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Abstract

The Chvátal-Gomory closure and the split closure of a rational polyhedron are rational polyhedra. It was
recently shown that the Chvátal-Gomory closure of a strictly convex body is also a rational polytope. In
this note, we show that the split closure of a strictly convex body is defined by a finite number of split
disjunctions, but is not necessarily polyhedral. We also give a closed form expression in the original variable
space of a split cut for full dimensional ellipsoids.
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1. Introduction

Cutting planes are inequalities that separate fractional points from the convex hull of the integer feasible
solutions of an Integer Programming (IP) problem. Together with branch and bound techniques, cutting
planes drive the engine of state-of-the-art integer programming solvers [8, 9].

One of the most successful class of cutting planes for linear IP problems are obtained via split disjunc-
tions [3, 5]. Split disjunctions can be applied to both linear and nonlinear IP problems as follows. Given
a convex set C ⊆ Rn, we are interested in obtaining convex relaxations of C ∩ Zn. If π ∈ Zn and π0 ∈ Z,
then C ∩ Zn ⊆ (C ∩ {x ∈ Rn : 〈π, x〉 ≤ π0}) ∪ (C ∩ {x ∈ Rn : 〈π, x〉 ≥ π0 + 1}) where 〈u, v〉 is the inner
product between u and v. Therefore, a convex relaxation of C ∩ Zn that is potentially tighter than C is
given by Cπ,π0 := conv ((C ∩ {x ∈ Rn : 〈π, x〉 ≤ π0}) ∪ (C ∩ {x ∈ Rn : 〈π, x〉 ≥ π0 + 1})). Observe that if
C is a polyhedron, then Cπ,π0 is a polyhedron. In this case, the nontrivial linear inequalities defining Cπ,π0

(i.e. inequalities not valid for C) are called split cuts. A usual way to study split cuts for linear IP is to
consider properties of the object obtained by adding all split cuts with the original linear inequalities. This
object is called the split closure and for both linear and nonlinear IP, it can be formally defined as follows.

Definition 1.1. Let C be a closed convex set. Let SCD(C) = ∩(π,π0)∈DC
π,π0 , D ⊆ Zn × Z. The split

closure of C is the convex set SCZn×Z(C). For simplicity, we refer to SCZn×Z(C) as SC(C).

If C is bounded or a rational polyhedron, then it is known that SC(C) is a closed set. In Section 2
we give a short proof of this fact for any closed convex set C. If C is a rational polyhedron, then Cπ,π0

is a polyhedron. However, because the number of disjunctions considered in the construction of the split
closure is not finite, SC(C) may not necessarily be a polyhedron. The first proof of the polyhedrality of the
split closure of a rational polyhedron was introduced by Cook, Kannan and Schrijver in 1990 [5] and other
proofs were subsequently presented [2, 7, 15] using different techniques. The approach of all these proofs
is to use different properties of rational polyhedra, split disjunctions and their interactions to show that a
finite number of split disjunctions is sufficient to describe the split closure.

In the case where C is not a polyhedron, Cπ,π0 is not always a polyhedron and therefore Cπ,π0 may
not be describable by a finite number of linear inequalities. Thus, given a general convex set, a reasonable
generalization of the polyhedrality result of split closure for rational polyhedra, is to show that a finite
number of split disjunctions is sufficient to describe the split closure. In this note, we verify this for a wide
range of strictly convex sets. As a direct corollary we obtain that the split closure preserves conic quadratic
representability [4] of strictly convex sets. These results can be stated formally as follows.

Definition 1.2. We say a set C is strictly convex if for all u, v ∈ C, u 6= v we have that λu + (1 − λ)v ∈
rel.int(C) for all 0 < λ < 1. We say C is a strictly convex body if C is a full dimensional, strictly convex
and compact set.

Theorem 1.3. Let C ⊆ Rn be a closed bounded strictly convex set such that the affine hull of C is a
rational affine subspace of Rn. Then the split closure of C is finitely defined, that is, there exists a finite set
D ⊆ Zn × Z such that SC(C) = SCD(C).

Definition 1.4. A conic quadratic representable set is a set of the form {x ∈ Rn : ∃y ∈ RpAx+Dy−b ∈ K}
for A ∈ Rm×n, D ∈ Rm×p, b ∈ Rm and K is the product of Lorentz cones of the form {u ∈ Rl :
‖(u1, ..., ul−1)‖ ≤ ul} where ‖·‖ is the Euclidean norm.

