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ABSTRACT 
The aim of this study is two-fold: first, to analyze the effect of stochastic uncertainty in the 
design of flotation circuits and second, to analyze different strategies for the solution of a 
two-stage stochastic problem applied to a copper flotation circuit. The paper begins by 
introducing a stochastic optimization problem whose aim is to find the best configuration of 
superstructure, equipment design and operational conditions, such as residence time and 
stream flows. Variability is considered in the copper price and ore grade. This variability is 
represented by scenarios with their respective probability of occurrence. The resulting 
optimization problem is a two-stage stochastic mixed integer nonlinear program (TS-
MINLP), which can be extremely challenging to solve. For this reason, several solvers for 
this problem are compared and two stochastic programming methodologies are applied. 
The combination of these techniques allows the production of high quality solutions and an 
analysis of their sensitivity to epistemic uncertainty. The results show that the stochastic 
problem gives better designs because it allows operational parameters to adapt to the 
uncertainty of the parameters. The results also show that the flotation circuit structure can 
vary with the feed grade and copper price. The sensitivity analysis shows small to moderate 
variability with epistemically uncertain parameters.  
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1. Introduction
Flotation is a physicochemical process that allows the separation of minerals, such as 
copper sulfide minerals and molybdenum, from the remaining minerals that form most of 
the parent rock substrate, including contaminants, such as arsenic minerals (Bruckard et al., 
2010). The separation is performed on milled aqueous mineral suspensions (pulp) subjected 
to forceful air bubbling, which produces the separation (flotation) of valuable metals from 
tailings based on the hydrophobic and hydrophilic properties of the minerals. The flotation 
process is performed using equipment, such as flotation cells, which are usually grouped 
into banks, or flotation columns. This equipment is interconnected in predetermined 
arrangements that allow the outputs of the systems to be divided into metal concentrate and 
tailing flows. Because the desired separation cannot be achieved in a single stage, various 
coupled stages are used, which are referred to as a "flotation circuit." The behavior of the 
entire process, therefore, depends on the configuration of the circuit and the chemical and 
physical nature of the treated pulp.  
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Mineral processing presents several challenges, such as the use of energy and water with 
minerals that are increasingly complex in composition. In addition, environmental 
regulations have led smelters (Gálvez et al., 2005) to consider penalties for polluting or to 
include pretreatment of the concentrates. As such, the preliminary design of a flotation 
circuit is important because the concentrate quality, metal recovery, costs and revenues 
depend on it. 

The methods employed in flotation circuit design can be generally classified into heuristic, 
rigorous, or hybrid types. Heuristic designs are based on the application of rules that permit 
feasible solutions to be attained and where the experience of the designer is employed 
(Chan and Prince, 1989). Rigorous designs describe the phenomenon or relations among 
the design parameters and propose a superstructure that represents a universe of alternatives 
for circuits, which, after an optimization technique has been applied, allow the optimal 
alternative to be determined (Cisternas et al., 2004, 2006; Méndez et al., 2009, Hu et al., 
2013). Hybrid designs are a combination of the two preceding methods, in which 
computational tools and the experience of the designer are employed to solve the problem 
(Loveday and Brouckaert, 1995; Gálvez, 1998; Sepúlveda et al. 2014). None of the 
preceding methods for the design of flotation circuits consider that the design might contain 
parameters that cannot be completely defined or values that might be subject to degrees of 
uncertainty.  

Large numbers of variables are handled in the design of flotation circuits, some of which 
may involve uncertainty. These uncertainties usually involve external factors, such as 
product price, economic factors, environmental factors, or internal plant conditions, 
including feed grade and kinetic constants, which might lead to an inefficient process 
design (Kraslawski, 1989). Simonsen and Perry (1999) indicated that the type of 
uncertainty in mining operations includes market characteristics (especially price), mineral 
reserves and their composition, the functioning of the process (grades, efficiency), 
operational and capital costs, and the lengths of the planning phases. The study by Xiao and 
Vien (2003) showed that the previously mentioned uncertainty affects the design of the 
flotation process. 

In general uncertainty can be classified as epistemic or stochastic. Epistemic uncertainty (or 
subjective, reducible) arises from the lack of knowledge about the appropriate value to use 
for a quantity that is assumed to have a fixed value in the context of a particular analysis. 
Stochastic uncertainty (or irreducible) derives from an inherent randomness in the behavior 
of the system under study. In the design of a flotation circuit the metal price and the feed 
grade present stochastic uncertainties. On the other hand, kinetic constants have epistemic 
uncertainty because these values change with equipment size, pulp chemistry, particle size, 
and particle composition among several other variables. Therefore, the exact value for the 
kinetic constants is not known before the circuit is designed.  

