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ABSTRACT
The floor layout problem (FLP) tasks a designer with positioning a collection of
rectangular boxes on a fixed floor in such a way that minimizes total communi-
cation costs between the components. While several mixed integer programming
(MIP) formulations for this problem have been developed, it remains extremely
challenging from a computational perspective. This work takes a systematic ap-
proach to constructing MIP formulations and valid inequalities for the FLP that
unifies and recovers all known formulations for it. In addition, the approach yields
new formulations that can provide a significant computational advantage and can
solve previously unsolved instances. While the construction approach focuses on the
FLP, it also exemplifies generic formulation techniques that should prove useful for
broader classes of problems.
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1. Introduction

The floor layout problem (FLP), also known as the (unequal areas) facility layout
problem, is central to the design of objects such as factory floors and very-large-scale
integration (VLSI) computer-chips. The designer is given a fixed rectangular floor and
N rectangular boxes to place onto the floor. Each box must sit completely on the floor,
and they cannot overlap. Each box has a fixed area, but the widths and heights can be
varied to change the shape, subject to constraints on the area and aspect ratio of the
components. The objective is to minimize the weighted sum of the Manhattan norm
distances between each pair of boxes.

The FLP can be naturally described as a disjunctive programming problem, which
are often reformulated as mixed-integer programming (MIP) problem such as to take
advantage of state-of-the-art MIP solvers. However, the FLP and its various MIP
formulations have proven extremely difficult to solve to optimality. In this work, we
take a systematic approach to generating MIP formulations for the FLP that unifies
existing MIP formulations from the literature and leads to new formulations and valid
inequalities. We also computationally compare the range of formulations, and show
that the new approaches can be used to solve previously unsolved instances. The main
contributions of this work include:
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(1) Case study on systematic construction of effective MIP formulations:
The number, heterogeneity, and complexity of existing MIP formulations for the
FLP and the fact that it remains computationally challenging make it an excel-
lent candidate for such a study. Through the use of the embedding formulation
approaches of Vielma (2015a) and through a systematic treatment of alternative
disjunctive descriptions of the FLP, we are able to recover and unify all exist-
ing, seemingly ad-hoc, MIP formulations. In addition, we are able to derive new
formulations that can provide a significant computational advantage and solve
previously unsolved instances. While the study concentrates on specific charac-
teristics of the FLP, it exemplifies generic formulation techniques and practices
that should be useful for a wide range of problems.

(2) Valid inequalities for alternative formulations of the FLP: Using the
embedding approach, we are able to construct a variety of new valid inequalities
for FLP. One key of the embedding formulation approach of this work is the flex-
ible use of 0{1 variables to model disjunctive constraints or unions of polyhedra.
However, such flexibility can cloud the “interpretability” of the 0{1 variables,
which is often needed to construct valid inequalities to strengthen formulations.
In this work, we show how to construct and translate valid inequalities between
formulations of the FLP in such a way that allows us to state a broad class of
valid inequalities in a generic form.

(3) Comprehensive computational study of FLP: While the FLP has been
extensively studied, most existing works compare only a small subset of formu-
lations and valid inequalities when making comparison. In this work we collect
several instances from the literature to construct a publicly available library and
present a comprehensive computational study of existing and new formulations
on this library. Furthermore, our systematic approach allows us to compare a
host of formulations and a wide range of common valid inequalities when making
our comparison. In particular, while no single formulation seems to be dominant,
we may offer a small collection of techniques which prove particularly effective
for the FLP. Furthermore, we also study various theoretical and practical aspects
of these approaches that help explain their success.

The remainder of this work is organized as follows. In Section 2 we present a liter-
ature review of the existing solution techniques for the FLP. In Section 3 we formally
define the FLP and show how it can be cast as a disjunctive programming problem.
In Section 4 we review the formulation techniques we use to transform the FLP into
a MIP, and in Section 5 we use the techniques to construct formulations that are
based on the interaction of two boxes at a time. Then in Section 6 we develop valid
inequalities that can be used to strengthen formulations and show how they can be
translated from one formulation to the other. In Section 6 we also restrict attention
to the interaction of two boxes at a time, so in Section 7 we develop formulations and
inequalities that are based on the interaction of larger collections of boxes. Finally, in
Section 8 we present results of our computational experiments, and in Section 9 we
present a brief summary of this work. Complementary material and omitted proofs
are included in the Appendix.
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2. Literature review

The floor layout problem can be viewed as a specific version of a general layout problem
that consists of orthogonally packing rectangular pieces onto a rectangular floor; Drira
et al. (2007) offer a taxonomy of variations of the FLP and its relatives. Originally
studied primarily in the context of factory design, the emergence of the field of very-
large scale integration (VLSI) computer-chip design saw renewed interest in layout
problems such as the FLP.

Broadly, algorithmic approaches to these layout problems can be grouped into two
classes: exact and heuristic. Exact algorithms were predominant in the earlier litera-
ture, although the boom of applications in computer-chip design require solving large
scale instances beyond the reach of existing exact approaches. As a result, a bevy
of work has appeared over the past three decades, proposing heuristic approaches
to produce good solutions for large-scale instances. Much of the work applies exist-
ing metaheuristic frameworks to the FLP, for example Meller and Bozer (1996) and
Tate and Smith (1995). Contrastingly, many of the novel heuristics for the FLP take
advantage of ideas and machinery from mathematical programming: e.g. van Camp
et al. (1991); Anjos and Vannelli (2006); Bernardi (2010); Bernardi and Anjos (2013);
Jankovits et al. (2011); Lin and Hung (2011); Luo et al. (2008a,b), and Liu and Meller
(2007), albeit in a way that cannot prove optimality. We note in particular the sur-
veys of Meller and Gau (1996) and Singh and Sharma (2006), which collect pointers
to much of the heuristic literature.

In keeping with the MIP approach taken in this paper, we will survey the existing
exact methods for the FLP in detail. Early work can be traced back to Bazaraa (1975),
who studies a discretized version of the FLP. Meller et al. (1999) introduced a natural
MIP model for the FLP, along with a collection of valid inequalities and techniques
to help reduce solution time. Sherali et al. (2003) introduces novel formulations for
a single pair of boxes, as well as useful computational techniques such as symmetry
breaking constraints and branching priorities. Castillo et al. (2005) presents a new
MIP formulation for the FLP with fewer binary variables, alongside a number of addi-
tional formulations and approaches inspired by nonlinear and mixed-integer nonlinear
optimization. Meller et al. (2007) presents another formulation inspired by a technique
from Murata et al. (1996) that reduces redundancy in the solution set. As detailed in
the following section, the inclusion of certain non-linear area constraints in the FLP
result on its formulations being second-order-cone MIP (MISOCP) problems. Given
that early formulations were developed before the availability of efficient MISOCP
solvers, careful attention has been paid on constructing and proving desirable prop-
erties for specific linear approximations for the nonlinear area constraints in Sherali
et al. (2003) and Castillo and Westerlund (2005).

The FLP has a natural one-dimensional analogue in the single-row floor (facility)
layout problem, which asks for an optimal layout of N boxes of fixed length in a
straight line. This problem is already NP-hard, and strong formulations and cutting
planes have been developed for the problem by Amaral (2006, 2008) and Amaral and
Letchford (2013).

An intriguing line of research has investigated the FLP from the dual perspec-
tive, attempting to construct tight lower bounds. This is of particular interest for
the FLP, where relaxations typically give poor bounds, even with strengthening valid
inequalities. Amaral (2009) presents a lower bounding technique for the single-row
FLP. Another line of work investigates using semidefinite programming formulations
to construct bounds for the FLP by Takouda et al. (2005) and the single-row FLP
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by Anjos et al. (2005). Anjos and Vannelli (2008) leverage the semidefinite approach
to produce optimal solutions for the single-row FLP using a cutting-plane approach,
and to produce high-quality solutions for larger instances in Anjos and Yen (2009).
Huchette et al. (2016) present a combinatorial dual bounding scheme for the FLP and
compare it against existing techniques.

3. Preliminaries: Notation, defining constraints, and the disjunctive
formulation

Consider a rectangular floor r0, Lxs ˆ r0, Lys for Lx, Ly ą 0. There is a collection of
N boxes tBiu

N
i“1 to place on the floor, each with a target area αi ą 0 and maximum

allowed aspect ratio βi ą 0. Denote the set of all pairs with P “ tpi, jq P JNK2 :

i ă ju where JNK def
“ t1, . . . , Nu. With each pair of boxes pi, jq P P, there is an

associated nonnegative unit communication cost pi,j . The floor layout problem then is
to optimally lay out each box completely on the floor, such that the area and aspect
ratio constraints are satisfied, and such that no two boxes overlap.

Natural decision variables for each box Bi are the position of its center pcxi , c
y
i q

and the lengths in each direction p`xi , `
y
i q. The objective function used is based on the

so-called “Manhattan” norm:

ÿ

pi,jqPP

pi,j

´

|cxi ´ c
x
j | ` |c

y
i ´ c

y
j |

¯

. (1)

Most of the constraints described are simple to describe with linear or conic in-
equalities. For instance, Bi lies completely on the floor iff

1

2
`si ď csi ď Ls ´

1

2
`si @s P tx, yu, i P JNK. (2)

The area constraints take the form

`xi `
y
i ě αi @i P JNK, (3)

which is second-order-cone-representable (Alizadeh and Goldfarb 2003). The aspect
ratio constraints take the form

max

"

`xi
`yi
,
`yi
`xi

*

ď βi @i P JNK. (4)

This can be represented with two linear constraints per box, but it can also be enforced
on the FLP merely through bounds on the widths of the boxes.

Observation 1 (Section 2.3 of Castillo et al. (2005)). Along with the area constraints,
imposing the following bounds on the box widths is sufficient to impose the aspect ratio
constraints:

`si ď ubsi
def
“ min

!

a

αiβi, L
s
)

@s P tx, yu, i P JNK (5a)

`si ě lbsi
def
“

βi
ubsi

@s P tx, yu, i P JNK (5b)
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Bj

Bi
BjBi

Bj

Bi

Figure 1. Two boxes whose layout satisfies d1i,j (Left), d2i,j (Center), and both d1i,j and d2i,j (Right).

We note that, since βi ą 0, we have that lbsi ą 0 for each s P tx, yu and i P JNK.

3.1. Disjunctive formulation for the FLP

The last remaining constraint for the FLP requires that the boxes cannot overlap on
the floor. One natural way to formulate this is by requiring each pair Bi and Bj to be
separated in either the x direction or the y direction (or both).

Definition 3.1. We say that Bi precedes Bj in direction s (denoted by Bi Ðs Bj) if

csi `
1

2
`si ď csj ´

1

2
`sj . (6)

Therefore, we can enforce the constraint that Bi and Bj do not overlap with the

disjunctive constraint D4
i,j

def
“

Ž4
k“1 d

k
i,j , where

d1
i,j “ Bi Ðy Bj , d2

i,j “ Bi Ðx Bj , d3
i,j “ Bj Ðy Bi, d4

i,j “ Bj Ðx Bi.

We omit the subscript and use D4 when the meaning is clear from context and we
refer to each dk as a branch of the disjunction.

Then the set of all feasible layouts is given by the disjunctive set

L
def
“

$

&

%

pc, `q P R2N`2N : (2), (5), (3),
ľ

pi,jqPP

D4
i,j

,

.

-

, (7)

and a (nonlinear) disjunctive programming formulation of the FLP is given by
min t(1) : pc, `q P Lu. The main objective of this work is to transform this disjunctive
programming problem into a mixed-integer formulation that can be solved by off-the-
shelf optimization software. To achieve this, we first focus our attention to a single
pair of boxes Bi and Bj for pi, jq P P, in which case we are interested in constructing a

MIP formulation of Li,j
def
“

 

pci, cj , `i, `jq P R8 : (2), (5), (3), D4
(

If we omit the non-

linear area constraints (3) we obtain the set L̂i,j
def
“

 

pci, cj , `i, `jq P R8 : (2), (5), D4
(

,

which can be written as the union of (bounded) polyhedra L̂i,j “
Ť4
k“1 P

k
i,j , where

P ki,j “
!

pci, cj , `i, `jq P R8 : (2), (5), dki,j

)

. We can then use various techniques to con-

struct a linear MIP formulation of L̂i,j , which can be combined with the area con-
straints to obtain a second-order-cone MIP (MISOCP) formulation of Li,j . Finally, we
can combine these formulations for all pairs pi, jq P P and an appropriate linearization
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of the objective function (1) to obtain a MISOCP of the complete problem. Much of

our analysis will focus on constructing such MIP formulations of L̂i,j , which we denote
the pairwise FLP. However, in Section 6.2 and Section 7.2 we consider the strengthen-
ing of the final formulation by explicitly considering the objective function and larger
collections of boxes, respectively, when formulating the disjunctive constraint.