Corollary 1.5. If C is a bounded conic quadratic representable strictly convex set, then SC(C) is conic
quadratic representable.

Corollary 1.5 is a direct consequence of Theorem 1.3 by using the fact that the convex hull of the union
of a finite number of bounded conic quadratic representable sets is also conic quadratic representable [4].

We note here that, while we show that SC(C) is described by a finite number of disjunctions, verifying
that SC(C) is not always a polyhedron is also interesting; especially since the Chvátal-Gomory closure of
a strictly convex set is a rational polyhedron [6]. For this reason we present an example that illustrates
how the split closure of strictly convex sets can indeed be non-polyhedral. To achieve this we will give a
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closed form expression in the original variable space of a split cut for a full dimensional ellipsoid. Although
it is straightforward to obtain a closed form expression using auxiliary variables, there is a theoretical and
practical interest in getting an expression without auxiliary variables. In general, obtaining expressions
without auxiliary variables can result in more efficient cutting plane methods (e.g. [12, 13]). Also, for
example, the lifting approach for conic programming presented in [1] does not introduce any new auxiliary
variables.

2. Proof of Theorem 1.3

Let C be a closed convex set, bd(C) be its boundary and σC(a) := sup{〈a, x〉 : x ∈ C} be its support
function. Given a ∈ R, bac represents the largest integer smaller than or equal to a. Let Ip represent the
p-by-p identity matrix and 0a×b be the a-by-b matrix with all zero entries. Given a matrix P and a set C,
let PC = {Px : x ∈ C}.

To prove Theorem 1.3, we will use the fact that the Chvátal-Gomory closure of a strictly convex body
is a rational polyhedron.

Definition 2.1. Let C ⊆ Rn be a closed convex set. For any set S ⊆ Zn let

CGCS(C) =
⋂
a∈S
{x ∈ Rn : 〈a, x〉 ≤ bσC(a)c} .

The Chvátal-Gomory closure of C is CGC(C) := CGCZn(C).

Theorem 2.2 ([6]). Let C be a strictly convex body. Then there exists a finite set S ⊆ Zn, such that
CGC(C) = CGCS(C). Moreover bd(C) ∩ CGC(C) ⊆ bd(C) ∩ Zn.

We first present a few basic properties of split closures.

Lemma 2.3. Let C ⊂ Rn be a closed convex set. Then

1. For any (π, π0) ∈ Zn × Z we have that Cπ,π0 is a closed convex set.

2. SC(C) is a closed convex set.

Proof. Let C∞ be the recession cone of C and for a fixed (π, π0) ∈ Zn × Z let C1 := {x ∈ C : 〈π, x〉 ≤ π0},
C2 := {x ∈ C : 〈π, x〉 ≥ π0 + 1}, C1

+ := C1 +C∞ and C2
+ := C2 +C∞. If C1 or C2 is empty, then the first

part of the lemma is direct. For the case in which both sets are non-empty we first claim that

Cπ,π0 = conv
(
C1

+ ∪ C2
+

)
. (1)

For this it suffices to show that Cπ,π0 ⊇ conv
(
C1

+ ∪ C2
+

)
. Let xi ∈ Ci, ri ∈ C∞ and λi ≥ 0 for i ∈ {1, 2} such

that λ1 + λ2 = 1. To show that
∑2
i=1 λi(x

i + ri) ∈ Cπ,π0 , we show that xi + ri ∈ Cπ,π0 for i ∈ {1, 2}. We
only do this for i = 1 as the other case is analogous. If 〈π, r1〉 ≤ 0, then x1+r1 ∈ C1 so the result it direct. If
not, then 〈π, r1〉 > 0 and there exists t ≥ 1 such that x1 + tr1 ∈ C2. Because x1 +r1 ∈ conv

({
x1, x1 + tr1

})
we conclude that x1 + r1 ∈ Cπ,π0 .

Now, C1
+ and C2

+ are non-empty closed convex sets with the same recession cone and hence by Corollary
9.8.1 of [11], we obtain that conv

(
C1

+ ∪ C2
+

)
is a closed convex set. The first part of the lemma then follows

from (1) and the second part is a direct consequence of the first part.