A few studies have been conducted in which stochastic or epistemic uncertainty is included 
in the design and/or simulation of the processes. Some of these studies have focused on the 
representation of parameter uncertainty, either through specific probability functions, such 
as the Gaussian distribution (Bensal et al., 1998), or through the Poisson distribution 
(Orbán-Mihalyco et al., 2005) to solve these optimization problems. Other studies have 
used stochastic optimization to design process under uncertainty (Sacco et al. 2006;  
Poplewski et al., 2011). Jamett et al. (2012) applied stochastic programming for flotation 
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design using a simple flotation model. Montenegro et al. (2013) presented a methodology 
to analyze and/or design processes in which it is not possible to accurately define the 
operating conditions. The methodology considered the construction of a superstructure that 
includes alternatives to be analyzed, the stage recoveries were represented by distribution 
functions, and Monte Carlo simulation was used to evaluate the alternatives under 
uncertainty. Other examples can be found in Galvez and Cisternas, 2014 and its references. 

The present study aims to analyze the effect of stochastic uncertainty in the process design 
of flotation circuits and to show the feasibility of conducting this analysis through a 
stochastic optimization problem. The rest of this study is organized as follows. Section 2 
introduces the stochastic optimization problem used for the analysis. Section 3 then 
considers the solution of this optimization problem. This section shows that a careful 
selection of a commercial solver and the application of standard stochastic programming 
techniques can significantly reduce the time required to obtain good quality solutions. 
Section 4 shows that these solutions already can provide better designs that those obtained 
by optimization problems that do not consider uncertainty. Section 4 also shows that there 
is at most a moderate sensitivity to epistemically uncertain parameters. Finally, Section 5 
presents some conclusions and future research directions.  

2. Optimization Problem 
The flotation circuit is represented through a superstructure of stages that represents all 
alternative flotation-circuit configurations. The superstructure is based on a generic 
representation of a stage, which is used to describe all stages that are to be included in the 
design. In the superstructure, discrete variables are used to represent the different 
alternatives for the circuit configuration, and continuous variables are used to represent the 
design specifications and operational conditions. Fig. 1 shows the structure that is used to 
represent a flotation stage, where the triangle in the input stream represents a feed mixer 
that enables concentrate and tail streams from other stages to be fed to the stage. The 
triangles in the output streams represent splitters that allow the concentrate and tail streams 
from one stage to be sent to other stages.  

The generic representation of a stage is complemented with an origin-destination matrix 
where the allowed concentrate and tail streams are identified (Cisternas et al., 2014). 

 
Fig. 1. Flotation stage representation  

 Feed 
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While expert analysis can be used to significantly reduce the number of alternatives (e.g. 
see the discussion on origin-destination matrices in Section 2.4), the large number of 
parameters and their possible combinations can still lead to an astronomically large number 
of possible configurations. For this reason, an optimization problem is introduced to 
implicitly describe all these alternatives. Appropriate optimization software and techniques 
are then used to obtain the desired design without the need to enumerate all alternatives.  

Because of the presence of stochastic uncertainty, a class of optimization problems known 
as two-stage stochastic (non-convex) mixed integer nonlinear programs (TS-MINLP) is 
used. A TS-MINLP is divided into two stages, which, in our context, can be identified with 
the design and operational stages. The first stage (i.e. the design stage) includes all 
decisions that need to be made before the uncertainty is resolved (e.g. physical 
characteristics of the circuit stages). The second stage (i.e. the operational stage) includes 
all decisions that can be made after the uncertainty is resolved (e.g. after feed grades are 
known). A common simplification in TS-MINLP is to assume that all possible ways in 
which uncertainty can be resolved can be summarized in a finite number of scenarios with 
given realization probabilities. Using this simplification, a generic TS-MINLP can be 
written as (Steimel et al., 2014): 

                        (1) 

      (2) 

        (3) 

The objective function in (1) consists of two parts. The first contribution is from the first-
stage costs that are only determined by the values of the first-stage decisions . The second 
contribution arises from the first and second stage decisions  and can be different for each 
scenario . The expected value of the second-stage cost function is calculated by a 
weighted sum of all of the scenario costs multiplied by the scenario probability . The 
constraints are separated into two sets. Constraints (2) include general nonlinear 
inequalities and constraints (3) specify the domain of the decisions, which can take either 
integral or continuous values. Finally, note that in addition to the design and operational 
parameters that describe the flotation circuit, both first and second stage variables can also 
include auxiliary variables that are used to specify the operation of the circuit or are used to 
impose appropriate requirements.  

