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Abstract

We study split cuts and extended formulations for Mixed Integer Conic Quadratic
Programming (MICQP) and their relation to Conic Mixed Integer Rounding (CMIR)
cuts. We show that CMIR is a linear split cut for the polyhedral portion of an ex-
tended formulation of a quadratic set and it can be weaker than the nonlinear split
cut of the same quadratic set. However, we also show that families of CMIRs can
be significantly stronger than the associated family of nonlinear split cuts.
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1. Introduction

Split cuts [12], Gomory Mixed Integer (GMI) cuts [17], and Mixed Integer
Rounding (MIR) cuts [23, 24] are some of the most effective valid inequalities
for Mixed Integer Linear Programming (MILP) [8]. While they are known to
be equivalent [15, 24], each of them provide different advantages and insights.
In particular, the split cuts construction shows that they are a particular case of
disjunctive cuts [3] and hence have a straightforward extension to Mixed Inte-
ger Nonlinear Programming (MINLP). The study of split cuts for MINLP is still
much more limited than for MILP; however, there has been significant work on the
computational use of split cuts in MINLP [9, 11, 16, 18, 25] and a recent surge of
theoretical developments [1, 2, 4, 5, 14, 19, 21, 22]. In particular, several formu-
las for split cuts for Mixed Integer Conic Quadratic Programming (MICQP) have
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been recently developed [1, 4, 5, 14, 21]. While the resulting cuts are strong non-
linear inequalities, adding these cuts to the continuous relaxation of the MICQP
can significantly increase its solution time, which could negate the effectiveness
of the cuts. One potential solution is to use linearizations of these cuts [9, 18], but
in this case there is a strong trade-off between their strength and the computational
burden of generating them. An alternative approach was introduced by Atamtürk
and Narayanan [2] who use the polyhedral portion of a nonlinear extended for-
mulation (i.e., a formulation with auxiliary variables) to construct an inexpensive,
but potentially strong, linear cut they denote the Conic MIR (CMIR). In this paper
we attempt to broaden our understanding of split cuts for MINLP by providing
a precise link between the CMIRs and split cuts for quadratic sets. In particu-
lar, this link provides a possible solution to the trade-off between the strength and
computational burden resulting from adding the cuts to the relaxation.

Our first contribution is to show that the CMIR is a linear split cut for the
polyhedral portion of the nonlinear extended formulation from [2]. Through this
equivalence, we can extend the most general version of the CMIRs to the case of
variables with unrestricted signs which was not previously possible. Our second
contribution is to give a precise relation between the CMIR and nonlinear split
cuts for quadratic sets. In particular, we show that, since the CMIR construction
does not consider any quadratic information, a single CMIR can be weaker than
a single nonlinear split cut. However, we also show that when families of split
cuts and CMIRs are considered, CMIRs can provide a significant advantage over
nonlinear split cuts by exploiting their common extended formulation. To the best
of our knowledge, this is the first illustration of how the power of an extended
formulation can improve the strength of a cutting plane procedure in MINLP.

The rest of the paper is structured as follows. In Section 2 we introduce some
notation and describe previous results on CMIRs and split cuts for MINLP. In
Section 3 we establish the equivalency between CMIRs and linear split cuts for an
extended formulation. Finally, in Section 4 we compare the strength of nonlinear
split cuts and CMIRs.

2. Notation and Previous Work

We let ei ∈ Rn and I ∈ Rn×n denote the i-th unit vector and the identity matrix
where we omit dimension n if evident from the context. We also let ‖x‖2 :=√∑n

i=1 x2
i denote the Euclidean norm of x ∈ Rn and |x| ∈ Rn be the vector whose

components are the absolute value of the components of x ∈ Rn. In addition,
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for a ∈ R we let (a)+ := max {0, a} and bac := max {k ∈ Z : k ≤ a}, and we let
[n] := {1, . . . , n}. Finally, for notational convenience, we define split cuts while
identifying a single set of integer variables x ∈ Zn and three sets of continuous
variables y ∈ Rp, t ∈ Rm, and t0 ∈ R.

