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Abstract. It is well-know that the Chvátal-Gomory (CG) closure of
a rational polyhedron is a rational polyhedron. In this paper, we show
that the CG closure of a bounded full-dimensional ellipsoid, described
by rational data, is a rational polytope. To the best of our knowledge,
this is the first extension of the polyhedrality of the CG closure to a non-
polyhedral set. A key feature of the proof is to verify that all non-integral
points on the boundary of ellipsoids can be separated by some CG cut.
Given a point u on the boundary of an ellipsoid that cannot be trivially
separated using the CG cut parallel to its supporting hyperplane, the
proof constructs a sequence of CG cuts that eventually separates u. The
polyhedrality of the CG closure is established using this separation result
and a compactness argument. The proof also establishes some sufficient
conditions for the polyhedrality result for general compact convex sets.

1 Introduction

Nonlinear Integer Programming has received significant attention from the Inte-
ger Programming (IP) community in recent time. Although, some special classes
are efficiently solvable [32], even simple nonlinear IP problems can be NP-Hard
or undecidable [33]. However, there has been considerable progress in the devel-
opment of practical algorithms that can be effective for many important appli-
cations (e.g. [1, 8–10, 32, 36, 37]). Building on work for linear IP, practical algo-
rithms for nonlinear IP have benefited from the development of several classes of
cutting planes or valid inequalities (e.g. [3–6, 13, 14, 25, 29–31, 35, 28, 39, 40, 43]).
Many of these inequalities are based on the generalization of ideas used in lin-
ear IP. For example, [4, 5, 39, 14] exploit the interaction between superadditive
functions and nonlinear constraints to develop techniques that can yield several
strong valid inequalities.

Following the success of such approaches we study some theoretical prop-
erties of this interaction when the superadditive function is the integer round



2

down operation b·c and the nonlinear constraints are convex. Specifically we
study the polyhedrality of the (first) Chvátal-Gomory (CG) closure [15, 26, 27,
41] of a non-polyhedral convex set. The study of properties of the CG closure
of a rational polyhedron has yielded many well known results for linear IP. In
this case, the closure is a rational polyhedron [41] for which the associated opti-
mization, separation and membership problems are NP-hard even for restricted
cases [11, 12, 21, 34]. However, optimization over the CG closure of a polyhedron
has been successfully used to show its strength computationally [22, 23]. Similar
results have also been obtained for closures associated to other valid inequalities
such as split cuts [2, 7, 12, 17, 19, 20, 44].

CG cuts for non-polyhedral sets are considered implicitly in [15, 41] and ex-
plicitly in [14], but only [41] deals with the polyhedrality of the CG closure.
Although [41] shows that for rational polyhedra the closure is a rational polyhe-
dron, the result does not automatically extend to non-polyhedral sets. Further-
more, neither of the known proofs of the result for rational polyhedra [16, 41, 42]
can be easily adapted to consider other convex sets. In fact, as noted in [41] even
the polyhedrality of the CG closure of non-rational polytopes remains unknown.
Because of this, we study the polyhedrality of the CG closure of an ellipsoid as
the first natural step towards understanding the closure of other non-polyhedral
convex sets.

Let a rational ellipsoid be the image of an Euclidean ball under a rational
affine transformation. Our main result is to show that the CG closure of a full-
dimensional bounded rational ellipsoid is a rational polytope. To the best of
our knowledge, this is the first extension to a non-polyhedral set of the well
known result for rational polyhedra. Additionally, the proof of our main result
reveals some general sufficient conditions for the polyhedrality of the CG closure
and other interesting properties. For example, we show that every non-integral
point on the boundary of an ellipsoid can be separated by a CG cut. We recently
verified [18] that this geometrically natural property holds for some other classes
of convex sets.

The rest of the paper is organized as follows. In Section 2, we give some back-
ground on CG cuts, formally state the main result of the paper and present an
outline of its proof. In Section 3, we present notation and review some standard
results from convex analysis. In Section 4, we consider two separation results that
are needed for the proof of the main theorem, which we present in Section 5. We
end with some remarks in Section 6.