Lemma 2.4. Let C ⊆ Rn be a compact convex set. Then

1. SC(C) ⊆ CGC(C) ⊆ C.

2. If C1 ⊆ C2, then SC(C1) ⊆ SC(C2).

Proof. 1. Note that the inequality 〈a, x〉 ≤ bσC(a)c is valid for Ca,bσC(a)c. Therefore, SCZn×Z(C) ⊆
CGCZn(C) ⊆ C, where the last inclusion is proven in [6].
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2. This follows from the fact that (C1)π,π0 ⊆ (C2)π,π0 for all (π, π0) ∈ Zn × Z.

Lemma 2.5. Let B(u, ε) ⊆ Rn be the closed ball with the center u and radius ε and let π ∈ Zn and ||π|| > 1
ε .

Then u ∈ B(u, ε)π,π0 for all π0 ∈ Z.

Proof. If 〈π, u〉 ≤ π0 or 〈π, u〉 ≥ π0 + 1, then u ∈ B(u, ε)π,π0 . Next consider the case where π0 < 〈π, u〉 <
π0 + 1. Since the distance between the sets {x ∈ Rn : 〈π, x〉 = π0} and {x ∈ Rn : 〈π, x〉 = π0 + 1} is less
than ε, there exists two points of the form u+ δ1

π
||π|| and u− δ2 π

||π|| such that

1. u+ δ1
π
||π|| ∈ {x ∈ Rn : 〈π, x〉 ≥ π0 + 1} and u− δ2 π

||π|| ∈ {x ∈ Rn : 〈π, x〉 ≤ π0},
2. δ1 ≥ 0, δ2 ≥ 0 and δ1 + δ2 = 1

||π|| < ε.

Therefore, u + δ1
π
||π|| , u − δ2

π
||π|| ∈ B(u, ε) and u is a convex combination of u + δ1

π
||π|| , u − δ2

π
||π|| . Thus

u ∈ B(u, ε)π,π0 .

Before presenting the proof of Theorem 1.3, we present two key related results. See [14] for a proof.

Lemma 2.6 (Hermite Normal Form). Let A ∈ Zp×n be a matrix with full row rank. Then there exists an
unimodular matrix U ∈ Zn×n such that AU = [B 0p×n−p] and B ∈ Zp×p is an invertible matrix.

Theorem 2.7 (Integer Farkas’s Lemma). Let A be a rational matrix and b be a rational vector. Then the
system Ax = b has integral solutions if and only if 〈y, b〉 is integer whenever y is a rational vector and AT y
is an integer vector.

Proof of Theorem 1.3. Let L be the affine hull of C. By assumption, L is a rational affine subspace. If L
contains no integer points, then by Theorem 2.7 we have that there exists π ∈ Zn such that 〈π, x〉 = b 6∈ Z
∀x ∈ C. Thus, Cπ,bbc = ∅. Therefore if L contains no integer points, then the proof of Theorem 1.3 is
complete. We now assume that L contains an integer point. Let u ∈ L ∩ Zn. Note that the split closure of
C is finitely defined if and only if the split closure of C − {u} is finitely defined. Therefore we may assume
u = 0 and L = {x ∈ Rn : Ax = 0} where A ∈ Zn−k×n with full row rank. Let U be the unimodular matrix

given by Lemma 2.6. Let P = [0k×n−k Ik]U−1 and Q = U

[
0n−k×k

Ik

]
. Then observe that

1. If x ∈ L, then QPx = x. Also for y ∈ Rk, PQy = y.

2. PC is strictly convex body.

3. If π ∈ Zn, then QTπ ∈ Zk. Therefore Cπ,π0 = Q
(

(PC)Q
Tπ,π0

)
.

4. If η ∈ Zk, then PT η ∈ Zn. Therefore (PC)η,η0 = P
(

(C)P
T η,η0

)
.

Then the split closure of C is finitely defined if and only if the split closure of PC is finitely defined. Hence
it is sufficient to verify Theorem 1.3 for full-dimensional sets.

Let T := CGC(C). Since SC(C) ⊆ T , it is sufficient to verify that for all but a finite number of vectors
π and scalars π0, the relationship T ⊆ Cπ,π0 holds.