Definition 1. Let K ⊆ Rn+p+m+1 be a closed convex set and (π, π0) ∈ Zn × Z. A
split cut for K is any valid inequality for

Kπ,π0 := conv
(
{(x, y, t, t0) ∈ K : πT x ≤ π0} ∪ {(x, y, t, t0) ∈ K : πT x ≥ π0 + 1}

)
for some (π, π0) ∈ Zn × Z. If π = ei for some i ∈ [n], we refer to (π, π0) as an
elementary disjunction and to the obtained cuts as elementary split cuts.

Because Kπ,π0 ⊇ conv(K ∩ (Zn × Rp+m+1)), split cuts are valid inequalities for
K ∩ (Zn × Rp+m+1). For MILP, where K is a rational polyhedron, Kπ,π0 is also a
polyhedron and we only need linear split cuts. In contrast, if K is a general closed
convex set, Kπ,π0 is only closed and convex [14]. However, for special classes
of K, we can characterize the nonlinear split cuts that need to be added to K to
obtain Kπ,π0 [1, 4, 5, 14, 19, 21]. For instance, the following proposition from [21]
characterizes split cuts for conic quadratic sets of the form

C :=
{
(x, t0) ∈ Rn+1 : ‖B (x − c)‖2 ≤ t0

}
, (1)

where C is in fact an affine transformation of the Quadratic cone {(x, t0) ∈ Rn+1 :
‖x‖2 ≤ t0}.

Proposition 1. Let B ∈ Rn×n be an invertible matrix, c ∈ Rn, (π, π0) ∈ Zn ×Z, and
C be as defined in (1). If πT c < (π0, π0 + 1), then Cπ,π0 = C. Otherwise, there exist
B̄ ∈ Rn×n and c̄ ∈ Rn such that

Cπ,π0 =
{
(x, t0) ∈ C :

∥∥∥B̄ (x − c) + c̄
∥∥∥

2
≤ t0

}
.

Proposition 1 shows that the single split cut for C is
∥∥∥B̄ (x − c) + c̄

∥∥∥
2
≤ t0

which is of the same class as the inequality describing C. However, this inequality
can be too expensive computationally and it can be preferable to add linear cuts
instead. One way to achieve this is to add a finite number of linearizations of
the nonlinear cuts. Such linearizations can be algorithmically obtained even in
the absence of nonlinear cut formulas. Two examples of this are the algorithms
introduced in [9, 18] to generate disjunctive inequalities for convex MINLPs.
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A completely different linearization scheme was introduced by Atamtürk and
Narayanan [2] for the general conic quadratic set given by

M+ :=
{
(x, y, t0) ∈ Rn+p+1 : ‖Ax + Gy − b‖2 ≤ t0, x ≥ 0, y ≥ 0

}
,

for rational matrices and vectors A ∈ Qm×n, G ∈ Qm×p, and b ∈ Qm. Instead of
considering valid inequalities for conv(M+ ∩ (Zn ×Rp+1)) directly, using auxiliary
variables t ∈ Rm, they first introduce the nonlinear extended formulation of M+

given by
|Ax + Gy − b| ≤ t, x ≥ 0, y ≥ 0, ‖t‖2 ≤ t0, (2)

so that, if P+ := {(x, y, t) ∈ Rn+p+m : |Ax + Gy − b| ≤ t, x ≥ 0, y ≥ 0} and
Proj(x,y,t0) is the projection onto the (x, y, t0) space, then

M+ = Proj(x,y,t0)

({
(x, y, t, t0) ∈ Rn+p+m+1 : ‖t‖2 ≤ t0, (x, y, t)∈ P+

})
.

They then exploit the fact that P+ is a polyhedron to generate a class of valid
inequalities they denote the Conic MIR (CMIR). The first version of the CMIR is
a simple but strong cut for a four variable and one constraint version of P+.

Proposition 2 (Simple CMIR). Let b0 ∈ R, f = b0 − bb0c,

S 0 :=
{
(x, y, t0) ∈ R4 : |x + y1 − y2 − b0| ≤ t0, y1, y2 ≥ 0

}
,

and let the simple CMIR be the inequality given by

(1 − 2 f )(x − bb0c) + f ≤ t0 + y1 + y2. (3)

The simple CMIR is valid for conv(S 0 ∩ (Z × R2
+ × R+)) and furthermore

conv(S 0 ∩ (Z × R2
+ × R+)) = {(x, y, t0) ∈ S 0 : (3)} .