2 Background, Main Result and Proof Outline

For a polyhedron P ⊂ Rn, the CG cutting plane procedure [15, 26, 27] can be
described as follows. For an integer vector a ∈ Zn, let d ∈ R be such that
{x ∈ Rn : 〈a, x〉 ≤ d} ⊃ P where 〈u, v〉 is the inner product between u and v.
We then have that PI := P ∩ Zn ⊂ {x ∈ Rn : 〈a, x〉 ≤ bdc} and hence the
CG cut 〈a, x〉 ≤ bdc is a valid inequality for conv(PI). The first CG closure
P 1 of P is defined as the convex set obtained by adding all possible CG cuts
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to P . If P is a rational polyhedron, then P 1 is also a polyhedron [41] and
hence we can recursively define the k-th CG closure P k of P as the first CG
closure of P k−1. Furthermore, for any rational polyhedron P we have that there
exists k ∈ Z+ such that P k = conv(PI) [15, 41]. Non-rational polytopes are also
considered in [15] and the CG procedure is extended to the feasible region of
Conic Programming (CP) problems in [14]. In fact, the CG procedure can be
extended to, at least, any compact convex set as follows.

Let C ⊂ Rn be a compact convex set and let σC(a) := supx∈C〈a, x〉 be
its support function so that C =

⋂
a∈Rn {x ∈ Rn : 〈a, x〉 ≤ σC(a)}. Because Qn

is dense in Rn and σC(a) is positively homogeneous and continuous, it can be
verified that C =

⋂
a∈Zn {x ∈ Rn : 〈a, x〉 ≤ σC(a)}.

Definition 1. For any S ⊂ Zn, let CC(S,C) :=
⋂

a∈S{x ∈ Rn : 〈a, x〉 ≤
bσC(a)c}. We recursively define the k-th CG closure Ck of C as C1 := CC(Zn, C)
and Ck+1 := CC(Zn, Ck) for all k > 1.

The definition is consistent because C1 is a closed convex set contained in C and
when C is a polyhedron it coincides with the traditional definition. Furthermore,
CI := C ∩ Z ⊂ Ck for all k and, as noted in [41], the following theorem follows
from [15, 41].

Theorem 1 ([15, 41]). There exist k such that Ck = conv(CI).

Theorem 1 is also shown in [14] for CP problems with bounded feasible regions.
However, the result neither implies nor requires the polyhedrality of C1. In fact,
the original proof of Theorem 1 in [15] does not use the polyhedrality of either P
or P 1. Although surprising, it could be entirely possible for Theorem 1 to hold
and for Ck to be the only polyhedron in the hierarchy {Cl}kl=1. Our main result
is the first proof of the polyhedrality of C1 for a non-polyhedral set C.

Theorem 2 (Main Theorem). Let T be a full-dimensional bounded rational
ellipsoid. Then CC(Zn, T ) is a rational polytope.

Before presenting an outline of our proof of Theorem 2, we discuss why some
of the well-known polyhedrality proofs and results do not easily extend to ellip-
soids. We begin by noting that it is not clear how to extend the polyhedrality
proofs in [16, 41, 42] beyond rational polyhedra because they rely on proper-
ties that are characteristic of these sets such as TDI systems and finite integral
generating sets. However, we could try to prove Theorem 2 by using the polyhe-
drality of the first CG closure of polyhedral approximations of T . One natural
scheme could be to attempt constructing a sequence of rational polytope pairs
{Pi, Qi}i∈N such that (i) Pi ∩Zn = Qi ∩Zn = T ∩Zn, (ii) Pi ⊂ T ⊂ Qi and (iii)
V ol(Qi \ Pi) ≤ 1/i. We then would have that

P k
i ⊂ T k ⊂ Qk

i , (1)

for all i, k ≥ 1. As noted in [41], using this approach Theorem 1 in general
follows directly from Theorem 1 for rational polytopes. Unfortunately, it is not
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clear how to show that there exists i such that (1) holds as equality for k = 1
without knowing a priori that T 1 is a polyhedron. Finally, we note that cut
domination arguments commonly used in polyhedrality proofs of closures do not
seem to adapt well to the proof of Theorem 2.

Due of the reasons stated above, to prove Theorem 2 we resort to a different
approach that relies on being able to separate with a CG cut every non-integral
point on the boundary of T . Specifically, we show that CC(Zn, T ) can be gen-
erated with the procedure described in Figure 1.