4. Constructing MIP formulations for disjunctive constraints

MIP formulations for unions of polyhedra such as L̂i,j can be divided into extended
formulations that uses both continuous and 0{1 auxiliary variables (Vielma 2015b,
Section 5) and non-extended (projected) formulations that only use the 0{1 auxiliary
variables that are strictly necessary to build a valid formulation (Vielma 2015b, Section
6). Note that, in general, it is not possible to construct a MIP formulation for unions of
polyhedra in the original space, so some (0{1) variables are needed for representability.
Standard extended formulations by Balas (1998) and Jeroslow and Lowe (1984) have
the desirable property that their Linear Programming (LP) relaxations have extreme
points that naturally satisfy the integrality requirements on the 0{1 auxiliary variables;
we call such formulations integral or ideal. In contrast, non-extended formulations often
fail to be ideal, but can be much smaller. For instance, the following proposition shows
a non-extended formulation of L̂i,j obtained through the classical big-M approach.

Proposition 4.1. The following is a formulation for L̂i,j:

1

2
`sk ď csk ď Ls ´

1

2
`sk @s P tx, yu, k P ti, ju (8a)

cyi `
1

2
`yi ď cyj ´

1

2
`yj ` L

yp1´ v1q, cxi `
1

2
`xi ď cxj ´

1

2
`xj ` L

xp1´ v2q (8b)

cyj `
1

2
`yj ď cyi ´

1

2
`yi ` L

yp1´ v3q, cxj `
1

2
`xj ď cxi ´

1

2
`xi ` L

xp1´ v4q (8c)

lbsk ď `sk ď ubsk @s P tx, yu, k P ti, ju (8d)

4
ÿ

i“1

vi “ 1, v P t0, 1u4. (8e)

Formulation (8) only uses four 0{1 auxiliary variables (and no continuous auxiliary
variables) and is about four times smaller than the standard ideal extended formula-

tion for L̂i,j (see Appendix A). While formulation (8) is not guaranteed to be ideal, its
smaller size can still result in a computational advantage over the ideal extended for-
mulation. In addition, using various techniques it is sometimes possible to strengthen
non-extended formulations considerably. For this reason, we concentrate on construct-
ing non-extended formulations for the FLP by using three techniques: (1) the flexible
use of 0{1 auxiliary variables provided by the embedding formulations approach, (2)
alternative definitions of the disjunctive constraints D4

i,j , and (3) the consideration
of various common linear inequalities when building the disjunctions. We now pro-
vide some simple examples of applying these techniques to build MIP formulations for
disjunctive sets.
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4.1. Selecting encodings and alternative MIP formulations: The
embedding approach

We begin our description of the embedding formulation approach of Vielma (2015a) by

re-interpreting (8) as a formulation for the embedding of L̂i,j in a higher dimensional
space. Indeed, pci, cj , `i, `j , vq is feasible for (8) if and only if it belongs to the embedding

of L̂i,j “
Ť4
k“1 P

k
i,j Ď R8 into R8 ˆ t0, 1u4 given by

4
ď

k“1

P ki,j ˆ te
ku, (9)

where ek is the k-th unit vector (ekl “ 0 for l ‰ k and ekk “ 1). We say that repre-

sentation (9) embeds L̂i,j , which lives in the space of the pci, cj , `i, `jq variables, into
the space of the pci, cj , `i, `j , vq variables. It achieves this by pairing each of the four
polyhedra P ki,j with a unique binary vector ek, and so encoding the disjunctive con-

straint. Any valid formulation for (9) implies a valid formulation for L̂i,j , since L̂i,j is

the orthogonal projection of
Ť4
k“1

´

P ki,j ˆ te
ku

¯

onto the pci, cj , `i, `jq variables. How-

ever, representation (9) also makes explicit the role of the v variables: v “ ek implies

that pci, cj , `i, `jq P P
k
i,j . In other words, the possible values

 

ek
(4

k“1
of v encode the

selection among the polytopes P ki,j .
The key for the flexibility of the embedding approach is noting that this encoding

can use any family of pairwise distinct 0{1 vectors in place of the unit vectors ek.
The following definition formalizes this approach in our context, where we explicitly
separate the disjunctive constraint D from the common constraints Q, which must be
satisfied by all branches of the disjunction.

Definition 4.2. Take a polyhedra Q Ď Rd, a disjunctive constraint D “
ŽK
k“1rA

kx ď

bks, and an encoding C
def
“ thkuKk“1 Ď t0, 1ur of pairwise distinct vectors. A non-

extended (linear) MIP formulation for tx P Q : Du is any (linear) MIP formulation for
the embedding

EmpQ,D,Cq
def
“

ďK

k“1

!

x P Q : Akx ď bk
)

ˆ thku

that uses only d` r variables.

Standard formulation approaches are recovered when choosing the unit vectors

UK
def
“ tekuKk“1 Ď t0, 1uK , which we denote the unary encoding, as it uses one bit

per branch of the disjunction. For example, we have that (8) is a formulation for
EmpQ,D4, U4q with Q “

 

pci, cj , `i, `jq P R8 : (2), (5)
(

. However, the real flexibility
comes from the possibility of non-unary encodings, as the specific assignment of codes
to branches of the disjunctions does not change the structure of the formulation. For
instance, to obtain a valid formulation for EmpQ,D4, Ũ4q with Ũ4 “

 

e2, e1, e3, e4
(

we
simply need to interchange v1 and v2 in (8). In contrast, for other types of encodings
the specific assignment can be significant in terms of the complexity of the resulting
embedding object and formulations (e.g. see Section 5.2 and Vielma (2015a)).

Deriving ideal non-extended formulations for embeddings with any encoding can
be done using a geometric construction introduced in Vielma (2015a). However, such
construction can be hard to analyze, and many choices of encodings may naturally
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have very large ideal formulations (i.e. many inequalities). Fortunately, non-extended
formulations can also be constructed using ad-hoc approaches or through simple con-
structions such as a generalization of the big-M approach to arbitrary encodings. In
the coming sections we will see how this generic approach can be used to construct a
range of formulations for our disjunctive set. In particular, varying the ingredients Q,
D, and C lead to different embedding objects EmpQ,D,Cq, which in turn will neces-
sitate different formulations. In the following subsections, we provide such examples
for varying inputs D and Q.

4.2. Alternative disjunctive formulations and common constraints

4.2.1. Alternative logical representations (D)

The new formulation for the FLP proposed in Section 5.3 hinges on a logical refine-
ment of the disjunction D4 that removes many redundant solutions from the resulting
formulation.

To illustrate this idea, we provide a simple example, which is independent of the

FLP. Consider the disjunctive constraint DA
1

def
“ rx1 ` x2 ď 1s_rx2 ď x1s and common

linear constraints Q1
def
“

 

x P R2 : 0 ď xi ď 1 @i P J2K
(

, for which M1
def
“ tx P Q1 :

DA
1 u is depicted in Figure 2(a). Because the two alternatives of DA

1 intersect, we can
define an alternative disjunction

DB
1

def
“ rx1 ` x2 ď 1, x1 ď x2s _ rx1 ` x2 ď 1, x2 ď x1s _ rx1 ` x2 ě 1, x2 ď x1s ,

for which tx P Q1 : DA
1 u “ tx P Q1 : DB

1 u. Using DB instead of DA could lead to
larger formulations, since more branches on the disjunction will require longer codes
to satisfy the distinctness property. However, it also reduces redundancy or symmetry,
phenomena which are known to reduce the effectiveness of mixed-integer solvers. In
particular, we note that the point p1{2, 1{4q satisfies both branches of DA

1 , but only
one branch of DB

1 . Using the embedding approach for some encoding C, this gives to
two feasible points in EmpQ1, D

A
1 , Cq which correspond to p1{2, 1{4q and differ only in

their assigned code.

(a) M1 (b) M2 and tx P QA
2 : D2u (c) M3

Figure 2. Disjunctive constraints.
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4.2.2. Adding common constraints (Q)

One advantage of the embedding framework as described in Definition 4.2 is that it
allows us to exploit the fact that the FLP has many constraints beyond the disjunctive
constraint D4. In particular, we can pick which constraints we include in the ground
set Q to combine with the disjunctive constraint D and build a formulation, and
which constraints are added after the formulation process. Such choice can significantly
change the strength of the final formulation.

To illustrate this effect consider the following simple example, which is independent

of the FLP. Take the disjunctive constraint D2
def
“ rx1 ` x2 ď 1s _ r1` x2 ď x1s and

the set of linear inequalities

0 ď xi ď 2 i P J2K (10a)

x2 ď x1 `
1

2
. (10b)

Suppose we want to construct a MIP formulation for M2
def
“

 

x P R2 : (10), D2

(

de-

picted by the dark shaded region in Figure 2(b). If we let QA2
def
“

 

x P R2 : (10a)
(

we

have that both P 1 “
 

x P QA2 : x2 ď 1´ x1

(

and P 2 “
 

x P QA2 : 1` x2 ď x1

(

are
bounded and hence satisfy the conditions of Definition 4.2. Then, we can at first ig-
nore linear inequality (10b) and construct a formulation for tx P QA2 : D2u “ P 1 YP 2

(depicted by the and light shaded region in Figure 2(b)) and then impose (10b) on
the resulting formulation. For instance, an ideal formulation of Em

`

QA2 , D2,
 

e1, e2
(˘

is given by

0 ď x2 ď 3´ 2v1 ´ x1 (11a)

1´ v1 ď x1 ď 2´ v1 (11b)

1` x2 ď x1 ` 2v1 (11c)

v1 ` v2 “ 1 (11d)

v P t0, 1u2 . (11e)

A formulation of M2 is then given by (11) and (10b). However, a second option

is to include all inequalities into QB2
def
“

 

x P R2 : (10a)–(10b)
(

and directly con-

struct a formulation of tx P QB2 : D2u “ M2. For instance, an ideal formulation
of Em

`

QB2 , D2,
 

e1, e2
(˘

is given by (11) with (11c) strengthened to

1` x2 ď x1 `
3

2
v1. (12)

We can check that px1, x2, v1, v2q “
`

1, 1, 1
2 ,

1
2

˘

is feasible for the LP relaxation of (11)
and (10b), but it does not satisfy (12). Hence, the formulation obtained by considering
all common linear inequalities is stronger that the one obtained by first ignoring (10b).

A similar strengthening effect can occur when auxiliary variables and linear inequal-
ities used to model other aspects of a mathematical programming problem are included
in the common constraints. This is the case with the FLP and the nonlinear objective
function (1), which may be linearized with auxiliary variables and constraints.

For a simple motivating example, let D3
def
“ rx1 ď 1s _ rx1 ě 3s, QA3

def
“

tx1 P R : 0 ď x1 ď 4u and MA
3

def
“

 

x1 P Q
A
3 : D3

(

, and suppose we want to solve
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min
 

|x1 ´ 2| : x1 PMA
3

(

. An ideal formulation for Em
`

QA3 , D3,
 

e1, e2
(˘

is given by

3´ 3v1 ď x1 ď 4´ 3v1, v1 ` v2 “ 1, v P t0, 1u2, (13)

which together with a standard LP modeling trick to linearize the absolute value in
the objective leads to the MIP formulation of the complete problem given by

min ty1 : x1 ´ 2 ď y1, ´x1 ` 2 ď y1, (13)u . (14)

Alternatively, we could instead include the linearization trick in the common con-

straints to obtain QB3
def
“

 

px1, y1q P R2 : 0 ď x1 ď 4, x´ 2 ď y1, ´x1 ` 2 ď y1

(

and MB
3

def
“

 

px1, y1q P Q
B
3 : D3

(

, depicted in Figure 2(c). An integral formulation for

Em
`

QB3 , D3,
 

e1, e2
(˘

is given by (13) plus

x1 ´ 2` 2v1 ď y1, ´x1 ` 2` 2p1´ v1q ď y1, (15)

which leads to the MIP formulation of the complete problem given by

min ty1 : (13), (15)u . (16)

We can check that the optimal value of the LP relaxation of (16) is equal to one.
In contrast, we can also check that the optimal value of the LP relaxation of (14)
is zero. That is, we have constructed a stronger MIP formulation for minimizing a
nonlinear objective over a union of polyhedra by directly including the linearization
of the objective in our construction procedure.