The simple CMIR is a linear inequality, but Atamtürk and Narayanan show
that it can induce nonlinear inequalities in the (x, t0) space through (2).

Lemma 1 (Nonlinear CMIR). Let T0 :=
{
(x, y, t0) ∈ R3 :

√
(x − b1)2 + y2 ≤ t0

}
,

P0 :=
{
(x, y, t) ∈ R4 : |x − b1| ≤ t1, |y| ≤ t2

}
, b1 ∈ R, and f = b1 − bb1c. Then the

simple CMIR for |x − b1| ≤ t1 is given by

(1 − 2 f )(x − bb1c) + f ≤ t1, (4)

conv(T0 ∩ (Z × R2)) = T e1,bb1c

0 , and

T e1,bb1c

0 =
{
(x, y, t0) ∈ T0 :

√
((1 − 2 f )(x − bb1c) + f )2 + y2 ≤ t0

}
= Proj(x,y,t0)

({
(x, y, t, t0) ∈ R5 : (x, y, t) ∈ P0, ‖t‖2 ≤ t0, (4)

})
.
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Atamtürk and Narayanan follows the traditional linear MIR procedure [23, 24]
to get CMIRs for M+ and develop a super-additive version of the CMIR. Their
most general version results in the following family of cuts.

Theorem 1 (Super-additive CMIR). Let a, v ∈ Rn, g,w ∈ Rp, h, u ∈ Rm, S + :=
{(x, y, t) ∈ Rn+p+m :

∣∣∣aT x + gT y + hT t − b0

∣∣∣ ≤ uT t + vT x + wT y, x, y, t ≥ 0} be
a relaxation of P+ and let ϕ f (a) = −a + 2(1 − f )

(
bac +

(a−bac− f )+

1− f

)
. Then for any

α , 0 and fα = b0/α − bb0/αc, a valid cut for S + and P+ is∑n

j=1
ϕ fα(a j/α)x j − ϕ fα(b0/α) ≤

(
(u + |h|)T t + (w + |g|)T y + vT x

)
/|α|. (5)

We let a super-additive CMIR be any cut of this form obtained for some re-
laxation S +, which can be constructed through various aggregation procedures.
Finally, with regards to its relation to the traditional linear MIR, Atamtürk and
Narayanan use the aggregation to show that every MIR is a CMIR. In Section 3
we show that these two cuts are in fact equivalent.

3. Conic MIR and Linear Split Cuts

We now show that CMIRs are equivalent to linear split cuts for P+, which are
in turn equivalent to traditional linear MIRs for P+. Through this equivalence, we
extend all CMIRs to the case of variables with unrestricted signs and show that
such extension follows naturally from the simple CMIR. To show the equivalence
between linear split cuts and super-additive conic MIRs, we need the following
well-known characterization of split cuts for a polyhedron T (e.g. [26]).

Proposition 3. Let T := {(x, y) ∈ Zn × Rp : Cx + Dy ≤ d} for C ∈ Rm×n,D ∈
Rm×p, d ∈ Rm, and let µ ∈ Rm be such that CTµ = π ∈ Zn and DTµ = 0 ∈ Rp. Also
let f = µT d − bµT dc. Then every split cut for T is of the form

|µ|T (Cx + Dy − d) + (1 − 2 f )
(
πT x −

⌊
µT d

⌋)
+ f ≤ 0.

Using this proposition, we show that every linear split cut for P+ can be ob-
tained from the simple CMIR and that every CMIR is a split cut.