Following is a description of the constraints, objective function, specific problems and 
instances used throughout the paper. Note that indices are represented as lowercase letters 
(e.g., s, f, e), sets are represented as uppercase bold letters (e.g., S, F, E), variables are 
represented as lowercase bold letters ( , .), certain constants are represented as 
uppercase letters ( , , ), and potentially uncertain constants are represented as 
Greek letters ( , ). More details are found in the nomenclature section. 

2.1 Constraints 
The first set of constraints specifies feed flows of specie e under scenario s to the flotation 
circuit. These constraints correspond to  

,  (4) 

where  
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x  is the feed flows of specie e under scenario s, 

x  is the total mass-flow rate of input to the system, and 

x is the feed grade corresponding to specie e in scenario s. 

The next set of constraints enforces mass balance in the flotation stage. To describe these 
constraints a recovery model is needed. There are several models for the kinetic of flotation 
(Méndez et al., 2009) for both cell and bank. For simplicity, this work considers a bank 
model that assumes first-order kinetics considering a rectangular, rate-constant distribution 
function to account for the rate-constant change along the bank, while keeping a constant 
residence time for each cell (Yianatos and Henríquez, 2006). More elaborate bank and cell 
models can easily be incorporated. However, such models can significantly increase the 
solution times of the optimization problem. Our selected model enforces a simple 
proportional recovery with a complicated proportionality constraint, which corresponds to  

, (5) 

x where  is the flow rate of specie e on stream l under scenario s, 

x  and  are the concentrate and feed streams in the flotation stage  
respectively, 

x  is the maximum recovery of specie e for flotation stage f, 

x  is the flotation rate of specie e for flotation stage f, 

x  is the operating retention time (one cell) in flotation stage f under scenario s, 
and 

x  is the number of cells in flotation stage f.  

The kinetic parameters,  and , are considered constants, but the values of these 
parameters can change with the equipment size and/or circuit design. The potential effects 
of this assumption will be discussed later. 

The next set of constraints enforce mass balance in flotation stage, mixers and splitters, 
which corresponds to 

,  (6) 

where   

x  and  are the input and output streams of the flotation stage, 
splitter or mixer m,  

x  is the set of flotation stages,   

x  is the set of mixers, and  

x  is the set of splitters. 

The next set of constraints enforce the requirement that the residence times and flows be 
compatible with the cell volumes, which corresponds to 
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where 

x  is the cell volume in flotation stage f, 

x  is the pulp aeration factor for flotation stage f, and 

x  is the corrected density for flotation stage f. 

The next set of constraints enforces the splitter selection, which can be described through 
the disjunctions  

,  (8) 

where 

x  and  are the first and second possible outputs for splitter m, 

x  is a constant that is larger than the mass-flow rates in any stream for any specie 
under any scenario, and 

x  is a binary variable that indicates the choice in the disjunction (i.e. is 1 if 
the mass flow is sent to stream and 0 if it is sent to stream under 
scenario s). 

The final set of constraints adds penalties for the presence of arsenic in the concentrate. In 
this study, three possible situations are considered: a) if the As concentration is below 
0.2%, then penalties and additional costs are not considered; b) if the arsenic concentration 
is between 0.2 and 0.5%, then it is considered a penalty payment; and c) if the arsenic 
concentration exceeds 0.5%, then an additional cost of treatment of the concentrate by 
roasting to partially remove arsenic at a level below 0.2% is considered. This can be 
described through the disjunctions 
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                                                     ,                   (9) 

where 

x  is the final concentrate flowrate for specie e for scenario s, 

x  is the amount of arsenic in specie e, 

x ,  and  are constants used to define penalty payments and roasting costs, 

x , 

x  is a variable that captures the costs associated with the presence of arsenic in 
scenario s, and  

x ,  and  are binary variables that indicate the choice in the 
disjunction (e.g. ,  and  if arsenic concentration is 
bellow 0.2% for scenario s). 

Disjunctions (8) and (9) are transformed to MINLP constraints through standard techniques 
(Grossmann and Ruiz, 2012). 

2.2 Objective Function Components 

Besides the possible arsenic penalty  the objective function also includes an amortized 
fixed equipment cost and a revenue component for each scenario.  