Given that incorporating additional structure in the ground set can allow us to
construct stronger formulations, it seems at first that the optimal approach will be
to simply add all constraints. However, this can quickly lead to embedding objects
EmpQ,D,Cq that are very complex or difficult to study; if Q is restricted to some
minimal “interesting” substructure, we will see that we are better equipped to study
and construct strong formulations.

5. MIP formulations and valid inequalities for pairwise layouts

5.1. Unary formulation

We start by analyzing a simple, yet nontrivial, substructure for which we are able to

construct a strong (i.e. ideal) formulation. Take Qlbi,j
def
“

 

pci, cj , `i, `jq P R8 : (2), (5b)
(

;
that is, the set that imposes that the boxes lie completely on the floor and lower bounds
on the box widths. Using this set of common constraints, disjunction D4 and the unary
encoding we can construct the following small ideal formulation. Throughout, we will
use the notation tp, qu “ ti, ju as enumeration over the two orderings pi, jq and pj, iq.
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Theorem 5.1. The following is a formulation for EmpQlb, D4, U4q:

1

2
`sp ` lb

s
qu
s
q,p ď csp ď Ls ´

1

2
`sp ´ lb

s
qu
s
p,q @s P tx, yu, tp, qu “ ti, ju (17a)

csp `
1

2
`sp ď csq ´

1

2
`sq ` L

sp1´ usp,qq @s P tx, yu, tp, qu “ ti, ju (17b)

`sp ě lbsp @s P tx, yu, p P ti, ju (17c)

uxi,j ` u
x
j,i ` u

y
i,j ` u

y
j,i “ 1 (17d)

usp,q P t0, 1u @s P tx, yu, tp, qu “ ti, ju. (17e)

If lbsi ` lb
s
j ă Ls for both s P tx, yu, then this formulation is ideal.

We dub (17) the unary formulation. However, we do not use the same naming
convention for the binary variables as in formulation (8). Instead we rename v1, v2, v3

and v4 to uxi,j , u
x
j,i, u

y
i,j and uyj,i. The reason for this is that the 0{1 variables from (17)

have the nice interpretation that usi,j “ 1 ùñ Bi Ðs Bj . This interpretation forms
the basis for the FLP2 formulation in Meller et al. (1999) and Sherali et al. (2003).
In fact, the unary formulation (17) is very similar to FLP2, but with the addition of
the tightened stay-on-the-floor constraints (17a). In the sequel we use similar naming
conventions for the 0{1 variables when they have helpful interpretations.

5.2. Binary formulations

The unary encoding uses codes of four bits to differentiate between four choices. If
we instead use a binary encoding, we only need two bits (i.e. codes of length two)
to impose this same decision. In contrast to unary encodings, the specific assign-
ment of codes to branches for binary encodings can result in significantly different
formulations (Vielma 2015a). However, because of symmetry, for binary encodings of
length two we may restrict our attention to two possible choices. The first encod-
ing corresponds to the unique (up to symmetry) Gray code (Savage 1997) with two

bits given by GB4 def
“ tp0, 0q, p1, 0q, p0, 1q, p1, 1qu, and the second corresponds to the

codes BB4 def
“ tp0, 0q, p1, 1q, p1, 0q, p0, 1qu. Both choice of codes and their corresponding

encodings can be used to reinterpret existing formulations from the literature. The
following proposition shows that the big-M approach can be used to construct a sim-
ple formulation for the Gray encoding, which can be seen as the basis of formulation
FLP-SP introduced in Meller et al. (2007).

11



Proposition 5.2. A valid formulation for EmpQlb, D4, GB4q is:

1

2
`sp ď csp ď Ls ´

1

2
`sp @s P tx, yu, p P ti, ju (18a)

`sp ě lbsp @s P tx, yu, p P ti, ju (18b)

cyi `
1

2
`yi ď cyj ´

1

2
`yj ` L

ypw1 ` w2q (18c)

cxi `
1

2
`xi ď cxj ´

1

2
`xj ` L

xp1´ w1 ` w2q (18d)

cyj `
1

2
`yj ď cyi ´

1

2
`yi ` L

yp2´ w1 ´ w2q (18e)

cxj `
1

2
`xj ď cxi ´

1

2
`xi ` L

xp1` w1 ´ w2q (18f)

w P t0, 1u2 (18g)

Formulation FLP-SP is obtained from (18) by adding the “sequence-pair” inequal-
ities for the N -box formulation introduced in (Meller et al. 2007). For completeness,
we present the sequence pair inequalities in Appendix D.2. We will see in Section
8 that the FLP-SP is the most competitive formulation from the literature on our
computational benchmarks.

If instead we attempt to construct a formulation for EmpQlb, D4, BB4q, we can easily
reconstruct the BLDP1 formulation from Castillo et al. (2005), which we present in
Appendix D.1.

5.3. Refined disjunction formulation

While the disjunction D4
i,j is sufficient to enforce that Bi and Bj do not overlap, its

simplicity has a downside when used in a MIP framework. The disjunction is not
sufficiently refined in the sense that there exist many feasible layouts that satisfy
multiple branches at once. For example, in Figure 3, we see that Bi precedes Bj in
both the x and y directions. Therefore, in any embedding constructed using D4

i,j ,
there exist two points that project down to the same layout (that is, they differ only
in their assigned codes). In practice, this redundancy can hamper the progress of
branch-and-bound solvers, which must explicitly enumerate these solutions (and all
nodes preceding them in the tree) to prove optimality.

To help remove this redundancy from the feasible set, we present a refined dis-
junction that is logically equivalent to D4. In Definition 3.1, we presented a linear
inequality that enforces that Bi precedes Bj . For our refined disjunction, we will need
a description of the opposite.

Definition 5.3. We say that Bi does not precede Bj (denoted by Bi Ús Bj) if csi `
1
2`
s
i ě csj ´

1
2`
s
j .

Referring back to Figure 3, we see that Bi precedes Bk in direction y, but does
not precede Bk in direction x (and vice versa). Note in particular that, if csi `

1
2`
s
i “

cst ´
1
2`
s
t (as with Bi and Bt in Figure 3), we have that both Bi Ðs Bj and Bi Ús Bj

simultaneously.

With the two definitions, we can construct a refinement of D4
i,j given by D8

i,j
def
“

12
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br4br5br6
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br8

Figure 3. (Left) An illustration of the possible redundancies. In the depiction, Bi precedes Bj , Bk, and Bt

in direction y. It also precedes Bj in direction x, does not precede Bk in direction x, and both precedes and

does not precede Bt in direction x.

(Right) The eight branches of the disjunction D8, illustrated via the relative position of Bj to Bi.

Ž8
k“1 br

k
i,j where

br1
i,j “ pBi Ðy Bjq ^ pBi Úx Bjq ^ pBj Úx Biq, br2

i,j “ pBi Ðy Bjq ^ pBi Ðx Bjq

br3
i,j “ pBi Ðx Bjq ^ pBi Úy Bjq ^ pBj Úy Biq, br4

i,j “ pBi Ðx Bjq ^ pBj Ðy Biq

br5
i,j “ pBj Ðy Biq ^ pBi Úx Bjq ^ pBj Úx Biq, br6

i,j “ pBj Ðx Biq ^ pBj Ðy Biq

br7
i,j “ pBj Ðx Biq ^ pBi Úy Bjq ^ pBj Úy Biq, br8

i,j“ pBj Ðx Biq ^ pBi Ðy Bjq.

We have taken a refinement of D4 by splitting the regions satisfying two branches at
once into the new branches br2, br4, br6, and br8, and shrinking the other branches to
exclude these new regions. See Figure 3 for an illustration.

With 8 branches in the disjunction we need codes of length at least 3 “

log2p8q. However, in lieu of chasing the formulation with the smallest number

of 0{1 variables (i.e. a binary formulation), we instead take the encoding C8 def
“

 

e1, e1 ` e2, e2, e2 ` e3, e3, e3 ` e4, e4, e4 ` e1
(

Ď t0, 1u4. Intuitively, we have taken
the codes from the unary encoding for the regions br1, br3, br5, and br7, and taken the
codes for the new branches as the sum of the codes assigned to the two branches in
D4 the region satisfies. For example, we get br2 by taking the intersection of d1 (code
e1) and d3 (code e2), so we take the corresponding code as e1 ` e2. We see in the
following proposition that by “shadowing” the unary embedding in this way, we are
able to construct a formulation for EmpQlb, D8, C8q that is very similar to the ideal
formulation (17) for EmpQlb, D4, U4q.
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Proposition 5.4. The following is a valid formulation for EmpQlb, D8, C8q:

1

2
`sp ` lb

s
qz
s
q,p ď csp ď Ls ´

1

2
`sp ´ lb

s
qz
s
p,q @s P tx, yu, tp, qu “ ti, ju

(19a)

csp `
1

2
`sp ď csq ´

1

2
`sq ` L

sp1´ zsp,qq @s P tx, yu, tp, qu “ ti, ju

(19b)

`sp ě lbsp @s P tx, yu, p P ti, ju (19c)

zxi,j ` z
x
j,i ` z

y
i,j ` z

y
j,i ě 1 (19d)

zsi,j ` z
s
j,i ď 1 @s P tx, yu (19e)

zsp,q P t0, 1u @s P tx, yu, tp, qu “ ti, ju

(19f)

csp `
1

2
`sp ` L

szsp,q ě csq ´
1

2
`sq ` plb

s
p ` lb

s
qqpz

s
i,j ` z

s
j,iq @s P tx, yu, tp, qu “ ti, ju.

(19g)

We dub formulation (19) the refined unary formulation, and conjecture that it is
the strongest possible for EmpQlb, D8, C8q.

Conjecture 1. Formulation (19) is ideal.

Finally, we note that our choice of codes induce the following nice interpretation for
the 0{1 variables:

zsi,j “ 0 ùñ Bi Ús Bj (20a)

zsi,j “ 1 ùñ Bi Ðs Bj . (20b)

We note that this is a stronger interpretation than is possible for the unary formulation,
for which the implication (20a) is not necessarily true.

6. Constructing valid inequalities for embeddings

In Section 4 we have seen how the embedding approach can be used to construct valid
formulations for substructures of the pairwise FLP. In particular, we chose a subset of
variables and constraints (Qlb) for which the analysis is tractable. However, in Section
4.2.2 we have seen that incorporating more of the common constraint structure in the
ground set Q can allow us to construct much stronger formulations. Therefore, in this
section we explore embeddings of more complex substructures Q. However, since the
facial structure of the embedding objects grows considerably more complex, we only
focus on constructing valid inequalities for these new embeddings.

In the remaining sections, we will express all inequalities for the refined unary
encoding. Fortunately, it is sometimes possible to translate valid inequalities between
different encodings. We now present a self contained description of such translations
for the FLP.

Proposition 6.1. Let QFLP
def
“ tpci, cj , `i, `jq P R8 : (2), (3), (5)u and consider an

inequality aT c` bT `` dT z ď f with d ě 0 that is valid for EmpQFLP , D8, C8q. Then
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‚ aT c` bT `` dTAU puq ď f is valid for EmpQFLP , D4, U4q, and
‚ aT c` bT `` dTAGBpwq ď f is valid for EmpQFLP , D4, GB4q,

where AU puq “ u is the affine mapping that identifies zsp,q with usp,q and

AGBpwq
def
“ p´w1 ´ w2 ` 1, w1 ´ w2, w1 ` w2 ´ 1, ´w1 ` w2q .

is the affine mapping that identifies pzyi,j , z
x
i,j , z

y
j,i, z

x
j,iq with AGBpwq.

Proposition 6.2. If inequality aT c` bT `` dTu ď f is valid for EmpQFLP , D4, U4q,
then aT c ` bT ` ` dT z ď f is valid for EmpQFLP , D8, C8q if either dyi,j “ dyj,i “ 0 or
dxi,j “ dxj,i “ 0.

6.1. Upper bound inequalities

In the previous section we chose the base set Qlb such that only lower bounds on the
widths were included in the formulation. This was to make the formulation analysis
tractable, but enforcing the aspect-ratio constraints via (5) naturally includes upper

bounds as well. Therefore, we can consider the set EmpQub, D8, C8q induced by Qub
def
“

tpc, `q P Qlb : (5a)u.

Proposition 6.3. For any assignments tr, su “ tx, yu and tp, qu “ ti, ju, then

csp ` ub
s
qp1´ z

s
q,pq ě

1

2
`sp ` `

s
q (21)

is a valid inequality for EmpQub, D8, C8q. If Ls ă ubsp ` ub
s
q,

zrp,q ` z
r
q,p ě

`sp ` `
s
q ´ L

s

ubsp ` ub
s
q ´ L

s
(22)

is valid for both EmpQ,D4, U4q and EmpQ,D8, C8q.