Theorem 2. Every non-dominated split cut for P+ is of the form

(1 − 2 f )
(
πT x − bµT bc

)
+ f ≤ |µ|T t + |λ|T x + |γ|T y, (6)

for some µ ∈ Rm, λ ∈ Rn, γ ∈ Rp, and π ∈ Zn such that ATµ − λ = π, GTµ − γ =

0, and f = µT b − bµT bc. Furthermore, every super-additive CMIR for P+ is
equivalent or dominated by a split cut of this form.
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Proof. We first prove formula (6) using Proposition 3. We have P+ = {(x, y, t) ∈

Rn+p+m : Ĉx + D̂
[
y
t

]
≤ d̂}, where

Ĉ =


A
−A
−I
0

 , D̂ =


G −I
−G −I
0 0
−I 0

 , and d̂ =


b
−b
0
0

 .
Let µ̂ = (µT

1 , µ
T
2 , λ

T , γT )T , where µ1, µ2 ∈ Rm, λ ∈ Rn, and γ ∈ Rp. D̂Tµ = 0
implies GT (µ1 − µ2) − γ = 0 and µ1 = −µ2. Furthermore, ĈTµ = π implies
AT (µ1 − µ2)−λ = π. Let µ = µ1−µ2 and the result then follows from Proposition 3.

Let

C =



aT

2α −
vT

2|α|

− aT

2α −
vT

2|α|
−I
0
0


, D =



gT

2α −
wT

2|α|
hT

2α −
uT

2|α|

−
gT

2α −
wT

2|α| − hT

2α −
uT

2|α|
0 0
−I 0
0 −I


and d =


b0
2α
−

b0
2α
0
0
0

 ,

so that S + =

{
(x, y, t) ∈ Rn+p+m : Cx + D

[
y
t

]
≤ d

}
is a relaxation of P+. Now let

fα = b0/α − bb0/αc, µ = (1,−1, λT , gT/α, hT/α)T where λ j = a j/α − ba j/αc if
a j/α− ba j/αc < fα, and λ j = −(1 − a j/α + ba j/αc) if a j/α− ba j/αc ≥ fα. Then,

by Proposition 3, we obtain the split cut for S + given by∑
j∈[n]:a j/α−ba j/αc< fα

(
−

a j

α
+ 2(1 − fα)ba j/αc

)
x j

+
∑

j∈[n]:a j/α−ba j/αc≥ fα

(
−

a j

α
+ 2(1 − fα)ba j/αc + 2

(
a j/α − ba j/αc − fα

))
x j

−

n∑
j=1

v j

|α|
x j −

p∑
j=1

w j + |g j|

|α|
y j −

p∑
j=1

u j + |h j|

|α|
t j ≤ 2(1 − fα)bb0/αc − b0/α.

The cut above is precisely super-additive CMIR (5). The result follows by noting
that since P+ ⊆ S +, then any split cut for S + is also a split cut for P+.

From Theorem 2, we have that a natural extension of the super-additive CMIR
to the case of variables with unrestricted signs is to consider split cuts. While we
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can also consider cases with partial non-negativity requirements, because of space
limitations, we here focus on the set with no non-negativity constraints given by
M :=

{
(x, y, t0) ∈ Rn+p+1 : ‖Ax + Gy − b‖2 ≤ t0

}
. As before, we let the polyhedral

portion of the extended formulation of M be

P :=
{
(x, y, t) ∈ Rn+p+m : |Ax + Gy − b| ≤ t

}
.

We can extend the CMIR to this setting through the following theorem.

Theorem 3. Every non-dominated split cut for P is of the form

(1 − 2 f )
(
πT x − bµT bc

)
+ f ≤ |µ|T t, (7)

for some µ ∈ Rm such that ATµ = π ∈ Zn, GTµ = 0, and f = µT b − bµT bc.

Proof. Follows from Proposition 3.

From (6) and (7), we can see that all split cuts for P+ and P can be obtained
from the simple CMIR (3) and some simple aggregation procedures.

4. Comparison between Cuts

Through Lemma 1, Atamtürk and Narayanan show that using an extended
formulation analog to (2), the effect of the simple CMIR on the (x, y, t0) space is
equivalent to that of a conic split cut from Proposition 1. We now study to what
extent this holds for more general settings. We first study containment relations
between the sets obtained by adding nonlinear split cuts and CMIRs to some spe-
cific regions bounded by a single conic quadratic inequality. To consider more
general sets, we then compare the strength of the bounds generated by the two
classes of cuts on some quadratic integer programming problems. In both cases,
it will be convenient to use the following direct corollary that specializes The-
orem 3 to the polyhedral portion of the analog of extended formulation (2) for
C :=

{
(x, t0) ∈ Rn+1 : ‖B (x − c)‖2 ≤ t0

}
, which is of the form

L :=
{
(x, t) ∈ R2n : |B(x − c)| ≤ t

}
. (8)