The amortized fixed equipment cost corresponds to 

                                                (10) 

where 

x  is an amortization constant for fixed cost, and 

x  are economic parameters for the equipment costs. 

The revenue of selling concentrate is calculated using the net-smelter-return formula 
(Shena et al., 1996), which corresponds to  
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              (11) 

where  

x PE is the fraction of metal paid, 

x   is the copper price under scenario s,  

x  is the refinery charge, 

x  is the copper grade of specie e,  

x U is the grade deduction, and 

x  TRC is the treatment charge. 
 

 

2.3 Problems 
Deterministic Problem  

For the deterministic problem, there is only a single scenario; hence, . The problem 
simply maximizes the total profit subject to the operational, design and economic 
constraints and is given by 

 
 

) 

This problem is denoted the deterministic problem. In this problem, the uncertain 
parameters are replaced by its weighted average. 

 
Stochastic Problem 
For the stochastic problems, it is assumed that there is more than one scenario (s > 1). 
Consequently, the objective considers the maximization of the expected total income, 
which requires knowledge of the probability of a given scenario s, denoted by . The most 
adaptable version of this problem is the TS-MINLP given by  

 

 
) 

This problem is denoted the stochastic problem.  

2.4 Instances 
The computational experiments in this paper consider a flotation plant that has four 
mineralogical species: fully liberated chalcopyrite (CuFeS2), partially liberated chalcopyrite 
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(70% liberated), tennantite (Cu12As4S13), and gangue. Each of these species has a specific 
floatability. Therefore three species of interest are identified: copper, arsenic, and gangue. 
The treatment plant capacity is 28,800 t/d.  

The stochastic parameters are the feed-copper grade and the copper price. Because of the 
variability of the processed ore, three levels of feed-copper grade are considered (low, 
medium, and high), and because of the variability of the world market, the price of copper 
on the London Metal Exchange is highly uncertain, which is why three levels of metal price 
are considered (low, medium, and high). The combination of these parameters is 
represented in 9 stochastic scenarios, as shown in Fig. 2. For example, scenario 1 has a 
probability of 5% and corresponds to 0.45% chalcopyrite, 0.3% partially liberated 
chalcopyrite, and 0.45% tennantite, and a copper price of 2,025 US$/t. 

 
Fig. 2: Variability of uncertain parameters represented in nine scenarios. E1, E2 and E3 are the 
chalcopyrite fully liberated, chalcopyrite partially liberated and tennantite feed grade, respectively. 
P is the copper price in US$/t. 
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For the superstructure, a flotation plant with five flotation stages was considered: rougher 
(R), scavenger (S), cleaner-scavenger (CS), cleaner (C), and re-cleaner stages (CC). The 
numbers of cells by bank are fixed according to the notes made by Bourke (2002), that is, 6 
cells for the rougher, scavenger, and cleaner-scavenger stages; for the cleaner and re-
cleaner stages the number of cells is fixed to 4. The superstructure is represented by the 
origin-destination matrix (see Table 1).  For example, for the cleaner-scavenger stage (CS), 
the concentrate can be sent to the C stage, CC stage or sent directly to the final concentrate 
stream (P). However, the CS tail can be sent to the S stage or sent directly to the final tail 
stream (W). From Table 1, it is possible to identify 64 paths for the concentrate and 48 
paths for the tail, and thus this superstructure has 3,072 circuit alternatives. Some 
advantages of using the origin-destination matrix are: 1) equivalent circuit alternatives are 
not considered, therefore the 3,072 circuit alternatives are all different, 2) Senseless 
alternatives are not included (e.g. sending the cleaner concentrate to the scavenger stage), 
3) the designer can choose which interconnections to include in the design problem. Using 
the origin-destination matrix reduces the total number of structures from 60 million to 
3,072. However, the non-convexities of the optimization problem can still make it 
extremely hard to solve. Effective solution methodologies are explored in the following 
section. 
Table 1 
Origin-Destination matrix for concentrates and tails of the flotation superstructure. X represents the 
concentrate of the stage, and o represents the tail of the flotation stage.  P and W are final concentrate and 
final tail streams, respectively. 
 R S CS C CC P W 
R  o  x  x o 
S x  x x  x o 
CS  o  x x x o 
C o o o  x x o 
CC o  o o  x o 
 

3 Solution Methodology 
Finding optimal solutions for the target TS-MINLP can be extremely challenging even with 
state of the art solvers. However, as shown in this section, using simple stochastic 
programming techniques it is possible to obtain high-quality (and possible near-optimal) 
solutions. The section is divided into two parts. The first considers the selection of an 
appropriate MINLP solver and the second describes two simple stochastic programming 
techniques. 