6.2. Objective inequalities

The objective (1) is nonlinear but is straightforward to linearize in the usual fashion
with auxiliary variables pdxi,j , d

y
i,jq and the constraints

dsi,j ě csi ´ c
s
j , dsi,j ě csj ´ c

s
i . (23)

Even though this type of linearization is a very common MIP formulation
technique, it is often not incorporated into polyhedral studies explicitly. To

do this for the pairwise FLP, consider the augmented base set Qobji,j “
 

pci, cj , `i, `j , di,jq P R4`4`2 : (2), (5b), (23)
(

. The resulting encoding EmpQobj , D8, C8q

leads to a collection of inequalities that serve to lower bound the auxiliary objective
variables d.

Proposition 6.4. Choose s P tx, yu and some assignment tp, qu “ ti, ju. Then the
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following are valid inequalities for EmpQobj , D8, C8q:

dsi,j ě
1

2
p`si ` `

s
jq ´ L

sp1´ zsi,j ´ z
s
j,iq (24)

dsi,j ě csp ´ c
s
q ` `

s
p ` lb

s
qpz

s
p,q ` z

s
q,pq ´ L

sp1´ zsp,qq (25)

dsi,j ě csp ´ c
s
q ` plb

s
p ` lb

s
qqz

s
p,q (26)

2dsi,j ě `sp ´ L
sp1´ zsp,q ´ z

s
q,pq ` lb

s
qpz

s
p,q ` z

s
q,pq (27)

Note that we are now adding both constraints and variables to our ground set
Qobj . These inequalities are especially significant, since they explicitly incorporate the
objective function, and the MIP relaxation lower bounds for the FLP are quite poor
(see Section 8.1).

7. From pairwise to N boxes

Thus far we have only considered representations for L̂i,j , the relationships between
a single pair of boxes. In this section we address how to use the results derived for
the pairwise formulations to construct strong formulations for the original N -box floor
layout problem.

7.1. Multi-box formulations

Since all the constraints for the FLP involve at most two boxes, it suffices to con-
sider each pair of boxes separately, construct a pairwise formulation, and identify all
repeated variables across these pairwise formulations as follows.

Proposition 7.1. Consider pairwise formulations F i,j for each pair of boxes pi, jq P P

over the variables pci, cj , `i, `j , v
i,jq P R8 ˆ t0, 1umi,j . If M

def
“

ř

pi,jqPPmi,j, then
 

pc, `, vq P R4N ˆ t0, 1uM : pci, cj , `i, `j , v
i,jq P F i,j @pi, jq P P

(

is a formulation for
L.

In particular, if we take the refined unary formulation for each pair of boxes, we
construct the following formulation for the N -box FLP.

Corollary 7.2. Take FRUi,j “ tpci, cj , `i, `j , v
i,jq P R8 ˆ t0, 1u4 : (19)u. Then FRU

def
“

!

pc, `, vq P R8N ˆ t0, 1u2NpN´1q : pci, cj , `i, `j , v
i,jq P FRUi,j @pi, jq P P

)

is a valid formu-

lation for L.

While this approach is sufficient to construct a valid formulation, constructing dis-
junctive and MIP formulation for multiple pairs of boxes can lead to stronger formu-
lations. However, such formulations can be significantly larger and/or more compli-
cated. For this reason we instead concentrate on identifying valid inequalities for such
multi-pair or multi-box formulations to strengthen the single-pair formulation from
Propositions 7.1 and Corollary 7.2.
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7.2. Multi-box cutting planes

When working with more than two boxes at once, the notion of spatial transitivity
appears; that is, for any s P tx, yu we have Bi Ñs Bt Ñs Bj ùñ Bi Ñs Bj . We can
use this property to generalize many of the pairwise valid inequalities introduced thus
far to the multi-box setting, in a similar way to Section 3 of Meller et al. (1999).

Consider a pair of boxes pi, jq P P and take an arbitrary path P “

tpt0, t1q, . . . , ptm, tm`1qu Ď P, where t0 “ i and tm`1 “ j. We define an affine func-

tion of the form Ms
P pzq

def
“ 1 `

řm`1
ξ“1

´

zstξ´1,tξ ´ 1
¯

. Our function enjoys the following

property:

Ms
P pzq

#

“ 1 Bt0 Ðs Bt1 Ðs ¨ ¨ ¨ Ðs Btm`1

ď 0 otherwise.
(28)

This will function as an (underestimator for the) indicator function for when we have
a particular chain of boxes P along direction s. We can use this to extend the logic of
the pairwise inequalities we have developed. For a simple example, if Bi Ðs Bt Ðs Bj ,
then we know that Bi and Bj are separated in direction s by at least the smallest width
Bt can take along that direction, and so csi `

1
2`
s
i ` lbst ď csj ´

1
2`
s
j . This tightening

can be exploited in the inequalities derived previously, leading a host of new valid
inequalities for the multi-box FLP.

Proposition 7.3. Consider the pair pBi,Bjq and an arbitrary path P “

tpt0, t1q, . . . , ptm, tm`1qu, where i “ t0 and j “ tm`1 and m ě 1. Choose assignments

tr, su “ tx, yu and tp, qu “ ti, ju and define γP
def
“

řm
ξ“1 lb

s
tξ . Then the following are

valid inequalities for FRU :

dsi,j ě
1

2
p`si ` `

s
jq ´ L

sp1´ zsi,j ´ z
s
j,iq ` γPM

s
P pzq (29)

dsi,j ě csi ´ c
s
j ` `

s
p ` lb

s
qpz

s
i,j ` z

s
j,iq ´ L

sp1´ zp,qq ` γPM
s
P pzq

(30)

dsi,j ě csi ´ c
s
j ` plb

s
i ` lb

s
jqz

s
i,j ` γPM

s
P pzq (31)

2dsi,j ě `p ` lb
s
qpz

s
i,j ` z

s
j,iq ´ L

sp1´ zsi,j ´ z
s
j,iq ` 2γPM

s
P pzq (32)

1

2
`sj ` lb

s
i z
s
i,j ` γPM

s
P pzq ď csj (33)

csi ` γPM
s
P pzq ď Ls ´

1

2
`si ´ lb

s
jz
s
i,j (34)

csi `
1

2
`si ` γPM

s
P pzq ď csj ´

1

2
`sj ` L

sp1´ zsi,jq. (35)

Proposition 7.3 provides an exponential number of valid inequalities for the N -box
FLP. For small paths (e.g. |P | “ 2), these inequalities can be added to the formulation
directly; this is the approach we take in the computational trials.

8. Computational results

In the computational trials we compare four formulations, along with four different
collections of valid inequalities added to each formulation. The unary formulation,
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denoted U, is based on the pairwise unary formulation (17); this is a strengthened
version of the FLP2 formulation from Meller et al. (1999). The BLDP1 formulation from
Castillo and Westerlund (2005) is also tested; see Appendix D.1. The third formulation
is the sequence-pair formulation (SP) from Meller et al. (2007), derived by adding
global constraints to a formulation derived from (18); see Appendix D.2. Finally, we
compare with the new refined unary formulation (19), which we denote RU. We note
that we observe a slight computational advantage for using the simple stay-on-the-
floor constraints (2) rather than the tightened versions (17a) and (19a), since we may
aggregate them and add a single copy, rather than one for each pair pi, jq P P; we
instead add these tightened constraints as valid inequalities.

We will compare each of these formulations with one of four levels of valid inequal-
ities added to the formulation (that is, they are not separated dynamically). The first
will be no valid inequalities. The second will use the V2 and B2 families of inequalities
appearing in Meller et al. (1999); the formulation name will be appended with + if
these inequalities are added. We present these inequalities in Appendix J for com-
pleteness. The VI tag will be used for formulations with the new inequalities derived
in this work added. In particular, we use (24-27), (21), and (33-35) for paths |P | “ 2.
For the RU formulation, we also add (22) and (19a). Adding all of these to the formu-
lation proved impractical in the branch-and-bound setting, so we instead add an Opnq
subset of these inequalities with VI1. Finally, we consider adding (an Opnq subset of)
the “multi-box objective cuts” (29-32) for paths P of length 3, and denote this by
appending a 3.

There is a standard symmetry-breaking approach presented in Sherali et al. (2003)
that we will use in all the computational examples to follow (except for the relaxation
gap discussion in Section 8.1, where we will discuss the effect of the symmetry-breaking
explicitly). We present the symmetry-breaking scheme in Appendix K for complete-
ness.

For our benchmarks, we use the hp11 (11 boxes), apte9 (9 boxes), and xerox10

(10 boxes) benchmarks from the MCNC benchmark collection Microelectronics Cen-
ter of North Carolina (2015). Additionally, we will use the Armour20-1 (20 boxes)
and Armour20-2 (20 boxes) instances from Armour and Buffa (1962), the Bazaraa13

(13 boxes) and Bazaraa14 (14 boxes) instances from Bazaraa (1975), the Camp10 (10
boxes) instance from van Camp et al. (1991), the Bozer15 (15 boxes) instance from
Bozer et al. (1991), and the Bozer9 (9 boxes) and Bozer12 (12 boxes) instances from
Bozer and Meller (1997) instances. To the best of our knowledge, none of these in-
stances have been solved to optimality before in the literature. From each of these
11 base instances, we create a family of related instances by 1) selecting the aspect
ratio α P t4, 5, 6u, and adding three possible levels random noise to the nonzero prob-
lem data (perturbations of the form x Ð p1 ` γtqx for standard normal t and for
γ P t0.0, 0.1, 0.2u). For the remainder, we refer to each instance according to the
schema instance name-γ(α); for example, the xerox instance with aspect ratio α “ 4
and perturbation factor γ “ 0.1 is xerox10-0.1(4).

To construct the formulations and interface with the solver, we use the JuMP al-
gebraic modeling language from Dunning et al. (2015); Lubin and Dunning (2015);
JuMP is written in the Julia programming language (see Bezanson et al. (2012)).
We performed the experiments on an Intel i7-3770 3.40GHz Linux workstation with
32GB of RAM. All trials use CPLEX v12.6 with a maximum runtime of 4 hours.

1Specifically, we add the N pairs pi, jq with largest objective coefficient pi,j . For the three-box inequalities,

we choose the N triplets pi, j, kq which maximize pi,j ` pi,k ` pj,k, and add the inequalities corresponding to

all 6 paths (i.e. permutations) through pi, j, kq
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We also performed trials with Gurobi v6.0, but the performance was not competi-
tive. We force CPLEX to use the linearization of the second-order cone constraints
(CPX PARAM MIQCPSTRAT “ 2), as solving the nonlinear problem at the nodes was far
slower.

The code used for these computational studies, as well as the benchmark instances
in MPS format are available at https://github.com/joehuchette/floor-layout.
We also report the optimal value (or the value of the best known feasible solution) for
each instance in Appendix L.

8.1. Relaxation bound

First, we compare the lower bound produced by solving the continuous relaxation of the
formulations, with and without valid inequalities added. We present the relative gap
percentage 100U´LU , where L is the given relaxation lower bound and U is the cost of
the best available feasible solution. Note in particular that a relative gap percentage of
100% implies that the relaxation bound of 0, which is the worst possible for any of the
formulations presented here for the FLP. We observe that the formulations naturally
fall into two groups with respect to the quality of their relaxation bound, and we
summarize the results below (we include a table in Appendix M for completeness).

First, we observe that the “two-bit” formulations (BLDP1 and SP) have a relaxation
gap of 100%, even with all inequalities discussed in the previous subsection added to
the formulation (+VI3). With the symmetry-breaking constraints added to the formu-
lation, the relaxation lower bound is no longer zero, and so the relaxation gap improves
slightly (mean 89.3%, with standard deviation 5.85%). The “four-bit” formulations (U
and RU) also produce a trivial relaxation gap of 100%, but adding the valid inequali-
ties helps improve the lower bound considerably (mean 57.4% with standard deviation
8.4%). In particular, we can isolate the B2 inequalities from Meller et al. (1999) and
(26) as the crucial additions to the improvement in the gap.

We also compare the relative gap attained at the root node (with respect to the best
known feasible solution) after CPLEX is able to apply advanced techniques such as
general purpose cuts and preprocessing. This improves the gap by roughly 1%-5% for
most trials. However, there is still an appreciable difference in gap between the “four
bit” formulations U and RU and the “two bit” formulations SP and BLDP1. A complete
table is available in Appendix M.