By Theorem 2.2, T ∩ bd(C) ⊆ Zn. Therefore, if x ∈ T ∩ bd(C), then x ∈ SC(C). Let ext(T ) be the set
of vertices of the polytope T . Because ext(T ) \ bd(C) ⊆ C \ bd(C) = int(C) and |ext(CGCS(C))| <∞ we
have that there exists ε > 0 such that B(v, ε) ⊆ C ∀v ∈ ext(T ) \ bd(C).

Now if ||π|| > 1
ε , then by Lemma 2.4 and Lemma 2.5 we obtain that v ∈ Cπ,π0 ∀v ∈ ext(T ) ∀π0 ∈ Z.

Finally note that since C is bounded, given π ∈ Zn, there exists only a finite possibilities of π0 such that
C 6= Cπ,π0 . Therefore, T 6⊆ Cπ,π0 holds for only a finite number of split disjunctions, completing the proof.
�

We note here that the above proof can be modified to prove that whenever CGC(C) is a polyhedron and
CGC(C) ∩ bd(C) = SC(C) ∩ bd(C), the split closure is finitely defined.
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3. Example of Non-polyhedral Split Closure

We now give an example of a conic quadratic representable strictly convex body whose split closure is
non-polyhedral. Using a simple lemma we have as a direct corollary of Theorem 1.3 that the split closure
of all strictly convex bodies in R2 is a (not necessarily rational) polyhedron, so the example will be in R3.

Lemma 3.1. In R2, all nontrivial inequalities from a split disjunction are linear inequalities. Moreover
every split disjunction yields at most two linear inequalities.

Proof. Note that

Cπ,π0 = {x ∈ C : 〈π, x〉 ≤ π0} ∪ {x ∈ C : 〈π, x〉 ≥ π0 + 1}
∪ conv ({x ∈ bd(C) : 〈π, x〉 = π0} ∪ {x ∈ bdC : 〈π, x〉 = π0 + 1})

and if C ⊂ R2, then the last term in the union is a polytope with at most four facets. A simple case analysis
shows that at most two of this facets are faces of Cπ,π0 . The linear inequalities inducing these facets are the
only nontrivial split cuts for Cπ,π0 .

Corollary 3.2. The split closure of a strictly convex set in R2 is polyhedral.

Proof. Direct from Theorem 1.3 and Lemma 3.1 by noting that SC(C) is obtained by adding split cuts to
CGC(C), which is a polyhedron.

To construct the example in R3 we will need an explicit formula for split cuts for ellipsoids. For polyhedral
sets we can readily talk about split cuts, as Cπ,π0 is always defined by a finite number of linear inequalities.
For general convex sets the following straightforward lemma gives us at least one case in which we can also
talk about linear split cuts.

Lemma 3.3. Let C ⊆ Rn be a closed convex set and (π, π0) ∈ Zn × Z.

• If C ∩ {x ∈ Rn : 〈π, x〉 ≥ π0 + 1} = ∅, then Cπ,π0 = {x ∈ C : 〈π, x〉 ≤ π0}.

• If C ∩ {x ∈ Rn : 〈π, x〉 ≤ π0} = ∅, then Cπ,π0 = {x ∈ C : 〈π, x〉 ≥ π0 + 1}.

In the case depicted by Lemma 3.3 the obtained split cuts are simply Chvátal-Gomory cuts, so an
interesting question is if there are other cases in which we can talk about, possibly nonlinear, split cuts in
closed form. For conic quadratic representable sets Corollary 1.5 almost gives one such case.

Let C ⊆ Rn be a conic quadratic representable strictly convex body. By Corollary 1.5 we know that
SC(C) is conic quadratic representable and in particular so is Cπ,π0 for any (π, π0) ∈ Zn × Z. However,
this result does not tell us the structure of split cuts for conic quadratic representable sets in the original
space. The issue is that, for any (π, π0) ∈ Zn × Z, we only know that there exists A ∈ Rm×n, D ∈ Rm×p
and b ∈ Rm such that Cπ,π0 = {x ∈ Rn : ∃y ∈ RpAx + Dy − b ∈ K} where K a product of Lorentz
cones. Unfortunately, we do not know if this representation is possible without matrix D and auxiliary
variables y. In fact [4] contains many sets that require these auxiliary variables for their conic quadratic
representation. However, because of its very particular structure we might expect Cπ,π0 to have a conic
quadratic representation without auxiliary variables. We show that this is true at least when C is a full
dimensional bounded ellipsoid. blueFor this we will need the following facts about positive (semi-) definite
matrices.