3.1 Solvers analysis. 
All problems described in Section 2.3 are so-called non-convex or general MINLP 
problems. Such problems are extremely challenging as they include both integer variables 
and non-convex constraints (e.g. Bussieck and Vigerske, 2014). In particular, finding 
solutions that are guaranteed to be globally optimal requires specialized solvers such as 
BARON or LINDOGLOBAL. Unfortunately, the convergence of such solvers can be 
extremely slow even for moderately small instances. An alternative to such global 
optimization solvers is to utilize so-called convex MINLP solvers. These solvers only 
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guarantee global optimality for convex MINLP problems; that is, for problems whose only 
non-convexities are the requirements on integer variables. However, convex MINLP 
solvers can have significantly faster convergence and provide locally optimal solutions that 
can often be close to being globally optimal. This subsection compares the performance of 
several global and convex MINLP solvers including BONMIN, DICOPT, KNITRO, 
LINDOGLOBAL, OQNLP, and SBB. Table 2 shows the main characteristic of these 
solvers. More information about them can be found in the user manuals (see BONMIN, 
DICOPT, KNITRO, LINDOGLOBAL, OQNLP, and SBB manuals). 

 

 

 

Table 2. Characteristic of solvers used in the study.  

Solver Algorithms Optimality 
Guarantee 
for 
General 
MINLP 

Advantage Disadvantage 

BARON Specialized branch-and-
reduce algorithm. 

Global. Global optimality up to 
numerical accuracy. 

Slow 
convergence for 
large problems. 

DICOPT MILP/NLP outer-
approximation 
algorithm. 

Only local.   Fast convergence. 
Global optimality for 
convex MINLP. 

No global 
optimality for 
general MINLP. 

BONMIN Branch-and-bound and 
outer-approximation 
based algorithms. 

Only local.   Fast convergence. 
Global optimality for 
convex MINLP 

No global 
optimality for 
general MINLP. 

KNITRO Various branch-and-
bound and outer-
approximation based. 

Only local.   Fast convergence and 
numerical stability. 
Global optimality for 
convex MINLP. 

No global 
optimality for 
general MINLP. 

LINDO 
GLOBAL 

Branch-and-bound and 
outer-approximation 
based algorithm. 

Global. Global optimality up to 
numerical accuracy. 

Extremely slow 
convergence. 

OQNLP Multi-start heuristic 
algorithms. 

Only local.   Very fast convergence 
time.  

No global 
optimality for 
general or 
convex MINLP. 

SBB NLP based branch-and-
bound algorithm. 

Only local.   Fast convergence. 
Global optimality for 
convex MINLP. 

No global 
optimality for 
general MINLP. 

 

Because the complete problem is too challenging for some of the solvers, this subsection 
considers a subset of the superstructure that involves three flotation stages: rougher, 
scavenger, and cleaner. In addition, the numbers of cells by bank are fixed according to the 
notes made by Bourke (2002) and each scenario was run separately. The total elapsed time 
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reported corresponds to the sum of all elapsed time and the profit recovery and grade are 
the weighted sum of the values for each scenario. All experiments were executed in a 
computer with an Intel core i7 processor (2.7 GHz) and 6 GB of memory RAM. All 
problems were coded in GAMS, a high-level modeling system for mathematical 
programming.  

The results for the optimization problem (total income, recovery and grade) and execution 
time are shown in Table 3. Note that KNITRO was not able to find the integer solution of 
the binary variable for some scenarios. For those scenarios the best upper bound returned 
by the solver was used, which lead to a higher optimal solution. LINDOGLOBAL, after 30 
days of execution, was not able to provide a result for the optimization problem. Because 
the behavior of SBB and BONMIN were similar, their functioning was compared with the 
full five-stage problem. BARON was also included to compare the optimal solution; 
however BARON, like the case with three stages, requires very high computation times. 
SBB was unable to converge to a solution, while BONMIN and BARON obtained the same 
optimal solution, but BONMIN used less time than BARON. As a conclusion, the chosen 
solver for the subsequent analysis of the stochastic method is BONMIN due to the quality 
of the results compared to BARON and the low execution times.    
Table 3 
Results and execution times for different MINLP solvers. Profit is in MMUS$/y, overall recovery is the 
weighted average recovery for all of the scenarios, and Cu Grade is the weighted average copper grade in the 
concentrate for all of the scenarios. 