Fig. 1. A procedure to generate the first CG closure for ellipsoid

Step 1 Construct a polytope Q defined by a finite number of CG cuts such that:
– Q ⊂ T .
– Q ∩ bd(T ) ⊂ Zn.

Step 2 Update Q with a CG cut that separates a point of Q \ CC(Zn, T ) until
no such cut exists.

To show that Step 1 can be accomplished, we first show that every non-
integral point on the boundary of T can be separated by a CG cut. If there are
no integral points on the boundary of T , then this separation result allows us to
cover the boundary of T with a possibly infinite number of open sets that are
associated to the CG cuts. We then use compactness of the boundary of T to
obtain a finite sub-cover that yields a finite number of CG cuts that separate
every point on the boundary of T . If there are integer points on the boundary,
then we use a stronger separation result and a similar argument to show that
there is a finite set of CG cuts that separate every non-integral point on the
boundary of T .

To show that Step 2 terminates finitely, we simply show that the set of CG
cuts that separate at least one point in Q \ CC(Zn, T ) is finite.

We note that the separation of non-integral points using CG cuts on the
boundary of T , required in Step 1 of Figure 1, is not straightforward. A natural
first approach to separate a non-integral point u on the boundary of T is to take
an inequality 〈a, x〉 ≤ σT (a) that is supporting at u, scale it so that a ∈ Zn, and
then generate the CG cut 〈a, x〉 ≤ bσT (a)c. If σT (a) /∈ Z, then the CG cut will
separate u because a was selected such that 〈a, u〉 = σT (a). Unfortunately, as
the following examples show, this approach can fail either because a cannot be
scaled to be integral or because σT (a) ∈ Z for any scaling that yields a ∈ Zn.

Example 1. Let T := {x ∈ R2 |
√
x2

1 + x2
2 ≤ 1} and u = (1/2,

√
3/2)T ∈ bd(T ).

We have that the supporting inequality for u is a1x1 + a2x2 ≤ σT (a) where
a = u. Since u is irrational in only one component, observe that a cannot be
scaled to be integral.
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For Example 1, it is easy to see that selecting an alternative integer left-hand-
side vector a′ resolves the issue. We can use a′ = (1, 1) which has σT (a′) =

√
2 to

obtain the CG cut x1 + x2 ≤ 1. In Example 1 this CG cut separates every non-
negative non-integral point on the boundary of T . In Section 4, we will show that
given any non-integral point u on the boundary of T such that the left-hand-side
of its supporting hyperplane cannot be scaled to be integral, there exists an al-
ternative left-hand-side integer vector a′ such that the CG cut 〈a′, x〉 ≤ bσT (a′)c
separates u. This vector a′ will be systematically obtained using simultaneous
diophantine approximation of the left-hand-side of an inequality describing the
supporting hyperplane at u.

Example 2. Let T := {x ∈ R2 |
√
x2

1 + x2
2 ≤ 5} and u = (25/13, 60/13)T ∈

bd(T ). We have that the supporting inequality for u can be scaled to a1x1 +
a2x2 ≤ σT (a) for a = (5, 12)T which has σT (a) = 65. Because 5 and 12 are
coprime and σT (·) is positively homogeneous, a cannot be scaled so that a ∈ Z2

and σT (a) /∈ Z.

Observe that Example 2 is not an isolated case. In fact, these cases are closely
related to primitive Pythagorean triples. For T := {x ∈ R2 |

√
x2

1 + x2
2 ≤ r},

select any primitive Pythagorean triple v2
1 + v2

2 = v2
3 , and consider the point

r( v1
v3
, v2

v3
) (such that r( v1

v3
, v2

v3
) /∈ Z2). Then since v1 and v2 are coprimes, the

behavior in Example 2 will be observed. Also note that these examples are not
restricted only to Euclidean balls in R2, since it is easy to construct integers
a1, ..., an, an+1 such that

∑n
i=1 a

2
i = a2

n+1 (e.g. 32 + 42 + 122 = 132). For the
class of points u ∈ bd(T ) where the left-hand-side of an inequality describing
the supporting hyperplane is scalable to an integer vector a, we will show in
Section 4 that there exists a systematic method to obtain a′ ∈ Zn such that
〈a′, x〉 ≤ bσT (a′)c separates u.