8.2. Branching behavior

The rationale for introducing the refined unary formulation (19) was that many feasible
layouts will have multiple corresponding points in the encoding constructed using
D4. The refined partition removes many of these redundant solutions, which helps
in the branch-and-bound setting, much in the same way symmetry breaking removes
equivalent feasible solutions that would otherwise have to be explicitly enumerated in
the optimization procedure. Qualitatively, we observe this change of behavior in Figure
4, where we compare the progress of the SP+ and RU formulations as a function of node
count on the xerox10 benchmark. That is, we compare both the upper and lower bound
for both formulations; when they are equal, the solver has proven optimality. We see
that the RU formulation requires fewer nodes to prove optimality, as expected. More
broadly, this illustration shows the typical trajectory when solving an instance of the
FLP: finding a good (often near-optimal) feasible solution early in the procedure, and
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then steadily improving the lower bound which is far from optimal, until the gap is
finally closed and optimality is proven.
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Figure 4. Plots of lower and upper bounds on optimal cost for the sequence pair (SP+) and refined unary

(RU) formulations as a function of node count for the xerox10-0.0(5) benchmark instance.

8.3. Solution time

While the RU formulation offers advantages when looking at the progress with respect
to the node count, the advantage is not so clear-cut when looking at solution time.
Tables 1 and 2 shows the solution time for each of our benchmarks and formulation
and inequality combination. On some harder instances, some approaches overflow the
memory on our test machine and terminate prematurely. We denote these runs with
a ME for “Memory Error”, and note that at termination, none of these runs produced
bounds that were competitive with the other methods for that particular benchmark
instance.

We observe that, in a majority of instances (55 of 99), the new techniques presented
in the paper yield the best performing approach. We quickly see that the U and U+

formulations are never competitive on the benchmark set. The BLDP1 formulation is
rarely the best performing formulation, while BLDP1+ performs surprisingly well on the
most difficult Armour instances (but rarely otherwise). Overall, the sequence pair base
formulation performs the best in a slight majority of the instances (54 of 99). Of this,
35 occur with the sequence pair formulation paired with the new inequalities derived
using the embedding approach in this work. We observe that on some of the

instances, the SP and SP+ formulations solve in nearly the same amount

of time, leading to identical values in our table where the runtimes

are truncated at a threshold level of one second. The new refined unary
formulation is the top performer in roughly a quarter of the benchmark instances (23
of 99), most often augmented with the new inequalities derived herein.

We observe that, although there is no clearly superior formulation or approach
across all benchmark instances, it is often the case that one approach will be the
clear choice for a particular instance or family of instances. For example, for the
Bozer9-0.0(4) instance, we observe that none of the existing methods were unable
to prove optimality within 7% relative gap within 4 hours. However, the sequence pair
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Instance U U+ BLDP1 BLDP1+ SP SP+ SP+VI SP+VI3 RU RU+VI RU+VI3
hp11-0.0(4) 3067 3915 7772 2873 2754 2761 1463 2136 1578 840 656
hp11-0.0(5) 765 752 928 858 1363 1345 836 642 474 350 813
hp11-0.0(6) 601 357 230 562 427 422 408 384 194 138 207
hp11-0.1(4) 3294 3506 3941 5567 4115 3977 1530 2332 1471 1427 1687
hp11-0.1(5) 1076 1216 619 826 1230 1240 548 636 436 304 370
hp11-0.1(6) 1198 275 639 349 655 638 346 427 273 157 163
hp11-0.2(4) 624 1019 549 1906 460 437 266 326 279 230 222
hp11-0.2(5) 808 653 354 1182 700 708 394 503 470 301 420
hp11-0.2(6) 504 346 203 345 613 604 302 325 201 350 158

apte9-0.0(4) 4722 1040 308 800 414 411 578 962 1456 1412 1433
apte9-0.0(5) 3311 571 531 599 165 165 218 198 1111 398 344
apte9-0.0(6) 438 352 107 282 90 90 117 169 1612 340 257
apte9-0.1(4) 1935 1538 810 2529 247 247 581 343 2123 1297 1057
apte9-0.1(5) 1042 250 142 470 201 202 163 285 424 383 215
apte9-0.1(6) 1339 478 150 171 205 205 114 86 127 500 158
apte9-0.2(4) 1822 883 710 816 694 693 215 237 1059 528 387
apte9-0.2(5) 217 184 96 153 102 102 96 103 198 364 159
apte9-0.2(6) 203 174 62 303 42 42 75 88 149 129 91

xerox10-0.0(4) 11467 4232 1.96% 1.92% 737 735 1022 2099 3089 2639 3312
xerox10-0.0(5) 1830 1212 907 896 385 383 500 292 252 1149 641
xerox10-0.0(6) 503 381 2588 576 167 168 220 324 204 294 331
xerox10-0.1(4) 9264 7460 19.99% 10859 949 948 1505 1523 5642 3539 7063
xerox10-0.1(5) 778 1342 1647 1016 670 666 254 415 463 685 522
xerox10-0.1(6) 481 326 1047 872 244 243 157 208 323 215 254
xerox10-0.2(4) 1279 1782 4331 2540 1937 1934 433 859 793 1232 2124
xerox10-0.2(5) 1453 764 1290 705 783 787 331 420 305 408 435
xerox10-0.2(6) 606 261 158 378 123 123 77 94 141 174 192
Camp10-0.0(4) 4526 7481 2150 7507 931 837 852 1449 5498 6181 3126
Camp10-0.0(5) 2510 4053 2553 1213 429 426 490 499 1856 2372 4513
Camp10-0.0(6) 1653 471 793 720 145 148 258 298 721 836 452
Camp10-0.1(4) 3.45% 4.79% 12967 11.59% 1905 1848 2064 2101 6893 10669 11.13%
Camp10-0.1(5) 9259 7702 9.55% 11.27% 1424 1422 1144 1153 3273 11078 14.92%
Camp10-0.1(6) 660 4133 5769 578 181 328 218 396 694 2271 2983
Camp10-0.2(4) 8584 3906 2681 4109 913 914 1063 916 3537 6301 13374
Camp10-0.2(5) 1259 2017 1955 4134 289 315 310 349 1795 5050 4576
Camp10-0.2(6) 13553 11034 12.29% 7393 1166 1125 2259 1199 4516 8845 12353
Bozer9-0.0(4) 1826 2046 729 1512 607 609 354 1077 1471 1456 2158
Bozer9-0.0(5) 1159 4287 1467 1059 433 435 411 698 607 1240 2306
Bozer9-0.0(6) 1112 2050 6804 2178 420 420 588 734 494 2826 6938
Bozer9-0.1(4) 3380 2432 2482 1983 896 896 1059 1430 6056 4190 3410
Bozer9-0.1(5) 999 1337 1075 1098 312 311 667 1369 1082 590 3450
Bozer9-0.1(6) 2010 2503 2762 3733 861 850 997 889 2417 3352 2820
Bozer9-0.2(4) 1661 1052 610 1218 312 320 374 402 1105 1051 1836
Bozer9-0.2(5) 1522 4009 2115 1631 1253 1158 740 1027 1423 3272 2885
Bozer9-0.2(6) 1271 2639 1059 1322 308 316 401 352 598 3218 923

Bozer12-0.0(4) 7.05% 13.43% 9.21% 10.63% 18.45% 18.43% 1721 3818 4.43% 4.28% 31.93%
Bozer12-0.0(5) 18.16% 10.15% 29.32% 7.71% 12538 12654 6212 6859 9.94% 2.81% 3.95%
Bozer12-0.0(6) 12.22% 12685 40.59% 10.32% 4953 4913 3771 3024 0.34% 5491 6930
Bozer12-0.1(4) 17.74% 17.01% 28.42% 20.02% 13.67% 13.65% 8.22% 7.00% 15.41% 20.16% 28.05%
Bozer12-0.1(5) 26.60% 12.05% 30.28% 8.80% 1.11% 4.00% 11924 9165 10.10% 3.78% 15.74%
Bozer12-0.1(6) 13.61% 6.62% 24.74% 21.74% 11093 7.38% 1890 2047 11126 9.29% 11.97%
Bozer12-0.2(4) 4.68% 1.56% 6.31% 3.64% 5264 7784 5767 3607 10052 10878 4.84%
Bozer12-0.2(5) 32.92% 11.56% 16.78% 14.07% 10.80% 10.40% 7.45% 4.20% 8.84% 10.07% 14.35%
Bozer12-0.2(6) 30.67% 28.28% 39.68% 43.09% 14.36% 18.19% 11.62% 5.90% 22.58% 20.05% 28.53%

Table 1. Solution time (or relative gap after 4 hours, if not solved to optimality) for the first 6 benchmark

instance families. The first grouping contains approaches from the literature; the second contains approaches
using some component (formulation or inequalities) from this work. The best approach for each benchmark is

highlighted in blue.

formulation augmented with the newly derived inequalities is able to prove optimality
in less than 30 minutes. Additionally, in the hp11 family of instances we see solve
time speed-ups of multiple factors using the new refined unary formulation and valid
inequalities over existing formulation methods.

The results in Tables 1 and 2 suggests that none of the approaches herein will be
a clear winner on all instances, but that some combination of them can be used to
tackle difficult problems. In particular, we recommend trying both the sequence pair
and refined unary formulations, along with some subsets of the inequalities derived in
this work to solve the FLP instance most efficiently.

9. Conclusion

In this work, we presented a case study on systematically building strong formulations
for disjunctive sets; namely, for the floor layout problem. We used the embedding ap-
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Instance U U+ BLDP1 BLDP1+ SP SP+ SP+VI SP+VI3 RU RU+VI RU+VI3
Bazaraa13-0.0(4) 1.07% 8017 8960 7093 4229 4170 3408 ME 10025 7495 10357
Bazaraa13-0.0(5) 12235 5.06% 4257 ME 4638 4640 4000 3838 4921 3211 7230
Bazaraa13-0.0(6) 8946 9398 7645 1.05% 2313 2134 2010 7021 1458 4583 2788
Bazaraa13-0.1(4) 10928 8468 7371 3.83% 10557 10657 3938 4471 6.85% 13673 10898
Bazaraa13-0.1(5) 5.24% 3.68% 1.31% ME 10393 1.75% 8476 11212 3.34% 4.83% 2.39%
Bazaraa13-0.1(6) 3.49% 3.10% 8.64% 8.07% ME ME 13921 100.00% 9195 0.01% 1.61%
Bazaraa13-0.2(4) 5.49% 2.87% 4.60% 9.57% 10215 10386 4.44% ME 11508 8.50% 11.72%
Bazaraa13-0.2(5) 5.09% 21.29% 4.05% 6.58% 5903 4894 10974 10662 1.23% 3.97% 13139
Bazaraa13-0.2(6) 2516 3979 1970 7441 1481 1595 1262 1370 1179 1626 1788
Bazaraa14-0.0(4) 37.27% 38.21% 26.15% 30.56% ME ME 25.87% 21.97% 51.53% 54.16% 37.23%
Bazaraa14-0.0(5) 44.73% 32.44% 25.82% 41.09% 27.48% 28.74% 31.71% ME 33.85% 31.16% 34.83%
Bazaraa14-0.0(6) 36.75% 32.27% 22.57% 37.49% ME ME 29.15% 35.82% 24.80% ME 37.96%
Bazaraa14-0.1(4) 42.35% 41.74% 31.43% 42.17% ME ME ME ME 35.42% 31.20% 29.19%
Bazaraa14-0.1(5) 33.37% 40.72% 44.03% 28.60% ME ME 25.77% ME ME ME 33.84%
Bazaraa14-0.1(6) 30.08% 37.95% 20.02% 56.93% 31.67% 31.66% 29.06% ME 24.24% 25.15% 24.35%
Bazaraa14-0.2(4) 42.53% 27.64% 27.79% 26.52% ME ME ME ME 35.63% 35.75% 31.02%
Bazaraa14-0.2(5) 37.17% 40.36% 29.01% 37.53% 29.88% 29.42% ME 29.81% 29.53% 29.20% 32.36%
Bazaraa14-0.2(6) 29.95% 37.58% 32.22% 34.36% 24.93% ME ME ME 20.48% ME 32.60%