Definition 3.4. We say that A ∈ Rn×n is positive (semi-)definite if A is symmetric and

〈x,Ax〉 >(≥) 0 ∀ x ∈ Rn \ {0}.

We write A �(�) 0 to denote that A is positive (semi-)definite. The relation �(�) defines a natural
partial order where A �(�)B ⇔ A − B �(�)0. We recall some basic facts about positive semi-definite
matrices.
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Fact 3.5.

1. A � 0 iff A is non-singular and A−1 � 0.

2. A � 0 iff ∃ B s.t. BtB = A. Furthermore ∃ unique B � 0 such that B2 = A which we denote A1/2.

3. A � 0. Define ‖x‖A =
√
〈x,Ax〉 for x ∈ Rn. Then we have that

(a) ‖x+ y‖A ≤ ‖x‖A + ‖y‖A ∀ x, y ∈ Rn.
(b) ‖ax‖A = |a|‖x‖A ∀ x ∈ Rn, a ∈ R.

We define the ellipsoid E(A, c) as

E(A, c) = {x ∈ Rn : 〈x− c, A(x− c)〉 ≤ 1} = {x ∈ Rn : ‖x− c‖A ≤ 1}.

For convenience, we denote E(A, 0) ≡ E(A). Take A ∈ Rn×n, A � 0. For π ∈ Rn \ {0} define

A⊥π = A− ππT

〈π,A−1π〉
.

For r ∈ R, −‖π‖A−1 ≤ r ≤ ‖π‖A−1 , define

RπA(r) =

√
1− r2

〈π,A−1π〉
.

Lemma 3.6. Take A ∈ Rn×n, c ∈ Rn where A � 0. For π ∈ Rn, π0 ∈ R, −‖π‖A−1 ≤ π0 ≤ π0+1 ≤ ‖π‖A−1 ,
we have that

E(A, c)π,π0 = {x ∈ Rn : ‖x− c‖A ≤1,

‖x− c‖A⊥π≤(π0 + 1− 〈π, x〉)RπA(π0 − 〈π, c〉)
+ (〈π, x〉 − π0)RπA(π0 − 〈π, c〉+ 1)}. (2)

Since the proof of this lemma is technical, we include it in the Appendix.
Lemma 3.6 and Lemma 3.3 tell us that if C is a full dimensional bounded ellipsoid, then for each

(π, π0) ∈ Zn × Z such that Cπ,π0 ( C there exist exactly one split cut associated to (π, π0), which is given
by 〈π, x〉 ≤ π0, 〈π, x〉 ≥ π0 + 1 or conic quadratic inequality (2). Together with Theorem 1.3 we have the
following direct corollary.

Corollary 3.7. If C ⊆ Rn is a bounded full dimensional ellipsoid, then SC(C) is described by a finite
number of linear inequalities and conic quadratic inequalities.

It is not clear from Corollary 3.7 if in this case SC(C) is a polyhedral set or not. In particular, it would
be possible for the linear inequalities describing SC(C) to dominate all the conic quadratic inequalities
(e.g. when CGC(C) = conv(C ∩ Zn)). However, the following example shows that SC(C) can, in fact, be
non-polyhedral.

Example 3.8. Let C = {x ∈ R3 : ‖x− c‖A ≤ 1} for A = 1
33/64

1 0 0
0 1 0
0 0 1/10000

 and c = (1/2, 1/2, 1/2)T .

Using Lemma 3.6 we have that the split cuts for C associated to x1 ≤ 0 ∨ x1 ≥ 1 and x2 ≤ 0 ∨ x2 ≥ 1 are√
64

33

(
x2 −

1

2

)2

+
4

20625

(
x3 −

1

2

)2

≤
√

17

33
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and √
64

33

(
x1 −

1

2

)2

+
4

20625

(
x3 −

1

2

)2

≤
√

17

33

respectively.
Let R be the convex set obtained by adding these two split cuts to C. As illustrated in Figure 1(a),

R is a non-polyhedral ‘rugby ball like’ convex set contained in C. To show that the split closure of C is
not a polyhedron we will show that part of the surface of R remains in the surface of the split closure of
C. The part of the surface of R we consider is a portion ‘of the seams of the rugby ball’ starting at the
point in R with highest x3 value and with increasing x1 and x2. Specifically, we will show that the curve

γ :=

{(
t, t,

1+25
√

17−64(t−1/2)2
2

)
: 1
2 ≤ t ≤

1
2 + 1

100

}
belongs to the boundary of the split closure of C.