3 Notation and Standard Results from Convex Analysis

In this paper we consider an ellipsoid given by a non-singular and surjective
rational linear transformation of an Euclidean ball followed by a rational trans-
lation. Without loss of generality, we may assume that that this ellipsoid is
described as T := {x ∈ Rn : γB(x− c) ≤ 1} where c ∈ Qn, and γB(x) := ‖Ax‖
is the gauge of B := {x ∈ Rn : ‖Ax‖ ≤ 1} such that A ∈ Qn×n is a symmetric
positive definite matrix. Then T is the translation by c of B. The set B is a full
dimensional compact convex set with the zero vector in its interior and hence
has the following properties.

– The support function of B is σB(a) = ‖A−1a‖.
– The polar of B given by B◦ := {a ∈ Rn | 〈a, x〉 ≤ 1 ∀x ∈ B} = {a ∈

Rn |σB(a) ≤ 1} is a full-dimensional and compact convex set.
– For any u ∈ bd(B) we have that sB(u) := ATA(u) is such that 〈sB(u), u〉 =
σB(sB(u)) = 1 and hence 〈sB(u), x〉 ≤ 1 = σB(sB(u)) is a valid inequality
for B that is supporting at u.
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– 〈a, x〉 ≤ σB(a)γB(x).
– The boundary of B is bd(B) := {x ∈ Rn : γB(x) = 1}.

Because T = B + c we also have the following properties of T .

– The support function of T is σT (a) = σB+c(a) = σB(a) + 〈a, c〉 = ‖A−1a‖+
〈a, c〉.

– For any u ∈ bd(T ) we have that sT (u) := sB(u − c) = ATA(u − c) is such
that 〈sT (u), u− c〉 = 〈sB(u− c), u− c〉 = σB(sB(u− c)) = σB(s(u)) = 1 and
hence 〈s(u), x〉 ≤ 1 + 〈s(u), c〉 = σT (s(u)) is a valid inequality for T that is
supporting at u.

– The boundary of T is bd(T ) := {x ∈ Rn : γB(x− c) = 1}.

To simplify the notation, we regularly drop the T from σT (·), sT (·) and
CC(·, T ) so that σ(·) := σT (·), s(·) := sT (·) and CC(·) := CC(·, T ). In addition,
for u ∈ R we denote its fractional part by F (u) := u− buc.

4 Separation

To prove Theorem 2 we need two separation results. The first one simply states
that every non-integral point on the boundary of T can be separated by a CG
cut.

Proposition 1. If u ∈ bd(T ) \ Zn, then there exists a CG cut that separates
point u.

An integer point u ∈ bd(T ) ∩ Zn cannot be separated by a CG cut, but
Proposition 1 states that every point in bd(T ) that is close enough to u will
be separated by a CG cut. However, for the compactness argument to work we
need a stronger separation result for points on the boundary that are close to
integral boundary points. This second result states that all points in bd(T ) that
are sufficiently close to an integral boundary point can be separated by a finite
number of CG cuts.

Proposition 2. Let u ∈ bd(T ) ∩ Zn. Then there exists εu > 0 and a finite set
Wu ⊂ Zn such that

〈w, u〉 = bσ(w)c ∀w ∈Wu, (2)

∀v ∈ bd(T )∩{x ∈ Rn : ‖x−u‖ < εu}\{u} ∃w ∈Wu s.t 〈w, v〉 > bσ(w)c, (3)

and
∀v ∈ int(T ) ∃w ∈Wu s.t. 〈w, v〉 < bσ(w)c. (4)

The main ideas used in the proof of Proposition 2 are as follows. First, it
is verified that for any nonzero integer vector q, there exists a finite i ∈ Z+

such that the CG cut of the form 〈q + iλs(u), x〉 ≤ bσ(q + iλs(u))c satisfies (2)
(here λs(u) ∈ Zn for some scalar λ 6= 0). Second, it is verified that by carefully
selecting a finite number of integer vectors and applying the above construction,
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all points in a sufficiently small neighborhood of u can be separated. Finally, (4)
is established by adding the supporting hyperplane at u which is trivially a CG
cut.