Corollary 1. Let B ∈ Rn×n be an invertible matrix, c ∈ Rn, (π, π0) ∈ Zn × Z, and
L be as defined in (8). If πT c < (π0, π0 + 1), then Lπ,π0 = L. Otherwise

Lπ,π0 =
{
(x, t) ∈ L : (1 − 2 f )

(
πT x − bπT cc

)
+ f ≤ |µ|T t

}
,

where µ ∈ Rn is the unique solution to BTµ = π ∈ Zn and f = πT c − bπT cc.
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4.1. Containment Relations
Because C = Proj(x,t0)

({
(x, t, t0) ∈ R2n+1 : (x, t) ∈ L, ‖t‖2 ≤ t0

})
, it is natural to

compare the strength of the CMIRs (i.e., linear split cuts) for L and the nonlinear
split cuts for C from Proposition 1. As discussed, Lemma 1 shows that these cuts
can sometimes be equivalent. However, the following proposition shows that this
is true only for very specific structures and that a single nonlinear split cut for C
is at least as strong as (and many times stronger than) the CMIR associated to the
same disjunction.

Proposition 4. Let B ∈ Rn×n be invertible, c ∈ Rn, (π, π0) ∈ Zn × Z, and

MIRπ,π0 :=
{
(x, t, t0) ∈ R2n+1 : (x, t) ∈ Lπ,π0 , ‖t‖2 ≤ t0

}
.

Then Cπ,π0 ⊆ Proj(x,t0) (MIRπ,π0). The containment holds as equality if B = I and
π = ei for some i ∈ [n], but can otherwise be strict even for n = 2.

Proof. We begin with proving the containment. Let (x̄, t̄0) ∈ Cπ,π0 . There exist
α ∈ [0, 1], (x0, t0

0) ∈ C, and (x1, t1
0) ∈ C such that (x̄, t̄0) = α(x0, t0

0)+(1 − α) (x1, t1
0),

πT x0 ≤ π0, and πT x1 ≥ π0 + 1. Let t0 :=
∣∣∣B(x0 − c)

∣∣∣, t1 :=
∣∣∣B(x1 − c)

∣∣∣, and
t̄ := αt0 + (1 − α) t1. Then (x̄, t̄0) = Proj(x,t0) ((x̄, t̄, t̄0)) and (x̄, t̄) ∈ Lπ,π0 . It then only
remains to show that ‖t̄‖2 ≤ t̄0, which follows from

‖t̄‖2 =
∥∥∥αt0 + (1 − α) t1

∥∥∥
2
≤ α

∥∥∥t0
∥∥∥

2
+ (1 − α)

∥∥∥t1
∥∥∥

2

= α
∥∥∥B(x0 − c)

∥∥∥
2

+ (1 − α)
∥∥∥B(x1 − c)

∥∥∥
2
≤ αt0

0 + (1 − α) t1
0 = t̄0. (9)

Now we show that the containment holds as equality for B = I and π = ei for
some i ∈ [n]. Using Corollary 1, we have

MIRπ,π0 =
{
(x, t, t0) ∈ R2n+1 : |x − c| ≤ t, ‖t‖2 ≤ t0, (1 − 2 fi) (xi − bcic) + fi ≤ ti

}
,

where fi = ci − bcic. Furthermore, one can check that MIRπ,π0 does not change
by replacing (1 − 2 fi) (xi − bcic) + fi ≤ ti with |(1 − 2 fi) (xi − bcic) + fi| ≤ ti. Thus,
Proj(x,t0) (MIRπ,π0) is defined by the original constraint ‖x − c‖2 ≤ t0 and√ ∑

j∈[n] : j,i

(
x j − c j

)2
+ ((1 − 2 fi) (xi − bcic) + fi)2

≤ t0. (10)

Also using Corollary 5 in [21], the split cut associated to Cπ,π0 is√ ∑
j∈[n] : j,i

(
x j − c j

)2
+ (a (xi − ci) + b)2

≤ t0, (11)
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where a = bcic + bcic + 1 − 2ci = 1 − 2 fi and b = −2 (bcic − ci) (bcic + 1 − ci) =

