. (x, y,h)2 F}; it is clear from the definition of F that this set

is polyhedral. Furthermore, we need that
S

h2{0,1}n3 Pre(h) =
S

d

i=1

P i. If the condition holds, then
we have that the cardinality of the index set of the left side (2n3) must be at least d, which implies
the result. ⇤
We may apply this lemma in the case where our irredundancy assumption holds.
Proof of Proposition 1 For each S 2 S, take �S = 1

|S|
P

v2S

ev, where ev 2 {0,1}J is the unit

vector for component v. Assume that there is some Qi as in Lemma 8 such that �S,�S

0 2Qi for two
S,S0 2 S. By convexity, 1

2

(�S + �S

0
) 2Qi as well. But this implies that there is a point in Qi with

support over S [S0, which would violate the irredundancy of S and S0, meaning that this cannot
yield a formulation for

S

d

i=1

P i. Therefore, each of the d points �S must be contained uniquely in
some Qi, and we may apply Lemma 8 for the result. ⇤

Appendix C: Independence in formulation-induced branching schemes As discussed
in [57, Section 3], the connection between MIP formulations and branching schemes for CDCs can
be used to explain in what sense an independent branching scheme is “independent.” As noted in
Section 5.1, the branching scheme on � induced by formulation (13) is precisely the multi-variable
branching associated to the corresponding independent branching scheme. In contrast, formulations
that are not based on IB schemes (e.g. (10)) do not necessarily induce a multi-variable branching.
However, we can interpret the induced e↵ect on the � variables as a multi-way branching scheme
that fixes the � variables in a non-independent way.
For example, consider SOS2(5) (i.e. S= {{1,2},{2,3},{3,4},{4,5}}). For this particular instance

and for {hS}
S2S given by h{1,2} = (1,1), h{2,3} = (1,0), h{3,4} = (0,1), and h{4,5} = (0,0), formula-

tion (10) is given by
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and a pairwise IB-based formulation (simplified slightly from (13)) is
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In Figure 9, we see the first two levels of the branch-and-bound trees for both formulations for
the cases where we choose either z

1

or z
2

for which to branch on first. We observe that, for
formulation (26), the variables �

v

that a given branching decision is able to prove are zero depends
on the previous branching decisions in the branch-and-bound tree, while this is not the case for
the independent branching formulation (27). For example, if we first branch down on z

2

(z
2

 0),
we are able to prove that �

1

= 0. If we choose instead to branch down on z
1

(z
1

 0), we are able to
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prove that �
1

= �
2

= 0. However, if we branch down on z
2

and then branch down on z
1

, we prove
that �

1

= �
2

= 0, but we are also able to prove that �
3

= 0, which we could not prove without
the combination of the two branching decisions. Indeed, we see that regardless of the branching
decision we make, we will not be able to prove that �

3

= 0 until the second level of the branching
tree with formulation (26).

⌀

{1,2}

z1=0
{1,2}

z2=0
{1}

z2=1
{5}

z2=0
{1}

z2=1
{5}

z1=1
{4,5}

{1,2,3} {1,2,5} {1,4,5} {3,4,5}

{4,5}

⌀

{1,2}

z1=0
{1,2}

z2=0
{3}

z2=1
{1,5}

z2=0
{3}

z2=1
{1,5}

z1=1
{4,5}

{1,2,3} {1,2,5} {1,4,5} {3,4,5}

{4,5}

⌀

{1}

z2=0
{1}

z1=0
{1,2}

z1=1
{4,5}

z1=0
{1,2}

z1=1
{4,5}

z2=1
{5}

{1,2,3} {1,4,5} {1,2,5} {3,4,5}

{5}

⌀

{3}

z2=0
{3}

z1=0
{1,2}

z1=1
{4,5}

z1=0
{1,2}

z1=1
{4,5}

z2=1
{1,5}

{1,2,3} {3,4,5} {1,2,5} {1,4,5}

{1,5}

Figure 9. The branch-and-bound trees for (26) (Left) and (27) (Right), when z1 is first to branch on, and then z2

(Top row), and when z2 is first to branch on, and then z1 (Bottom row). Inside each node is the set I ⇢ J5K of all
components v for which the algorithm has been able prove that �

v

= 0 at this point in the algorithm via branching
decisions. The text on the lines show the current branching decision (e.g. z2 � 1), and the set of variables �

v

for which
the (a) subproblem is able to prove that �

v

= 0 independently of any other branching decisions (e.g. z2 � 1 is the only
additional branching constraint added to the original relaxation). This figure is adapted from [57, Figure 2].