Although this proof of Proposition 2 is similar to the proof of Proposition 1,
it is significantly more technical. We therefore refer the readers to [18] where a
more general version of Proposition 2 is proven and confine our discussion to an
outline of the proof of Proposition 1 here.

4.1 Outline of Proof of Proposition 1

To prove Proposition 1 we construct a separating CG cut for u ∈ bd(T ) \ Zn by
modifying the supporting inequality for T at u. In the simplest case, we scale
〈s(u), x〉 ≤ σ(s(u)) by λ > 0 so that λs(u) ∈ Zn, to obtain a CG cut 〈λs(u), x〉 ≤
bσ(λs(u))c that separates u. If this is not successful, then we approximate the
direction s(u) by a sequence {si}i∈N ⊂ Zn such that si/‖si‖ → s(u)/‖s(u)‖ and
for which 〈si, x〉 ≤ bσ(si)c separates u for sufficiently large i. For this approach
to work we will need a sequence that complies with the following two properties.

C1 limi→+∞〈si, u〉 − σ(si) = 0
C2 limi→+∞ F (σ(si)) = δ > 0. (A weaker condition like lim supi→+∞ F (σ(si))

> 0 is sufficient, but we will verify the stronger condition).

Neither condition holds for every sequence such that si/‖si‖ → s(u)/‖s(u)‖.
For instance, for s(u) = (0, 1)T the sequence si = (k, k2) does not comply with
condition C1. For these reason we need the following proposition.

Proposition 3. Let u ∈ bd(T ) \ Zn and let el be the l-th unit vector for some
l ∈ {1, . . . , n} such that ul /∈ Z.

(a) If there exists λ > 0 such that p := λs(u) ∈ Zn and σ(λs(u)) ∈ Z, then
si := el + ip complies with conditions C1 and C2.

(b) If λs(u) /∈ Zn for all λ > 0, then let {(pi, qi)}i∈N ⊂ Zn × (Z+ \ {0}) be the
coefficients obtained using Dirichlet’s Theorem to approximate s(u). That is
{(pi, qi)}i∈N is such that

|qis(u)j − pi
j | <

1
i
∀j ∈ {1, ..., n}.

For M ∈ Z+ such that Mc ∈ Zn we have that si := el +Mpi complies with
conditions C1 and C2.

With this proposition we can proceed to the proof of Proposition 1

Proof (Proof of Proposition 1). Let u ∈ bd(T ) \ Zn. There are three possible
cases:

1. There exists λ > 0 such that λs(u) ∈ Zn and σ(λs(u)) /∈ Z.
2. There exists λ > 0 such that λs(u) ∈ Zn and σ(λs(u)) ∈ Z.
3. λs(u) /∈ Zn for all λ > 0.
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Case 1: 〈λs(u), x〉 ≤ bσ(λs(u))c is a CG cut that separates u.
Cases 2 and 3: From Proposition 3, we have that in both cases there exists a
sequence {si}i∈N ⊂ Zn satisfying conditions C1 and C2. Together with

〈si, u〉 − bσ(si)c = 〈si, u〉 − σ(si) + F (σ(si)), (5)

conditions C1 and C2 yields that for sufficiently large i we have 〈si, u〉−bσ(si)c >
0 and hence 〈si, x〉 ≤ bσ(si)c separates u.

We next discuss the proof of Proposition 3 in the next two subsections.

Condition C1 in Proposition 3 Condition C1 is not difficult to satisfy. In
fact, it is satisfied by any sequence for which the angle between si and s con-
verges fast enough (e.g. if ‖si‖ → +∞, then C1 is satisfied if we have that∥∥(si/‖si‖)− (s(u)/‖s(u)‖)

∥∥ ∈ o(1/‖si‖)). For the specific sequences in Proposi-
tion 3 (a) and 3 (b) condition C1 can be verified using properties from Section 3
and the following lemma which we do not prove here.

Lemma 1. Let w ∈ Rn and {vi}i∈N ⊂ Rn be any sequence such that there exists
N > 0 for which

|vi
jwk − vi

kwj | < N ∀i ∈ N, j, k ∈ {1, ..., n}, j 6= k (6)

and limi→+∞〈vi, w〉 = +∞. Then

lim
i→+∞

〈vi, w〉 − ||vi||||w|| = 0.