2 fi (1 − fi). The result then follows by noting that (10) and (11) are equivalent.
Finally, we show that the containment is strict for n = 2, B = I, c = (1/4, 0)T ,

π = (1, 1)T , and π0 = 0. Again using Corollary 5 in [21], one can check that after
a few simplifications, the corresponding split cut is√

(3x1 − x2)2 + (3x2 − x1 + 1)2
≤ 4t0, (12)

and using Corollary 1, the corresponding CMIR cut is x1 + x2 + 1/2 ≤ 2 (t1 + t2).
Let (x̄, t̄, t̄0) = (−0.082, 0.922, 0.337, 0.928, 1). We have that (x̄, t̄, t̄0) ∈ MIRπ,π0 ,
but (x̄, t̄0) violates the split cut (12).

While a single CMIR can be weaker than the corresponding nonlinear split
cut, a family of CMIRs sharing the same extended formulation can be significantly
stronger than the associated family of nonlinear split cuts. This can be illustrated
by considering split cuts for C (see Proposition 7 for a result along this line).
However, the behavior is more dramatic for an ellipsoid given by

E := {x ∈ Rn : ‖B (x − c)‖2 ≤ r} ,

where B ∈ Rn×n is an invertible matrix, c ∈ Rn, and r ∈ R+. As formalized in the
following straightforward lemma, an ellipsoid can be described as projections of
linear sections of either the cone C defined in (1), a paraboloid Q of the form

Q :=
{
(x, s0) ∈ Rn+1 : ‖B (x − c)‖22 ≤ s0

}
,

and the extended formulation associated to the CMIR, which provides a way of
comparing the strength of several cuts.

Lemma 2. Let B ∈ Rn×n be an invertible matrix, c ∈ Rn, and r ∈ R+. Then

E = Projx ({(x, t0) ∈ C : t0 = r}) = Projx({(x, s0) ∈ Q : s0 = r2})

= Projx

{
(x, t, t0) ∈ R2n+1 : (x, t) ∈ L, ‖t‖2 ≤ t0, t0 = r

}
.

The CMIR and nonlinear split cuts for C and Q (characterized in [21]) can
be used to induce valid inequalities for E ∩ Zn through the same linear section of
Lemma 2. However, the construction of these cuts does not exploit the structure
induced by the section and they hence cannot be expected to always achieve the
full strength of the nonlinear split cuts for E studied in [4, 14, 21]. The following
proposition shows that this is indeed the case and that the cut with the weakest
effect on E is the CMIR.
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Proposition 5. Let B ∈ Rn×n be an invertible matrix, c ∈ Rn, (π, π0) ∈ Zn ×Z, and
r ∈ R+. Then

Eπ,π0 ⊆ Projx

({
(x, s0) ∈ Qπ,π0 : s0 = r2

})
⊆ Projx({(x, t0) ∈ Cπ,π0 : t0 = r})
⊆ Projx ({(x, t, t0) ∈ MIRπ,π0 : t0 = r}) . (13)

All containments can be simultaneously strict even for n = 2.

Proof. The last containment follows from Proposition 4 by noting that Cπ,π0 ⊆

Proj(x,t0) (MIRπ,π0).
We now prove the first containment. If x̄ ∈ Eπ,π0 , then there exist x1, x2 such

that x̄ = αx1 + (1 − α)x2 for some α ∈ [0, 1] and∥∥∥B(x1 − c)
∥∥∥

2
≤ r, πx1 ≤ π0 and

∥∥∥B(x2 − c)
∥∥∥

2
≤ r, πx2 ≥ π0 + 1,

which implies that (x1, s∗) and (x2, s∗) - where s∗ = r2 - satisfy, respectively∥∥∥B(x1 − c)
∥∥∥2

2
≤ s∗, πx1 ≤ π0 and

∥∥∥B(x2 − c)
∥∥∥2

2
≤ s∗, πx2 ≥ π0 + 1.

Therefore, α(x1, s∗) + (1− α)(x2, s∗) = (x̄, s∗) = (x̄, r2) belongs to {(x, s0) ∈ Qπ,π0 :
s0 = r2}, and thus x̄ belongs to the projection of this set on the x-space.