Contrastingly, each branching decision with the independent branching formulation (27) is able
to fix components of � to zero, independent of the location in the tree and of the previous branching
decisions. For example, branching down or up on z

2

is always able to prove either �
3

= 0 or
�
1

= �
5

= 0, independently. Consequentially, for every component v 2 J , there exists a branching
decision that is able to prove that �

v

= 0 at the first level of the branch-and-bound tree, which
is not the case with formulation (26) and v = 3, as mentioned above. Having this independence
property is a restriction on the branching scheme, but has the potential to simplify branching rules
(i.e. choosing which variable z

i

to branch on), a notoriously di�cult and computationally important
part of the algorithmic performance of a MIP solver (see, for example, [2]). Furthermore, we see
that independent branching rules guarantee that the solver can prove any component of � is zero
at the very beginning of the tree.
Finally, we note that MIP formulations that are not independent branching formulations can

still exhibit the independent branching behavior. For example, if we had selected the encoding
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{hS}
S2S to be given by given by h{1,2} = (1,1), h{2,3} = (1,0), h{3,4} = (0,0), and h{4,5} = (0,1), for-

mulation (10) would satisfy the independent branching property. However, independent branching
formulations provide an immediate proof that the property holds, which is not the case for general
MIP formulations.

Appendix D: Proposition 7

Proposition 7. A biclique cover of depth t exists for the conflict graph Gc

S = (J, Ē) of pairwise
IB-representable CDC(S) if and only if the following admits a feasible solution:

zr,s
j

 xr

j

+xs

j

zr,s
j

 xr

j

+ yr

j

zr,s
j

 xs

j

+ ys

j

zr,s
j

 yr

j

+ ys

j

zr,s
j

� xr

j

+ ys

j

� 1
zr,s
j

� xs

j

+ yr

j

� 1

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

8j 2 JtK,8{r, s}2 [J ]2 (28a)
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X

j=1
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� 1 8{r, s}2 Ē (28c)

t

X
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= 0 8{r, s}2 [J ]2\Ē (28d)

xr 2 {0,1}t 8r 2 J (28e)
yr 2 {0,1}t 8r 2 J (28f)

zr,s 2 {0,1}t 8{r, s}2 [J ]2. (28g)

Moreover, for any feasible solution (x, y, z), a biclique cover for Gc

S is given by Aj = {r 2 J : xr

j

= 1}
and Bj = {r 2 J : yr

j

= 1} for each j 2 JtK.
Proof The interpretation of the decision variables is:

xr
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= 1
⇥

r 2Aj
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(29a)
yr
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r 2Bj
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= yr
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⇤

. (29c)

That is, zr,s
j

= 1 i↵ level i separates infeasible edge {r, s} 2 Ē, which is enforced via (28a-28b).
To show that the existence of a biclique cover implies that (28) is feasible, you may consider the
proposed solution (29) and see that it is feasible for (28).
To show that a feasible solution maps to a biclique cover, consider some (x, y, z) feasible for

(28), and the corresponding sets Aj = {r 2 J : xr

j

= 1} and Bj = {r 2 J : yr

j

= 1} for each j 2 JtK.
Inequalities (28b) ensure that Aj\Bj = ; for each j 2 JtK. Constraints (28d) ensure that Aj ⇤Bj ✓ Ē
for each j 2 JtK. Therefore, each (Aj,Bj) is a biclique of Gc

S. Furthermore, (28c) ensures that that
there is at least one level j that separates each infeasible edge {r, s}2 Ē. Therefore, {(Aj,Bj)}t

j=1

is a biclique cover of Gc

S. ⇤