Condition C2 in Proposition 3 Condition C2 is much more interesting and
showing that it holds for our specific sequences is the crux of the proof of Propo-
sition 3. The intuition behind the proof is the following: For the sequence in
Proposition 3 (a) we have si = el + ip. For large enough i, σ(si) ≈ 〈el + ip, u〉 =
ul + i〈λs(u), u〉 = ul + iσ(λs(u)). Now since σ(λs(u)) is integral, the fractional
part of σ(si) is therefore approximately equal to ul. The formal proof is presented
next. We first present a simple lemma.

Lemma 2. Let α ∈ R, t ∈ R+ and {βi}i∈N ⊂ R be such that limi→∞ βi = ∞.
Then, for every ε > 0 there exists Nε such that

α+ βi ≤
√

(α+ βi)2 + t ≤ α+ βi + ε ∀i ≥ Nε

Lemma 3. The sequence in Proposition 3 (a) satisfies Condition C2.

Proof. Let α = 〈A−1el, A−1p〉/‖A−1p‖, βi = i‖A−1p‖ and t = ‖A−1el‖2 −
(〈A−1rl, A−1p〉/‖A−1p‖)2. We have that limi→∞ βi = ∞ because ‖A−1p‖ > 0
and t ≥ 0 by Cauchy-Schwarz inequality. Observe that,

‖A−1si‖ =
√
i2‖A−1p‖2 + 2i〈A−1el, A−1p〉+ ‖A−1el‖2

=

√(
〈A−1el, A−1p〉
‖A−1p‖

+ i‖A−1p‖
)2

+ ‖A−1el‖2 −
(
〈A−1el, A−1p〉
‖A−1p‖

)2

=
√

(α+ βi)2 + t.
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Then, by Lemma 2, we have that

σ(si) =
√

(α+ βi)2 + t+ 〈c, si〉

≥ 〈A
−1el, A−1p〉
‖A−1p‖

+ i‖A−1p‖+ 〈c, el + ip〉

= iσ(p) +
⌊
〈A−1el, A−1p〉
‖A−1p‖

+ 〈c, el〉
⌋

+ F

(
〈A−1el, A−1p〉
‖A−1p‖

+ 〈c, el〉
)

and, similarly, for i ≥ Nε we have

σ(si) ≤ iσ(p) +
⌊
〈A−1el, A−1p〉
‖A−1p‖

+ 〈c, el〉
⌋

+ F

(
〈A−1el, A−1p〉
‖A−1p‖

+ 〈c, el〉
)

+ ε.

Hence, by setting k := iσ(p) + b〈A−1el, A−1p〉/‖A−1p‖ + 〈c, el〉c and δ :=
F (〈A−1el, A−1p〉/‖A−1p‖+ 〈c, el〉) we have that

k + δ ≤ σ(si) ≤ k + δ + ε ∀i ≥ Nε. (7)

Now, k ∈ Z and

δ = F (〈A−1el, A−1p〉/‖A−1p‖+ 〈c, el〉)
= F (〈A−1el, λA(u− c)〉/λ+ 〈c, el〉)
= F (〈el, A−1λA(u− c)〉/λ+ 〈c, el〉)
= F (〈el, u〉) = F (ul) ∈ (0, 1),

because ul /∈ Z and because p = λs(u) implies ‖A−1p‖ = λ‖A−1s(u)‖ = λ. Thus
limi→+∞ F (σ(si)) = δ > 0.

Lemma 4. The sequence in Proposition 3 (b) satisfies Condition C2.

Proof. Let ε̄i := pi − qis(u), so that ‖ε̄i‖ ≤
√

n
i . We then have that

lim
i→+∞

‖A−1ε̄i‖ = lim
i→+∞

‖A−1(−ε̄i)‖ = 0. (8)

Now observe that

‖A−1si‖ = ‖A−1(Mpi + el)‖
= ‖MqiA

−1s(u) +A−1el +MA−1ε̄i‖
≤ ‖MqiA

−1s(u) +A−1el‖+M‖A−1ε̄i‖

=

√(
〈A−1s(u), A−1el〉
‖A−1s(u)‖

+Mqi

)2

+ t+M‖A−1ε̄i‖.