Bozer15-0.0(4) 45.60% 37.60% 63.39% 32.56% 39.41% 39.41% 20.75% 24.63% 45.95% 38.62% 38.30%
Bozer15-0.0(5) 55.81% 30.63% 60.98% 22.83% 32.12% 31.99% 25.10% 21.99% 41.39% 37.89% 29.61%
Bozer15-0.0(6) 100.00% 42.60% 51.66% 23.86% 35.56% 34.90% 24.71% 25.52% 25.26% 31.95% 32.91%
Bozer15-0.1(4) 43.60% 40.54% 52.11% 36.46% 36.61% 36.62% 24.83% 24.87% 42.88% 35.57% 32.48%
Bozer15-0.1(5) 41.24% 43.68% 52.88% 31.66% 33.32% 31.13% 22.80% 22.85% 46.12% 34.17% 30.89%
Bozer15-0.1(6) 47.96% 33.48% 60.68% 21.43% 34.83% 36.51% 22.30% 25.02% 34.69% 31.16% 30.98%
Bozer15-0.2(4) 49.25% 38.45% 73.86% 29.83% 38.49% 38.42% 22.09% 21.36% 59.05% 29.32% 35.00%
Bozer15-0.2(5) 41.32% 30.72% 46.12% 26.24% 28.47% 27.75% 16.16% 15.00% 34.63% 35.58% 30.08%
Bozer15-0.2(6) 48.27% 34.59% 53.13% 41.43% 28.21% 31.67% 26.72% 14.24% 39.77% 34.65% 32.50%

Armour20-1-0.0(4) 100.00% 62.31% 72.30% 60.25% ME ME ME ME 68.95% 62.03% 62.24%
Armour20-1-0.0(5) 100.00% 100.00% 77.77% 64.19% ME ME ME ME 69.05% 69.60% 65.03%
Armour20-1-0.0(6) 100.00% 100.00% 70.20% 66.43% ME ME ME ME 67.50% 70.41% ME
Armour20-1-0.1(4) 73.88% 100.00% 69.54% 59.93% ME ME ME ME 71.93% 64.70% 62.85%
Armour20-1-0.1(5) 100.00% 100.00% 76.18% 66.73% ME ME ME ME 75.34% 68.35% 60.94%
Armour20-1-0.1(6) 100.00% 100.00% 75.32% 66.38% ME ME ME ME 67.81% 68.87% 67.24%
Armour20-1-0.2(4) 100.00% 100.00% 71.30% 60.06% ME ME ME ME 71.66% 62.84% 63.68%
Armour20-1-0.2(5) 100.00% 100.00% 83.28% 64.84% ME ME ME ME 73.09% 65.92% 59.36%
Armour20-1-0.2(6) 100.00% 100.00% 87.65% 59.76% ME ME ME ME 75.79% 73.12% 65.27%
Armour20-2-0.0(4) 100.00% 60.68% 63.44% 60.04% ME ME ME ME 64.23% 62.93% 64.38%
Armour20-2-0.0(5) 100.00% 100.00% 69.42% 60.41% ME ME ME 74.11% 70.65% 63.24% 66.76%
Armour20-2-0.0(6) 100.00% 100.00% 72.00% 58.22% ME ME 70.84% 63.48% 71.49% 70.60% 61.51%
Armour20-2-0.1(4) 70.13% 100.00% 67.45% 63.29% ME ME ME ME 67.06% 65.71% 60.74%
Armour20-2-0.1(5) 100.00% 100.00% 67.01% 61.39% ME ME ME ME 71.38% 68.30% 60.20%
Armour20-2-0.1(6) 100.00% 100.00% 81.03% 55.84% ME ME 73.37% ME 74.06% 68.71% 62.16%
Armour20-2-0.2(4) 100.00% 100.00% 75.49% 62.18% ME ME ME ME 70.81% 64.45% ME
Armour20-2-0.2(5) 100.00% 100.00% 75.65% 66.07% ME ME ME ME 70.76% 67.01% 62.35%
Armour20-2-0.2(6) 100.00% 100.00% 90.82% 60.32% ME ME ME ME 74.19% 69.65% 64.48%

Table 2. Solution time (or relative gap after 4 hours, if not solved to optimality) for the last 5 benchmark

instance families. The first grouping contains approaches from the literature; the second contains approaches
using some component (formulation or inequalities) from this work. The best approach for each benchmark is

highlighted in blue.
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proach of Vielma (2015a) to generate MIP formulations of the FLP and have observed
how, by varying our inputs to the procedure, we are able to reconstruct all existing
MIP formulations for the problem, produce new formulations, and discover valid in-
equalities. We also showed how valid inequalities generated for one formulation can
often be translated to seemingly unrelated formulations. Finally, we presented com-
putational results showing how the techniques developed in this work can been used
to solve previously unsolved benchmark instances.

Future work on MIP formulations for the floor layout problem should investigate
the application of these techniques for large scale problem instances. In particular,
incorporating families of valid inequality into a branch-and-cut approach may prove
fruitful. Additionally, as all the MIP formulations considered in this work exhibit poor
lower bounds throughout the branch-and-bound tree, alternative methods to derive
dual bounds for the FLP such as (Huchette et al. 2016) could prove useful, especially
for very large problem instances.
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Appendix A. Standard extended formulation for FLP

The following corollary gives an extended formulation for L̂i,j using a standard ap-
proach by Balas, Jeroslow and Lowe.

Corollary A.1. The following is an ideal extended formulation for L̂i,j:

1

2
`sp,q ď csp,q ď Lsvq ´

1

2
`sp,q @s P tx, yu, p P ti, ju, q P J4K (A1a)

lbspvq ď `sp,q ď ubspvq @p P ti, ju, q P J4K (A1b)

cyi,1 ´ c
y
j,1 `

1

2
p`yi,1 ` `

y
j,1q ď 0 (A1c)

cxi,2 ´ c
x
j,2 `

1

2
p`xi,2 ` `

x
j,2q ď 0 (A1d)

cyj,3 ´ c
y
i,3 `

1

2
p`yi,3 ` `

y
j,3q ď 0 (A1e)

cxj,4 ´ c
x
i,4 `

1

2
p`xi,4 ` `

x
j,4q ď 0 (A1f)

4
ÿ

i“1

csp,i “ csp @s P tx, yu, p P ti, ju (A1g)

4
ÿ

i“1

`sp,i “ `sp @s P tx, yu, p P ti, ju (A1h)

4
ÿ

i“1

vi “ 1 (A1i)

v P t0, 1u4. (A1j)

Proof. This follows from Proposition 4.2 in Vielma (2015b).

Appendix B. Proof for Theorem 5.1

Proof. First, we note that (17) is just formulation (8) with a tightened form of con-
straints (17a). For validity, first we want to show that the stay-on-the-floor constraints
can be tightened to (17a) by the following case analysis. Consider s “ x, p “ i, and
q “ j; the other constraints follow analogously.

‚ uxi,j “ 0, uxj,i “ 0 Reduces to the linear constraints in (2) defining Qlb.

‚ uxi,j “ 1, uxj,i “ 0 The first inequality is unchanged. For the second, we note that

uxi,j “ 1 means that

cxi `
1

2
`xi ď cyj ´

1

2
`xj

ď

ˆ

Lx ´
1

2
`xj

˙

´
1

2
`xj from (2)

“ Lx ´ `xj

ď Lx ´ lbxj
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‚ uxi,j “ 0, uxj,i “ 1 Same argument as the case before, but with the branch cxj `
1
2`
x
j ď cyi ´

1
2`
x
i and the first inequality in (17a).

‚ uxi,j “ 1, uxj,i “ 1 Not feasible by (17d).

To show the formulation is ideal, we want to show that every extreme point of its
relaxation has integral value for u.

Consider the following system, which can be thought of as the projection of the
relaxation of (17) onto just the y variables (the argument for x variables is identical).
Under the assumption that lbyi ` lb

y
j ă Ly, the following is full-dimensional:

1

2
`i ` lb

y
juj,i ď ci (B1a)

ci ď L´
1

2
`i ´ lb

y
jui,j (B1b)

1

2
`j ` lb

y
i ui,j ď cj (B1c)

cj ď L´
1

2
`j ´ lb

y
i uj,i (B1d)

ci `
1

2
`i ď cj ´

1

2
`j ` L

yp1´ ui,jq (B1e)

cj `
1

2
`j ď ci ´

1

2
`i ` L

yp1´ uj,iq (B1f)

`i ě lbyi (B1g)

`j ě lbyj (B1h)

ui,j ě 0 (B1i)

ui,j ď 1 (B1j)

uj,i ě 0 (B1k)

uj,i ď 1 (B1l)

ui,j ` uj,i ď 1. (B1m)

Take some arbitrary feasible pĉ, ˆ̀, ûq where 0 ă ûi,j ă 1 is fractional. We wish to
show that this is not an extreme point. The argument for fractional ûj,i follows in the
same way. We will consider a partition of all possible cases in the following way:

(1) (B1k) is active
(a) (B1f) is active
(b) (B1f) is not active

(2) (B1k) is not active
(a) (B1e) and (B1f) are both active

(i) (B1m) is active
(ii) (B1m) is not active

(b) At most one of (B1e) and (B1f) are active
(i) (B1m) is not active
(ii) (B1m) is active

Note in particular that, since ûi,j ą 0, constraint (B1m) immediately implies that
ûj,i ă 1 and that (B1i-B1j) cannot be active. In each of these cases, we will argue that
the solution is not extreme, either because there are not the requisite six constraints
active, or because the selection leads to a contradiction.

27



Also, note that (B1b) and (B1c) both being active implies

ĉi `
1

2
ˆ̀
i “ ĉj ´

1

2
ˆ̀
j ` L´ plbi ` lbjqûi,j ą ĉj ´

1

2
ˆ̀
j ` Lp1´ ûi,jq

under the assumptions on lower bounds (L ą lbi` lbj) and on ûi,j fractional; similarly
for (B1a) and (B1d) together for ûj,i ą 0. Therefore, these pairs cannot be active
together when these conditions are met. We will use this observation in the following.

B.0.0.1. 1.a. First consider the case that (B1f) and (B1k) are active. Clearly (B1l)
and (B1m) cannot be active. Then we must have (B1a) and (B1d) active as well: take
their sum, which must hold with equality as it is equivalent to (B1f) when ûj,i “ 0.
However, this also implies that at most three of these four active constraints are linearly
independent.

We cannot have (B1b) or (B1c) active under our assumptions on the lower bounds
(take their sum with (B1a) or (B1d), respectively). The only remaining possibility is if
(B1e), (B1g), and (B1h) are all active. However, then summing (B1e) and (B1f) and
reducing leads to

lbi ` lbj “ Lyp2´ ûi,jq ą Ly,

a contradiction. Therefore, the point is not extreme.

B.0.0.2. 1.b. Now assume that (B1f) is not active and (B1k) is. This implies that
at most one of (B1a) and (B1d) can be active, as their sum is equal to (B1f) (when
ûj,i “ 0) as mentioned in the previous case. From our note above, at most one of (B1b)
and (B1c) can be active at once.

Given this, the only possibility that the point is extreme is if one of (B1a) or (B1d),
one of (B1b) or (B1c), and (B1e), (B1g), and (B1h) are all active. If (B1a) and (B1b)
are both active in this setting, their sum implies

0 “ L´ lbi ´ lbj ûi,j ą L´ lbi ´ lbj ,

a contradiction. If (B1a) and (B1c) are simultaneously active in this setting, then the
sum (B1a)´ (B1c)` (B1e) yields

pL´ lbiqp1´ ûi,jq “ 0,

a contradiction. Therefore, (B1a) is not active. If (B1b) and (B1d) are both active in
this setting, then we get a similar result for (B1b)´(B1d)´(B1e). This implies that we
can have at most one of (B1a-B1d) active, leaving us with too few active constraints
for the point to be extreme.

B.0.0.3. 2.a.i. Now consider the case that 0 ă ûj,i ď 1 ´ ûi,j ă 1; clearly (B1l)
cannot be active. If (B1e), (B1f), and (B1m) all are active, they imply

ˆ̀
i ` ˆ̀

j “ Ly, (B2)
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which means that (B1g) and (B1h) cannot both be active by the assumption on lower
bounds. If both (B1c) and (B1d) are active together, this implies that (B1g) is active;
therefore, (B1h) is not active. Moreover, the discussed active constraints have rank
five at this point. By the notes above, (B1c) and (B1d) being active imply that (B1a)
and (B1b) cannot be active. The (six) active constraints are linearly dependent, and
so the point is not extreme.

The same argument holds if both (B1a) and (B1b) are active. If (B1a) and (B1c)
both are active, then necessarily (B1b) is inactive; summing (B1a) and (B1b) yields

ˆ̀
i ` lbj ă Ly,

which says that (B1h) cannot be active from (B2). Presume then that (B1g) is active,
leaving us with (B1a), (B1c), (B1e), (B1f), (B1g), and (B1m) active. Taking the result-
ing description for the extreme point represented by this system of active constraints

yields ûi,j “
´lbi´lbj
L´lbi´lbj

ă 0, a contradiction.

The same argument holds if (B1b) and (B1d) are both active.