Because γ is in the boundary of R it suffices to show that it is not cut by any split cut. To achieve this we

show that points q := (1/2, 1/2, 1+25
√
17

2 )T and r :=

(
1/2 + 1/100, 1/2 + 1/100,

1+25
√

17−64(1/100−1/2)2
2

)T
are not separated by any split cut for C and that point p := (1/2 + 1/100, 1/2 + 1/100, 1+25

√
17

2 )T is only
separated by the two split cuts defining R. The result will then follow because, as illustrated in Figure 1(b),
γ ⊆ conv(p, q, r).

To show that p, q and r are not separated by any split cut besides the ones defining R we first note that
B(v, 0.34) ⊆ {x ∈ R3 : max3

i=1|xi − vi| ≤ 0.34} ⊆ C for all v ∈ {p, q, r}. Then, similar to the proof of
Theorem 1.3, we have that by Lemma 2.4 and Lemma 2.5 the only split cuts that can separate p, q or r are
those associated to (π, π0) ∈ Zn ×Z with ‖π‖ ≤ 1/0.34. Aided by Lemma 3.6 and Lemma 3.3 we tested this
finite list of split cuts using a simple Mathematica [10] program to show that none of these cuts separates p,
q or r.

!0.5

0

0.5

1

1.5

x1

!0.5 0 0.5 1 1.5
x2

!100
!50

0

50

100

x3

(a) Rugby ball given by two split cuts.

1

2

51

100

13

25

x1!x2

52.01

52.02

52.03

x3

(b) Non-polyhedral curve contained in convex hull of three
points.

Figure 1: Illustration of Example 3.8
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4. Observation and Open Questions

Theorem 2.2 for the Chvátal-Gomory closure is extended in [6] to include the intersection of strictly
convex sets with rational polyhedra. Although this extension is relatively simple for the Chvátal-Gomory
closure, an analogous extension for the split closure seems much harder. Besides the polyhedrality of the
Chvátal-Gomory closure, the proof of Theorem 1.3 relies on separating every point in bd(C) \ Zn with a
Chvátal-Gomory cut and this is no longer possible when C is the intersection of a strictly convex set with
a rational polyhedron. One way to deal with this issue and extend the proof of Theorem 1.3 is to prove the
existence of a convex set T such that

• T ⊇ SC(S)

• T ∩ bd(S) = SC(S) ∩ bd(S)

• There exists δ > 0 such that v ∈ ext(T ) \ bd(S) implies that v is at least a distance δ from bd(S).

Unfortunately, the existence of such set remains an open question.
Another interesting observation concerns the split closure of polyhedral approximations of a strictly

convex body. Example 3.8 shows that some strictly convex sets lack a polyhedral approximation whose split
closure is the same as that of the strictly convex set. In contrast, every strictly convex set has a polyhedral
(outer) approximation with exactly the same Chvátal-Gomory closure.
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6. Appendix A: Ellipsoid Split Cut

To prove Lemma 3.6, we will need the following lemma.

Lemma 6.1. Take A ∈ Rn×n where A � 0. For π ∈ Rn \ {0}, the following holds:

1. A � A⊥π � 0.
2. ∀ x ∈ Rn, t ∈ R, ‖x+ tA−1π‖A⊥π = ‖x‖A⊥π .
3. E(A) = {x ∈ Rn : ‖x‖A⊥π ≤ R

π
A(〈π, x〉), − ‖π‖A−1 ≤ 〈π, x〉 ≤ ‖π‖A−1}.

Proof.

Proof of 1. For all y ∈ Rn, since A � 0⇔ A−1 � 0, we have that〈
y,

ππT

〈π,A−1π〉
y

〉
=
〈π, y〉2

〈π,A−1π〉
≥ 0.