where t := ‖A−1el‖2 −
(
〈A−1s(u),A−1el〉
‖A−1s(u)‖

)2

. Since ‖A−1s(u)‖ = ‖A(u − c)‖ = 1,

t = ‖A−1el‖2−〈A(u−c), A−1el〉2 which is non-negative by the Chauchy-Schwartz
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inequality. Therefore by setting α := 〈A−1s(u),A−1el〉
‖A−1s(u)‖ , βi := Mqi we can use

Lemma 2 and the fact that ‖A−1s(u)‖ = ‖A(u−c)‖ = 1 to obtain that for every
ε > 0 there exists Nε such that

‖A−1si‖ ≤Mqi + 〈A(u− c), A−1el〉+ ε+M‖A−1ε̄i‖ ∀i ≥ Nε. (9)

Similarly, we also have that

‖A−1si‖ = ‖A−1(Mpi + el)‖
≥ ‖MA−1pi +A−1el −MA−1ε̄i‖ −M‖A−1(−ε̄i)‖
= ‖MqiA

−1s(u) +A−1el‖ −M‖A−1(−ε̄i)‖

=

√(
〈A−1s(u), A−1el〉
‖A−1s(u)‖

+Mqi

)2

+ t−M‖A−1(−ε̄i)‖

≥Mqi + 〈A(u− c), A−1el〉 −M‖A−1(−ε̄i)‖
= Mqi + 〈u− c, el〉 − ‖A−1(−ε̄i)‖. (10)

Combining (9) and (10) and using (8) and the definition of σ(·) we obtain
that for every ε̃ > 0 there exists Nε̃ such that

Mqi + 〈pi,Mc〉+ 〈u, el〉 − ε̃ ≤ σ(si) ≤Mqi + 〈pi,Mc〉+ 〈u, el〉+ ε̃ (11)

holds for all i ≥ Nε̃. Noting that Mqi + 〈pi,Mc〉 ∈ Z for all i we obtain that
limi→+∞ F (σ(si)) = 〈u, el〉 > 0.

5 Proof of Main Theorem

To prove Theorem 2, we first verify that Step 2 in Figure 1 can be accomplished
using a finite number of CG cuts.

Proposition 4. If there exists a finite set S ⊂ Zn such that

CC(S, T ) ⊂ T (12a)
CC(S, T ) ∩ bd(T ) ⊂ Zn, (12b)

then CC(Zn, T ) is a rational polytope.

Proof. Let V be the set of vertices of CC(S). By (12) we have that bd(T )∩V ⊂
Zn ∩T ⊂ CC(Zn). Hence any CG cut that separates u ∈ CC(S) \CC(Zn) must
also separate a point in V \bd(T ). It is then sufficient to show that the set of CG
cuts that separates some point in V \ bd(T ) is finite. To achieve this we will use
the fact that, because V \bd(T ) ⊂ T \bd(T ) and |V | <∞, there exists 1 > ε > 0
such that

γB(v − c) ≤ 1− ε ∀v ∈ V \ bd(T ). (13)
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Now, if a CG cut 〈a, x〉 ≤ bσ(a)c for a ∈ Zn separates v ∈ V \ bd(T ), then

〈a, v〉 > bσ(a)c (14)
⇒ 〈a, v〉 > σ(a)− 1 (15)
⇒ 〈a, v〉 > σB(a) + 〈a, c〉 − 1 (16)
⇒ σB(a)γB(v − c) ≥ 〈a, v − c〉 > σB(a)− 1 (17)

⇒ σB(a) <
1

1− γB(v − c)
≤ 1/ε (18)

⇒ a ∈ (1/ε)B◦. (19)

The result follows from the fact that (1/ε)B◦ is a bounded set.

The separation results from Section 4 allows the construction of the set re-
quired in Proposition 4, which proves our main result.

Proof (Proof of Theorem 2). Let I := bd(T ) ∩ Zn be the finite (and possibly
empty) set of integer points on the boundary of T . We divide the proof into the
following cases

1. CC(Zn) = ∅.
2. CC(Zn) 6= ∅ and CC(Zn) ∩ int(T ) = ∅.
3. CC(Zn) ∩ int(T ) 6= ∅.

For the first case, the result follows directly. For the second case, by Proposition 1
and the strict convexity of T , we have that |I| = 1 and CC(Zn) = I so the
result again follows directly. For the third case we show the existence of a set S
complying with conditions (12) presented in Proposition 4.