B.0.0.4. 2.a.ii. Now assume that (B1m) is not active and that (B1e) and (B1f)
are active. Then at most one of (B1a) and (B1b) can be active, else we imply that

ûi,j ` ûj,i “
L´ ˆ̀

i

lbj
ě
L´ lbi
lbj

ě
lbj
lbj
“ 1,

which contradicts (B1m) not being active. The same holds for (B1c) and (B1d). Also,
we cannot have both (B1g) and (B1h) active, since along with (B1e) and (B1f) active
they imply

lbyi ` lb
y
j “ Lp2´ ûi,j ´ ûj,iq ą L.

Therefore, at most five constraints are active, and we are not extreme.

B.0.0.5. 2.b.i. Now 0 ă ûj,i ă 1 and w.l.o.g. (B1f) is not active. Our statement
at the beginning implies that at most two of (B1a-B1d) are active. If (B1m) is not
active, this leaves at most five active constraints, and so the point is not extreme.

B.0.0.6. 2.b.ii. Now assume that (B1f) is not active but (B1m) is. By the argument
in 2.b.i, there are at most six constraints ((B1e), (B1g), (B1h), (B1m), and two of (B1a-
B1d)) that could be active. In particular, (B1e), (B1g), and (B1h) must be active at
an extreme point, so presume they are.

Assume for the first case that both (B1a) and (B1c) are active. Computing (B1a)´
(B1c)` (B1e) and reducing using the other active constraints yields

plbi ` lbj ´ Lqûj,i “ 0,

a contradiction. Alternatively, summing (B1a), (B1d), and (B1e) yields

plbi ` lbj ´ Lqp1` ûj,iq “ 0,
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also a contradiction. Similarly for (B1b), (B1c), and (B1e), as for (B1b), (B1d), and
(B1e). This exhausts all possible combinations of active constraints, and so the point
is not extreme.

B.0.0.7. Piecing together direction-wise formulations. Now that we have
established that the formulation, when restricted to a single direction, is ideal, it
remains to show that the Cartesian product of formulations for both directions, along
with the restriction tuxi,j ` uxj,i ` uyi,j ` uyj,i “ 1u, is also ideal. To see this, consider a

potential fractional extreme point pĉ, ˆ̀, ûq for the relaxation of the original formulation
(17). Then at least 12 active constraints at such an extreme point, one of which will
be (17d). Of the 11 remaining that must exist, there will be one direction for which
there are at least six active constraints. Consider three cases.

(1) The direction with six active constraints has a fractional component in u. Then
this implies an extreme point for the auxiliary system (B1) with fractional com-
ponent, a contradiction.

(2) The direction with fractional component (w.l.o.g. y) has five active constraints.
Then those five active constraints, along with (B1m), induce a fractional extreme
point for the auxiliary system (B1) for y, a contradiction.

(3) The direction with fractional component (w.l.o.g. y) has fewer than five active
constraints. This implies that there are at least seven linearly independent active
constraints for the auxiliary system for x, a contradiction (since its dimension-
ality is only six).

Therefore, any fractional extreme point induces a fractional extreme point on (B1),
which we have shown is impossible, and so we are done.

Appendix C. Big-M formulation for arbitrary encodings and proof of
Proposition 5.2 and 5.4

While validity of most formulations in this work can be checked directly, the follow-
ing generic big-M formulations approach was instrumental for their construction. We
include a proof of its validity for completeness.

Theorem C.1. Take Q as a compact convex set, D “
ŽK
k“1rA

kx ď bks, and K
distinct vectors tvkuKk“1 Ď t0, 1um. Take any MIP formulation V for the set C “

tvkuKk“1, and some affine functions Rkl such that

Rkl pv
sq

#

“ bkl k “ s

ě maxxPQpsqpA
kqlx o.w.

@k, l,

where Qpsq
def
“ tx P Q : Asx ď bsu. Then

px, vq P Qˆ V (C1a)

pAkqlx ď Rkl pvq @k, l (C1b)

is a valid formulation for EmpQ,D,Cq (and, hence, for tx P Q : Du).
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Proof. It is clear from the definition of D that for any x P tx P Q : Du, there is some
branch k such that Akx ď bk, and so px, vkq is feasible for the MIP formulation by the
construction of the Rij . To show that any feasible solution for the MIP formulation
lies in tx P Q : Du, consider some feasible px, vq for the MIP formulation. Then x P Q
and v P V implies that v “ vk for some k. Then

pAkqjx ď b`j @j,

implying that x satisfies the corresponding branch k of the disjunction D.

C.1. Proof of Proposition 5.2

Proof. Apply Theorem C.1 with D4
i,j , V “ t0, 1u

2, and

R1pwq “ Lypw1 ` w2q

R2pwq “ Lxp1´ w1 ` w2q

R3pwq “ Lyp2´ w1 ´ w2q

R4pwq “ Lxp1` w1 ´ w2q.

C.2. Proof of Proposition 5.4

Proof. The general proof technique is as follows. First, we will construct the compo-
nents needed to apply Theorem C.1: namely, a ground set describing shared constraints
across all feasible layouts, a disjunction we are interested in modeling, a valid formu-
lation for the codes, and some big-M functions that encapsulate the logic between the
codes and the branches of the disjunction. This will leave us with a valid formulation
for our set EmpQlb, D8, C8q. We will then do ad-hoc tightening of some of the resulting
constraints, giving the system described in (19).

First, we choose the ground set Qlb and the disjunction D8. We see that

V
def
“

!

pzyi,j , z
x
i,j , z

y
j,i, z

x
j,iq P t0, 1u

4 : zxi,j ` z
x
j,i ` z

y
i,j ` z

y
j,i ě 1, zxi,j ` z

x
j,i ď 1, zyi,j ` z

y
j,i ď 1

)

is a valid formulation for C8. Choose big-M functions R based on the disjunction D8

in the following way. Take Tf,g as the g-th clause defining brf in Section 5.3 (recall

that D8 “
Ž8
k“1 br

k). for example, T3,2 “ Bi Úy Bj . Then take

Rf,gpzq “

#

Lsp1´ zsp,qq Tf,g “ Bp Ðs Bq

pLs ´ lbsi ´ lb
s
jqz

s
p,q Tf,g “ Bp Ús Bq.

Note that, when Tf,g is a statement of the form “Bp precedes Bq in direction s”,
we get the same big-M functions as appeared in the unary formulation for the same
logic.

Now apply Theorem C.1 and recover the valid formulation tpc, `, zq P R4`4ˆt0, 1u4 :
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pC2a´ C2bq, p19b´ 19fqu, where

1

2
`sk ď csk ď Ls ´

1

2
`sk @s P tx, yu, k P ti, ju (C2a)

csp `
1

2
`sp ` pL

s ´ lbsi ´ lb
s
jqz

s
p,q ě csq ´

1

2
`sq @s P tx, yu, tp, qu “ ti, ju. (C2b)

Note that, since the branches of the disjunction share constraints (and corresponding
big-M functions R), many of the resulting constraints will be equivalent and duplicates
can be removed.

We now wish to tighten some of these constraints by lifting them in an ad-hoc
manner. By the same argument as in the proof for Theorem 5.1, we may tighten (C2a)
to (17a).

To tighten the new constraints (C2b), we can do a case analysis. Consider s “ y,
p “ i, and q “ j; the others follow analogously.

‚ zyi,j “ 0, zyj,i “ 0 Reduces to the linear constraint cyi `
1
2`
y
i ě cyj ´

1
2`
y
j , which

follows from zyi,j “ 0.

‚ zyi,j “ 1, zyj,i “ 0 We have that in this case

cyi ´
1

2
`yi ´ pc

y
j `

1

2
`yj q ě ´L

y

and adding `yi ` `
y
j ě lbyi ` lb

y
j to this gives the desired inequality

cyi `
1

2
`yi ´ pc

y
j ´

1

2
`yj q ě lbyi ` lb

y
j ´ L

y.

‚ zyi,j “ 0, zyj,i “ 1 In this case, we have that

cyi ´
1

2
`yi ´ pc

y
j `

1

2
`yj q ě 0.

We can add `yi ` `
y
j ě lbyi ` lb

y
j to this to get

cyi `
1

2
`yi ´ pc

y
j ´

1

2
`yj q ě lbyi ` lb

y
j ,

the desired inequality.
‚ zyi,j “ 1, zyj,i “ 1 Not feasible by (19e).

Appendix D. Alternative two-bit formulations

D.1. BLDP1 formulation

When using the alternative codes BB4, we may construct a formulation that is quite
similar to the one presented in (18), but with slightly different big-M terms:
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1

2
`sk ď csk ď Ls ´

1

2
`sk @s P tx, yu, k P ti, ju (D1a)

`sk ě lbsk @s P tx, yu, k P ti, ju (D1b)

cyi ´ c
y
j `

1

2

´

`yi ` `
y
j

¯

ď Lypy1 ` y2q (D1c)

cxi ´ c
x
j `

1

2

`

`xi ` `
x
j

˘

ď Lxp2´ y1 ´ y2q (D1d)

cyj ´ c
y
i `

1

2

´

`yi ` `
y
j

¯

ď Lyp1´ y1 ` y2q (D1e)

cxj ´ c
x
i `

1

2

`

`xi ` `
x
j

˘

ď Lxp1` y1 ´ y2q (D1f)

y P t0, 1u2. (D1g)

This formulation, with the addition of the area constraints (3), forms the basis for the
BLDP1 formulation from Castillo et al. (2005).

D.2. Sequence-Pair formulation

The sequence-pair formulation FLP-SP from Meller et al. (2007) may be constructed
from (18) with the addition of global constraints on the 0/1 variables, based on ob-
servations made by Murata et al. (1996). In particular, consider an N box instance
of the FLP and the corresponding formulation derived from Proposition 7.1 where
each pairwise formulation F i,j is given by the gray binary formulation (18). Then the
addition of the following constraints yields the FLP-SP formulation:

ŵi,j1 ` ŵj,k1 ` ŵk,i1 ď 2 @i, j, k P JNK : i ‰ j, i ‰ k, j ‰ k (D2a)

ŵi,j2 ` ŵj,k2 ` ŵk,i2 ď 2 @i, j, k P JNK : i ‰ j, i ‰ k, j ‰ k, (D2b)

where notationally

ŵp,qk
def
“

#

wp,qk p ă q

1´ wp,qk o.w.
@k P t1, 2u, p, q P JNK : p ‰ q.

Appendix E. Proof of Proposition6.1

Proof. We prove the second, as the first follows in the same way. Consider a

feasible layout pĉ, ˆ̀q P Li,j and take the corresponding feasible codes W
def
“

!

w P GB4 : pĉ, ˆ̀, wq P EmpQFLP , D4, GB4q

)

. Choose some w P W . Then there exists

some code z P C8 such that pĉ, ˆ̀, zq P EmpQFLP , D8, C8q and AGBpwq ď z. Therefore,
we have that, since d ě 0,

aT ĉ` bT ˆ̀` dTAGBpwq ď aT ĉ` bT ˆ̀` dT z ď f.

Therefore, the given inequality holds for EmpQFLP , D4, GB4q.
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Appendix F. Proof of Proposition 6.2

Proof. Consider a feasible layout pĉ, ˆ̀q P Li,j and take the correspond-

ing feasible codes U
def
“

!

u P U4 : pĉ, ˆ̀, uq P EmpQFLP , D4, U4q

)

and Z
def
“

!

z P C8 : pĉ, ˆ̀, zq P EmpQFLP , D8, C8q

)

. From the construction of the codes C8 dis-

cussed in Section 5.3, for each z P Z, there exist some u, u1 P U such that
pzyi,j , z

y
j,iq “ puyi,j , u

y
j,iq and pzxi,j , z

x
j,iq “ pu1xi,j , u

1x
j,iq (if z P U4, then u “ u1). For ex-

ample, if z “ p1, 1, 0, 0q, we see that u “ p1, 0, 0, 0q and u1 “ p0, 1, 0, 0q. Therefore, if
dxi,j “ dxj,i “ 0, we have that

aT ĉ` bT ˆ̀` dT z “ aT ĉ` bT ˆ̀` dTu ď f ;

if dyi,j “ dyj,i “ 0, then the same inequality holds with u1 in place of u. Therefore, any

inequality valid for EmpQ,D4, U4q is valid for EmpQ,D8, C8q.

Appendix G. Proof of Proposition 6.3

Proof. We prove by enumerating the possible values for the components of z hav-
ing support over the constraint, noting in particular that zsp,q “ zsq,p “ 1 is always
infeasible. Recall also that

zsp,q “ 1 ùñ csp `
1

2
`sp ď csq ´

1

2
`sq. (*)

G.1. Inequality (21)

‚ zsq,p “ 0 Sum the constraints csp ě
1
2`
s
p and ubsq ě `sq to get the constraint csp `

ubsq ě
1
2`
s
p ` `

s
q.