Therefore ππT

〈π,A−1π〉 = A − A⊥π � 0 ⇒ A � A⊥π as needed. Since A is positive definite by Fact 3.5 we know

that both A1/2 and A−1/2 exist. Now for x ∈ Rn, we have that

〈x,Ax〉
〈
π,A−1π

〉
=
〈
A

1/2x,A
1/2x
〉〈

A−
1/2π,A−

1/2π
〉

= ‖A1/2x‖2‖A−1/2π‖2

≥
〈
A−

1/2x,A
1/2π

〉2
= 〈x, π〉2 = 〈x, ππTx〉 (by Cauchy-Schwarz ) .

Hence we have that

〈x,Ax〉 ≥
〈
x,

ππT

〈π,A−1π〉
x

〉
∀ x ∈ Rn ⇒ A− ππT

〈π,A−1π〉
� 0 ⇒ A⊥π � 0

as needed.

Proof of 2. We first note that

A⊥πA
−1π =

(
A− ππT

〈π,A−1π〉

)
A−1π = AA−1π − π

〈
π,A−1π

〉
〈π,A−1π〉

= π − π = 0.

For x ∈ Rn, t ∈ R, using the above, we have that

‖x+ tA−1π‖2A⊥π =
〈
x+ tA−1π,A⊥π (x+ tA−1π)

〉
=
〈
x,A⊥π x

〉
+ 2t

〈
x,A⊥πA

−1π
〉

+ t2
〈
π,A−1A⊥πA

−1π
〉

=
〈
x,A⊥π x

〉
+ 2t〈x, 0〉+ t2

〈
π,A−10

〉
=
〈
x,A⊥π x

〉
= ‖x‖2A⊥π ,

as needed.

Proof of 3. Take x ∈ E(A). Then 〈x,Ax〉 ≤ 1. Remembering A = A⊥π + ππT

〈π,A−1π〉 , we get that

〈x,Ax〉 ≤ 1 ⇔
〈
x,

(
A⊥π +

ππT

〈π,A−1π〉

)
x

〉
≤ 1 ⇔ ‖x‖2A⊥π ≤ 1− 〈π, x〉2

〈π,A−1π〉
. (3)

From Part 1, we know that A⊥π � 0. Moreover, 〈x,Ax〉 ≤ 1 for all x ∈ E(A). Therefore we have that〈
x,A⊥π x

〉
≥ 0 ⇒ 1− 〈π, x〉2

〈π,A−1π〉
≥ 0 ⇒ −‖π‖A−1 ≤ 〈π, x〉 ≤ ‖π‖A−1 . (4)

Now for −‖π‖A−1 ≤ 〈π, x〉 ≤ ‖π‖A−1 , we have that RπA(〈π, x〉) is defined and RπA(〈π, x〉)2 = 1 − 〈π,x〉2
〈π,A−1π〉 .

Combining (4) and (3) (taking square roots) yields the result.
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Proof of Lemma 3.6. Let

S0 = {x ∈ Rn : ‖x− c‖A ≤ 1, 〈π, x− c〉 ≤ π0} and S1 = {x ∈ Rn : ‖x− c‖A ≤ 1, 〈π, x− c〉 ≥ π0 + 1}

and let

C =
{
x ∈ Rn : ‖x− c‖A ≤ 1, ‖x− c‖A⊥π ≤ (π0 + 1− 〈π, x− c〉)RπA(π0) + (〈π, x− c〉 − π0)RπA(π0 + 1)

}
.

Note that by definition E(A, c)π,π0+〈π,c〉 = conv{S0, S1}. Our goal is to show that conv{S0, S1} = C, which
is equivalent to (2). Since the above relationships are all preserved under shifts, we may assume that c = 0
and hence focus our attention to the ellipsoid E(A, 0) = E(A). Letting wr = r

〈π,A−1π〉A
−1π, for r ∈ R, we

note that

〈π,wr〉 =

〈
π,

r

〈π,A−1π〉
A−1π

〉
= r

〈
π,A−1π

〉
〈π,A−1π〉

= r (5)

By Lemma 6.1 Part 2, for r ∈ R, −‖π‖A−1 ≤ r ≤ ‖π‖A−1 , we see that ‖wr‖A⊥π = 0 ≤ RπA(〈π,wr〉) = RπA(r).
Therefore by Lemma 6.1 Part 3, wr ∈ E(A). From the above and our assumption on π0, we get that
wπ0
∈ S0 and wπ0+1 ∈ S1, and therefore S0, S1 6= ∅.