The fact that the second set is contained in the third set can be proved as
follows. If x̄ belongs to the second set, then (x̄, r2) ∈ {(x, s0) ∈ Qπ,π0 : s0 = r2}

which implies that there exist (x′, s′), (x′′, s′′) such that (x̄, r2) = α(x′, s′) + (1 −
α)(x′′, s′′) for some α ∈ [0, 1] and∥∥∥B

(
x′ − c

)∥∥∥2

2
≤ s′, πx′ ≤ π0 and

∥∥∥B
(
x′′ − c

)∥∥∥2

2
≤ s′′, πx′′ ≥ π0 + 1.

We can therefore conclude that (x′, r′ =
√

s′) and (x′′, r′′ =
√

s′′) satisfy∥∥∥B
(
x′ − c

)∥∥∥
2
≤ r′, πx′ ≤ π0 and

∥∥∥B
(
x′′ − c

)∥∥∥
2
≤ r′′, πx′′ ≥ π0 + 1.

As the function f (x) =
√

x is a concave function for x ≥ 0, we have

r = f (r2) = f (αs′ + (1 − α)s′′) ≥ α f (s′) + (1 − α) f (s′′) = αr′ + (1 − α)r′′.

Now, replacing r′ by a larger number r′+, we still have ‖B (x′ − c)‖2 ≤ r′+; we can
choose r′+ such that r = αr′+ + (1 − α)r′′, so that (x̄, r) ∈ {(x, t0) ∈ Cπ,π0 : t0 = r}.
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Finally, we show that all three containments are strict for n = 2, B = I, c =

(1/4, 0)T , π = (1, 1)T , π0 = 0, and r = 1. The last strict containment follows by
considering the example previously provided in the proof of Proposition 4. Using
Corollaries 4 and 6 in [21], one can check that after a few simplifications, the
corresponding split cuts associated to Eπ,π0 and Qπ,π0 are given by

|x2 − x1 + 1/4| ≤
((√

23 −
√

31
)

(x1 + x2) +
√

31
)
/4 (14)

and
(x2 − x1 + 1/4)2 + (x1 + x2) /2 + 1/16 ≤ 2s0, (15)

respectively. The first two strict containments then follow from noting that
(−0.082, 0.903) belongs to Projx ({(x, s0) ∈ Qπ,π0 : s0 = 1}) but violates the split
cut (14), and (−0.082, 0.911) belongs to Projx ({(x, t0) ∈ Cπ,π0 : t0 = 1}) but vio-
lates the split cut (15) for s0 = 1.

For the effect of a single cut on E, the CMIR is the weakest in Proposition 5.
However, several CMIRs combined through a common extended formulation (i.e.,
with a single set of auxiliary variables t ∈ Rn) can be significantly stronger than
even the associated family of split cuts for E. This effectively sidesteps the three
potentially strict containments in (13). For instance, the following proposition
shows that elementary CMIRs are enough to show emptiness of the convex hull
of integer points of an ellipsoid with no lattice points, while this cannot be done
even with all the nonlinear split cuts (elementary and non-elementary) of E.

Proposition 6. Let n ≥ 2, r = 1/2, B = I, and ci = 1/2 for all i ∈ [n] so that
E ∩ Zn = ∅. Then

∅ = Projx

({
(x, t, t0) ∈

⋂n

i=1
MIRei,bcic : t0 = r

})
(

⋂
(π,π0)∈Zn×Z

Eπ,π0 = {c} .

Proof. For the first equality, note that⋂n

i=1
MIRei,bcic = {(x, t, t0) : ‖t‖2 ≤ t0, |xi − 1/2| ≤ ti, 1/2 ≤ ti ∀ i ∈ [n]} ,

and every point in this set has t0 ≥
√

n/2 > r = 1/2 for the assumed n ≥ 2.
For the last equality, we first prove left to the right containment. This follows

by noting that the set obtained by adding all the elementary split cuts is equal
to {c}. In particular, the intersection of E with xi = 1 (or xi = 0) is exactly
(1, . . . , 1)/2 ± ei/2 and Eei,0 is exactly the convex hull of these two points.