‚ zsq,p “ 1 Using (*) and rearranging gives

csp ´ c
s
q ě

1

2
`sp `

1

2
`sq;

adding the constraint csq ě
1
2`
s
q gives the desired result

csp ě
1

2
`sp ` `

s
q.

G.2. Inequality (22)

‚ zrp,q “ zrq,p “ 0 Want `sp` `
s
q ď Ls. Since zsp,q`z

s
q,p`z

r
p,q`z

r
q,p ě 1, we must have

that either zsp,q “ 1 or zsq,p “ 1; w.l.o.g. choose the second. Then rearranging
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from (*) gives

1

2

`

`sp ` `
s
q

˘

ď csq ´ c
s
p

ď

ˆ

Ls ´
1

2
`sq

˙

´

ˆ

1

2
`sp

˙

from (2)

ùñ `sp ` `
s
q ď Ls.

‚ zrp,q ` z
r
q,p “ 1 Want that ubsp ` ubsq ě `sp ` `sq, which follows immediately from

the upper bounds on `.

Appendix H. Proof of Proposition 6.4

Proof. We prove by enumerating the possible values for the components of z hav-
ing support over the constraint, noting in particular that zsp,q “ zsq,p “ 1 is always
infeasible.

H.1. Inequality (24)

‚ zsp,q “ 0, zsq,p “ 0 Want to show that

dsi,j ě
1

2
p`si ` `

s
jq ´ L

s,

but since dsi,j ě 0 necessarily (sum (23)) it suffices to show that `si ` `sj ď 2Ls,

which follows immediately from summing (2) constraints csi ď Ls ´ 1
2`
s
i with

1
2`
s
i ď csi to get that `si ď Ls. Applying this also for j and summing the resulting

inequalities gives the result.
‚ zsp,q “ 1, zsq,p “ 0 Want to show that

dsi,j ě
1

2
p`si ` `

s
jq,

We have from (*) that csi `
1
2`
s
i ď csj ´

1
2`
s
j ; adding the appropriate constraint in

(23) to this gives the result.
‚ zsp,q “ 0, zsq,p “ 1 Same argument as the previous case.

H.2. Inequality (25)

‚ zsp,q “ 0, zsq,p “ 0 Want to show that

dsi,j ě csp ´ c
s
q ` `

s
p ´ L

s,

which follows immediately from (23) and the fact that Ls ě `sp for any feasible
solution.
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‚ zsp,q “ 1, zsq,p “ 0 Want to show that

dsi,j ě csp ´ c
s
q ` `

s
p ` lb

s
q.

Rearranging (*) gives

csp ´ c
s
q `

1

2
`sp `

1

2
`sq ď 0.

Now summing the relation from (*) with one of (23) gives

1

2
p`sp ` `

s
qq ď dsi,j .

Summing these two derived inequalities with lbsq ď `sq gives the desired result.
‚ zsp,q “ 0, zsq,p “ 1 Want to show that

dsi,j ě csp ´ c
s
q ` `

s
p ` lb

s
q ´ L

s.

Take the sum of one of (23) and the inequality from (*) to derive

dsi,j ě
1

2
`sp `

1

2
`sq.

Furthermore, using our big-M value, we have

Ls ě csp ´ c
s
q `

1

2
p`sp ` `

s
qq;

summing the two derived inequalities along with the lower bounds on ` gives the
result.

H.3. Inequality (26)

‚ zsp,q “ 0 Want to show that dsi,j ě csp ´ c
s
q, which is immediate from (23).

‚ zsp,q “ 1 Want to show that

dsi,j ě csp ´ c
s
q ` lb

s
p ` lb

s
q.

From an argument above,

dsi,j ě
1

2
`sp `

1

2
`sq

for this particular setting, and so we are done by summing this with

csp `
1

2
`sp ď csq ´

1

2
`sq

implied by (*) and using the lower bounds on `.
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H.4. Inequality (27)

‚ zsp,q “ 0, zsq,p “ 0 Want to show that

2dsi,j ě `sp ´ L
s,

which just follows from the fact that dsi,j ě 0 and Ls ě `sp.
‚ zsp,q “ 1, zsq,p “ 0 Want to show that

dsi,j ě
1

2
`sp `

1

2
lbsq,

which follows immediately from the inequality (valid for this particular setting
for z)

dsi,j ě
1

2
`sp `

1

2
`sq.

derived previously.
‚ zsp,q “ 0, zsq,p “ 1 Same argument as the previous case.

Appendix I. Proof of Proposition 7.3

Proof. First, we note that inequalities (29-35) are variations on (24-27,19a,19a,19b),
respectively, with an additional γPM

s
P pzq term appearing.

We can use (20) to see that zstξ´1,tξ “ 1 implies cstξ´1 `
1
2`
s
tξ´1 ď cstξ ´

1
2`
s
tξ for all

ξ P Jm ` 1K to take a telescoping sum and derive csj ´
1
2`
s
j ě csi `

1
2`
s
i `

řm
ξ“1 `

s
tξ ě

csi `
1
2`
s
i ` γP in the case where zstξ´1,tξ “ 1 for all ξ P Jm ` 1K. Combining this with

property (28), we derive that

csj ´
1

2
`sj ě csi `

1

2
`si ` γPMpzq (**)

is valid for any feasible solution for FRU . This can be used to directly derive (33-35).
For example, (33) can be derived by summing the valid inequalities

csi `
1

2
`si ` γPMP pzq ď csj ´

1

2
`sj ,

1

2
`si ď csi , lbsi z

s
i,j ď `si ,

after noting that zsi,j P t0, 1u implies that lbsi,jz
s
i,j ď lbsi,j .

For (29-32), we first observe that, due to property (28), the case analysis in Ap-
pendix H will only differ in the case where zstξ´1,tξ “ 1 for all ξ P Jm ` 1K. However,

under the assumption that lbsk ą 0 for all k P JNK, this also implies that zsi,j “ 1.
Therefore, we may use the tightened inequality (**) in lieu of (*) in the case analyses,
yielding the result.
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Appendix J. Valid inequalities from the literature

We now present the B2 and V2 inequalities from Meller et al. (1999) in the notation
used in the present work. The B2 inequalities for the unary formulation are of the
form

dsi,j ě
1

2
plbsi ` lb

s
jqpu

s
i,j ` u

s
j,iq @s P tx, yu. (J1)

The V2 inequalities for the unary formulation are

dsi,j ě
1

2
p`si ` `

s
jq ´

1

2
mintubsi ` ub

s
j , L

sup1´ usi,j ´ u
s
j,iq @s P tx, yu, (J2)

which is equivalent (24) with a potentially tightened coefficient 1
2 mintubsi ` ubsj , L

su.
Using Proposition 6.2 and Proposition 6.1, these inequalities may be applied to all the
formulations discussed in this work.

Appendix K. Symmetry-breaking

The symmetry-breaking described in Sherali et al. (2003) works by restricting the
possible relative layout between a single pair of components in a modification of
the so-called position p ´ q method from Meller et al. (1999). The scheme chooses
a single pair pp, qq P P; in this work, we follow Sherali et al. (2003) and choose
pp, qq P arg maxpi,jqPP pi,j . We then may add the following constraints to the refined
unary formulation:

csp ď csq @s P tx, yu (K1a)

zsq,p ď 0 @s P tx, yu (K1b)

pcxq ´ c
x
pq ` pc

y
q ´ c

y
pq ě

1

2
mintlbxp ` lb

x
q , lb

y
p ` lb

y
qu . (K1c)

Using Proposition 6.1, these inequalities may be applied to all the formulations dis-
cussed in this work.

Appendix L. Best known feasible solutions

In Table L, we report the optimal cost (or the cost of the best known feasible solution)
for each problem instance.

Appendix M. Relative root and relaxation gap (Tables)

In this section, we present results for a single instance base instance-0.0(5) for
each instance family base instance, as the other instances do not provide additional
insight. for brevity, we will omit the perturbation and aspect ratio factors from the
names.
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Base Instance (4) (5) (6)

hp11-0.0 69435.9259 62105.3801 56694.1992
hp11-0.1 67293.5731 63091.2556 56579.2564

hp11-0.2 66776.5765 59234.9769 55601.0668

apte9-0.0 210895.8828 188631.0121 172195.7889

apte9-0.1 209080.0046 186345.0501 171169.3571
apte9-0.2 213992.8809 165909.4236 169792.8393

xerox10-0.0 400310.8167 352436.8953 321729.3992

xerox10-0.1 406767.2064 347764.3183 317571.6129

xerox10-0.2 387637.3875 378946.7487 366913.9111

Camp10-0.0 20402.1273 18522.7732 16810.2003

Camp10-0.1 20552.6765 18577.4998 16715.5862
Camp10-0.2 20236.7716 19737.6514 21437.0047

Bozer9-0.0 236.1384 221.7291 219.3529

Bozer9-0.1 238.6373 229.8986 239.1494

Bozer9-0.2 243.3507 253.6981 214.2103

Bozer12-0.0 132.8555 131.8278 122.3507
Bozer12-0.1 162.1104 123.1287 118.7651

Bozer12-0.2 138.8799 144.0888 163.3618

Bazaraa13-0.0 8332.5346 7883.4758 7519.4270

Bazaraa13-0.1 8565.0094 7880.5444 8590.0709
Bazaraa13-0.2 8599.4535 7368.6906 7158.5935

Bazaraa14-0.0 5163.9772 5007.5123 4632.3327
Bazaraa14-0.1 5375.3008 4774.3968 4560.2700

Bazaraa14-0.2 5162.2198 4962.4122 4775.0621

Bozer15-0.0 24298.1796 23085.2225 21983.5813

Bozer15-0.1 24938.8641 22715.5680 21833.9494
Bozer15-0.2 22119.5526 24924.0138 20655.6158

Armour20-1-0.0 2252.3252 2149.8234 1881.7981

Armour20-1-0.1 2247.2001 2113.6141 2123.0666

Armour20-1-0.2 2086.4296 1992.7613 1816.4478

Armour20-2-0.0 162813.8578 153843.1436 133326.2708
Armour20-2-0.1 158076.4265 151914.3364 132428.3043

Armour20-2-0.2 175126.1920 142344.2445 138880.1027
Table L1. Optimal value for each benchmark instance. For those instances not solved to optimality, the value

corresponds to the cost of the best known feasible solution. The instance family and jitter are given by the
column, and the aspect ratio is given by the row.

#1 #1 w/ SB #2

hp11 100% 89.0% 51.5%
apte9 100% 87.5% 58.4%

xerox10 100% 84.6% 56.2%

Camp10 100% 77.1% 43.8%
Bozer9 100% 88.7% 61.6%

Bozer12 100% 93.6% 54.6%
Bazaraa13 100% 85.8% 63.1%
Bazaraa14 100% 87.8% 68.7%

Bozer15 100% 94.4% 43.7%
Armour20-1 100% 96.5% 65.8%

Armour20-2 100% 96.8% 64.3%
Table M1. Relative gap of the relaxation lower bound, with respect to the best known feasible solution.
Group #1 includes U, BLDP1, BLDP1+, SP, SP+, SP+VI, SP+VI3, and RU. Group #2 includes U+, RU+VI, and
RU+VI3. Symmetry breaking from Sherali et al. (2003) is added to Group #1 for comparison (# w/ SB); it

does not affect the values for Group #2.
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U/RU U+/U+VI/RU+VI BLDP1 SP/SP+ SP+VI SP+VI3

hp11 69.9% 51.5% 89.0% 88.4% 83.0% 83.7%

apte9 72.9% 58.4% 85.7% 86.4% 83.6% 85.2%
xerox10 70.3% 56.2% 84.6% 83.6% 79.1% 78.4%

Camp10 60.4% 40.2% 77.1% 73.3% 48.9% 52.6%

Bozer9 74.8% 61.0% 85.5% 85.7% 79.7% 77.8%
Bozer12 73.2% 50.9% 93.6% 93.2% 73.9% 76.3%

Bazaraa13 72.6% 61.3% 85.2% 84.9% 77.9% 78.3%

Bazaraa14 78.1% 68.7% 85.0% 87.5% 82.8% 83.1%
Bozer15 69.1% 42.2% 94.4% 94.4% 61.7% 59.9%

Armour20-1 81.2% 65.8% 96.5% 95.3% 93.3% 91.3%

Armour20-2 80.5% 64.3% 96.8% 96.6% 92.0% 94.7%
Table M2. Relative gap of the root node lower bound, with respect to the best known feasible solution.
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