Take x ∈ conv{S0, S1}. Clearly x ∈ E(A), so we need only check whether x satisfies the additional conic
inequality. Since S0 and S1 are convex, we can write x = αx0+(1−α)x1, 0 ≤ α ≤ 1, where x0 ∈ S0, x1 ∈ S1.
By Lemma 6.1 Part 1, we know that A⊥π � 0 and hence ‖ · ‖A⊥π is convex by Fact 3.5. By the convexity of
‖ · ‖A⊥π , and that x0, x1 ∈ E(A) together with Lemma 6.1 Part 3, we get

‖x‖A⊥π = ‖αx0 + (1− α)x1‖A⊥π ≤ α‖x0‖A⊥π + (1− α)‖x1‖A⊥π ≤ αR
π
A(〈π, x0〉) + (1− α)RπA(〈π, x1〉)

Since α〈π, x0〉+ (1−α)〈π, x1〉 = 〈π, x〉, and 〈π, x0〉 ≤ π0 < π0 + 1 ≤ 〈π, x1〉 by concavity of the function RπA
(since

√
1− y2 is concave) we get that

αRπA(〈π, x0〉) + (1− α)RπA(〈π, x1〉) ≤ (π0 + 1− 〈π, x〉)RπA(π0) + (〈π, x〉 − π0)RπA(π0 + 1),

as needed.
Now take x ∈ C. We will verify that if x satisfies ||x||A⊥π ≤ (π0+1−〈π, x〉)RπA(π0)+(〈π, x〉−π0)RπA(π0+1),

then x ∈ conv{S0, S1}. If 〈π, x〉 ≤ π0, then x ∈ S0 and if 〈π, x〉 ≥ π0 + 1, then x ∈ S1, so we may assume
that π0 < 〈π, x〉 < π0 + 1. Let α = (π0 + 1− 〈π, x〉) and 1−α = 〈π, x〉 − π0, where by the previous sentence
we get that 0 < α < 1 and that απ0 + (1− α)(π0 + 1) = 〈π, x〉.

We may write x = z + w〈π,x〉 for some z ∈ Rn. By construction and (5), we have that 〈π, z〉 = 0. Since
x ∈ C and π0 < 〈π, x〉 < π0 + 1, by Lemma 6.1 Part 2 and 3 and concavity of RπA, we have that

‖z‖A⊥π = ‖z + w〈π,x〉‖A⊥π = ‖x‖A⊥π ≤ R
π
A(〈π, x〉) ≤ αRπA(π0) + (1− α)RπA(π0 + 1). (6)

Let

z0 = z

(
RπA(π0)

αRπA(π0) + (1− α)RπA(π0 + 1)

)
and z1 = z

(
RπA(π0 + 1)

αRπA(π0) + (1− α)RπA(π0 + 1)

)
.

Now note that

αz0 + (1− α)z1 = z and αwπ0
+ (1− α)wπ0+1 = w〈π,x〉

⇒ α(z0 + wπ0
) + (1− α)(z1 + wπ0+1) = z + w〈π,x〉 = x.

We claim that z0 + wπ0
∈ S0 and z1 + wπ0+1 ∈ S1. Assuming this, the above equation then gives us that

x ∈ conv{S0, S1} and so we are done. Since 〈π, z〉 = 0⇒ 〈π, z0〉 = 0, we get that 〈π, z0 +wπ0〉 = 〈π,wπ0〉 =
π0. Then, by definition of z0, Lemma 6.1 Part 2 and (6) we have that

‖z0 + wπ0‖A⊥π = ‖z0‖A⊥π = RπA(π0)
‖z‖A⊥π

αRπA(π0) + (1− α)RπA(π0 + 1)
≤ RπA(π0) = RπA(〈π, z0 + wπ0

〉) (7)

From (7) and Lemma 6.1 Part 3, we see that z0+wπ0
∈ E(A0) and 〈π, z0+wπ0

〉 ≤ π0. Therefore z0+wπ0
∈ S0

as needed. The argument for z1 + wπ0+1 is symmetric.
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