11



The reverse containment directly follows from Lemma 1 in [13], where they
show that as long as a convex set contains points where one component is 0/1, and
all other components are 1/2, then {c} is contained in the split closure of this set
(while Lemma 1 in [13] is stated for polyhedra, the extension to general convex
sets is straightforward). The strict containment above then follows automatically.

4.2. Bound Strength
The quadratic integer programming problem that we consider is the Closest

Vector Problem (CVP) [10, 20] which aims to find the element in an integer lattice
that is closest (with respect to the Euclidean distance) to a given target vector not
in the lattice. CVP can be equivalently formulated as

min
x
{‖B(x − c)‖2 : x ∈ Zn} (16)

or
min

x

{
‖B(x − c)‖22 : x ∈ Zn

}
, (17)

where B ∈ Rn×n is an invertible matrix whose columns compose the basis of the
lattice and c ∈ Rn (the target vector is Bc in this case). As noted in [6, 7, 21],
because conv (Zn) = Rn, to effectively use cuts in CVP we need the equivalent
reformulations of (16) and (17) given by

min
x,t0
{t0 : (x, t0) ∈ C, x ∈ Zn} (18)

for C := {(x, t0) ∈ Rn+1 : ‖B (x − c)‖2 ≤ t0}, and

min
x,s0
{s0 : (x, s0) ∈ Q, x ∈ Zn} (19)

for Q := {(x, s0) ∈ Rn+1 : ‖B (x − c)‖22 ≤ s0}. We can then strengthen these
formulations by adding split cuts for C and Q. However, using techniques similar
to the proof of Proposition 5, we can show that adding split cuts for Q to (19) is
always equal or better than adding split cuts for C to (18). For this reason, we only
compare the strength of nonlinear split cuts for Q to the strength of the CMIRs.
In this context, we consider the extended formulation given by

min
x,t,t0

{
t2
0 : |B(x − c)| ≤ t, ‖t‖2 ≤ t0, t ∈ Rn

+, t0 ∈ R+, x ∈ Zn
}
, (20)

which can be strengthened by adding CMIR cuts. Similarly to Proposition 4,
we can show that a single split cut for Q added to (19) is at least as strong as

12



the corresponding CMIR added to (20). However, as formalized in the following
proposition, there are examples where just elementary CMIR cuts can provide a
bound that is arbitrarily better than that obtained by all split cuts for Q.

Proposition 7. Let B = I and ci = 1/2 for all i ∈ [n]. Then

n/4 = min
x

{
‖x − c‖22 : x ∈ Zn

}
= min

x,t,t0

{
t2
0 : (x, t, t0) ∈

⋂n

i=1
MIRei,bcic

}
,

while 1/4 ≥ min
x,s0

{
s0 : (x, s0) ∈

⋂
(π,π0)∈Zn×Z Qπ,π0

}
.

Proof. The first equality is straightforward. From the proof of Proposition 6, we
have that t0 ≥

√
n/2 for any (x, t, t0) ∈

⋂n
i=1 MIRei,bcic, which proves the second

equality. To prove the inequality above, we show that (x̄, s̄0) given by s̄0 = 1/4
and x̄i = 1/2 for all i ∈ [n] satisfies all the quadratic split cuts. For this, note that
using Corollary 4 in [21], the quadratic split cut with x replaced by x̄ is given by

−
(
π0 + 1 − (1/2)

∑n

i=1
πi

) (
π0 − (1/2)

∑n

i=1
πi

)
/‖π‖22 ≤ s0.

Then the only interesting cases are those with π0 < (1/2)
∑n

i=1 πi < π0 + 1, for
which the cut reduces to (1/4 ‖π‖22) ≤ s0. The strongest of these cuts is 1/4 ≤ s0

which is satisfied by (x̄, s̄0).

Note that the example in Proposition 7 is very specific. In fact, our preliminary
computational experiments show that for randomly generated CVP instances, the
integrality gaps obtained by adding quadratic split cuts and CMIRs are roughly the
same. It seems that using an extended formulation is enough to compensate for
the lack of non-polyhedral information in the generation of CMIR cuts; however,
it does not provide an advantage in general.

Finally, while CVP provides a simple and clean setting to compare the strength
of cuts, no class of cuts seems to provide a computational advantage for solving
these problems. We are currently exploring the effectiveness of these cuts on more
practical MICQPs.
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