For each u ∈ I, let εu > 0 be the value from Proposition 2. Let D := bd(T ) \⋃
u∈I{x ∈ Rn : ‖x − u‖ < εu}. Observe that D ∩ Zn = ∅ by construction and

that D is compact because it is obtained from compact set bd(T ) by removing a
finite number of open sets. Now, for any a ∈ Zn let O(a) := {x ∈ bd(T ) | 〈a, x〉 >
bσ(a)c} be the set of points of bd(T ) that are separated by the CG cut 〈a, x〉 ≤
bσ(a)c. This set is open with respect to D. Furthermore, by Proposition 1 and
the construction of D, we have that D ⊂

⋃
a∈AO(a) for a possibly infinite set

A ⊂ Zn. However, since D is a compact set we have that there exists a finite
subset A0 ⊂ A such that

D ⊂
⋃

a∈A0

O(a). (20)

Let S := A0∪
⋃

u∈IWu where, for each u ∈ I, Wu is the set from Proposition 2.
Then by (20) and Proposition 2 we have that S is a finite set that complies with
condition (12b).

To show that S complies with condition (12a) we will show that if p /∈ T ,
then p /∈ CC(S, T ). To achieve this, we use the fact that CC(Zn) ∩ int(T ) 6= ∅.
Let c̃ ∈ CC(Zn) ∩ int(T ), B̃ = B + c − c̃ and γB̃(x) = inf{λ > 0 : x ∈ λB̃}
be the gauge of B̃. Then B̃ is a convex body with 0 ∈ int(B̃), T = {x ∈ Rn :
γB̃(x − c̃) ≤ 1} and bd(T ) = {x ∈ Rn : γB̃(x − c̃) = 1}. Now, for p /∈ T ,
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let p̄ := c̃ + (p − c̃)/γB̃(p − c̃) so that p̄ ∈ {µc̃ + (1 − µ)p : µ ∈ (0, 1)} and
p̄ ∈ bd(T ). If p̄ /∈ Zn, then by the definitions of S and c̃ we have that there exists
a ∈ S such that 〈a, c̃〉 ≤ bσ(a)c and 〈a, p̄〉 > bσ(a)c. Then 〈a, p〉 > bσ(a)c and
hence p /∈ CC(S, T ). If p̄ ∈ Zn let w ∈ Wp̄ be such that 〈w, c̃〉 < bσ(w)c and
〈w, p̄〉 = bwc. Then 〈w, p〉 > bσ(w)c and hence p /∈ CC(S, T ).

6 Remarks

We note that the proof of Proposition 4 only uses the fact that T is a convex
body and Theorem 2 uses the fact that T is additionally an ellipsoid only through
Proposition 1 and Proposition 2. Therefore, we have the following general suffi-
cient conditions for the polyhedrality of the first CG closure of a compact convex
set.

Corollary 1. Let T be any compact convex set. CC(Zn, T ) is a rational poly-
hedron if any of the following conditions hold

Property 1 There exists a finite S ⊂ Zn such that (12) holds.
Property 2 For any u ∈ bd(T ) \ Zn there exists a CG cut that separates u and

for any u ∈ bd(T ) ∩ Zn there exist εu > 0 and a finite set Wu ⊂ Zn

such that (2)–(4) hold.

A condition similar to (12) was considered in [41] for polytopes that are not
necessarily rational. Specifically the author stated that if P is a polytope in real
space such that CC(Zn, P )∩ bd(P ) = ∅, then CC(Zn, P ) is a rational polytope.
We imagine that the proof he had in mind could have been something along the
lines of Proposition 4.

We also note that Step 2 of the procedure described in Section 2 can be
directly turned into a finitely terminating algorithm by simple enumeration.
However, it is not clear how to obtain a finitely terminating algorithmic version
of Step 1 because it requires obtaining a finite subcover of the boundary of T
from a quite complicated infinite cover.

Acknowledgements. We would like to thank Shabbir Ahmed, George Nemhauser
and Arkadi Nemirovski for various discussions on this problem.
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