Variable MINLP Solver 
BARON DICOPT BONMIN KNITRO LINDOGLOBAL OQNLP SBB 

Profit 2.771 2.674 2.770 2.851 - 2.765 2.770 
Recovery  0.633 0.599 0.632 0.622 - 0.628 0.632 
Cu Grade 0.254 0.244 0.254 0.253 - 0.255 0.254 
Time (sec) 2,360,007.5 11.5 19.4 55.9 - 705.3 11.8 

 

3.2 Strategies to solve the stochastic problem 
Even with an appropriate solver selection, the stochastic problem is still too hard to solve 
directly. For this reason, two methodologies are analyzed to facilitate the convergence of 
the stochastic optimization problem.  

The first methodology begins by independently solving each scenario. As described in the 
previous section this can be done extremely fast using Bonmin. However, this solution has 
the first stage design variables (i.e. volumes) varying with the scenarios, which is not 
feasible. For this reason, in the second step of the methodology, the volume is fixed to the 
maximum value of all of the volumes found in each of the scenarios. This ensures that there 
is enough capacity of each flotation stage for all scenario-specific operational selections in 
the first step. The methodology ends by resolving the problem for each scenario with the 
volumes fixed to the common volumes determined in the previous step. This is denoted as 
Solution Methodology A.  

The second methodology again begins by independently solving each scenario. The binary 
variables of stream directions of the superstructure in the stochastic problem are then fixed 
to the values obtained in the previous step. In this manner, the majority of the binary 



 

13 
 

variables in the stochastic problem become parameters making it much easier to solve. The 
final step of this methodology is to simply solve the stochastic problem with fixed binary 
variables. This is denoted as Solution Methodology B.  

The results of the two strategies for the full 5-stage instance are presented in Table 4. By 
employing methodology A, the profits are approximately 250,000 US$/y better than with 
methodology B. The increase in the volume in the re-cleaner stage allows increasing the 
recovery of the intermediate scenarios (4 to 6), which corresponds to scenarios with higher 
probabilities. Although the difference between the two methodologies in this study case is 
not high, this is not true in all cases. For example, if the feed stream decreases from 28,800 
to 16,800 t/d, the optimal solution strategy is methodology B, with a difference between 
both methodologies of approximately 1 MMUS$/y. In this case, by employing 
methodology A, the volume is fixed to the maximum found for all scenarios, and therefore 
there are scenarios (low price and grade) in which this sizing is too large and the amount of 
mineral entering to the flotation circuit is small. This result means low revenues and higher 
capital costs, which directly affects profits.  
Table 4 
Results of the comparison between solution methodologies A and B.  

  Solution 
Methodology A 

Solution 
Methodology B 

Total Income MMUS$/y 63.346 63.097 
Volume Rougher Cell m3 200 200 
Volume Scavenger Cell m3 200 200 
Volume Cleaner - 
Scavenger Cell m3 200 200 

Volume Cleaner Cell m3 200 200 
Volume Recleaner Cell m3 43 21 
 

4. Results and Discussion  
This section compares solutions for the stochastic and deterministic average problems. The 
solution for the stochastic problem is that obtained by solution methodology A and the 
solution of the deterministic average problem was obtained by solving the appropriate 
MINLP with BONMIN. This section also presents a sensitivity analysis for the 
epistemically uncertain parameters.  

4.1 Comparison between the stochastic and the deterministic average problems.  
This section compares the design and operational variables plus the profits obtained by the 
stochastic and deterministic average problems. As noted in section 2.3, the deterministic 
average problem utilizes the weighted averages of the stochastic parameters. In this case, 
the feed grade corresponds to 0.56% of chalcopyrite, 2.39% partially liberated chalcopyrite, 
and 0.45% of tennantite. The price of the metal corresponds to 5,018 US$/t. 

Fig. 3 shows the optimal configuration for the deterministic average problem, which 
considers the recirculation of the C tail to the R stage and the CC tail and the concentrate of 
the CS stage to the C stage. Finally, the tail of the CS stage is sent to the S stage. The real 
profit is determined by fixing the direction of the streams and the volumes determined 
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previously and recalculating the real operating variables, such as the residence time, flow 
rates, recoveries, and grades for each scenario. In this way, the real profit is determined 
based on the profit of each scenario. In Table 5, the recalculated results for each scenario 
are shown. For first three scenarios, an arsenic concentration of 2.2 % is obtained, and 
therefore, an arsenic refining cost must be paid. The configuration of Fig. 3 maximizes the 
overall recovery due to the good average values of feed grade and copper price, but the 
limited size of the design cells produces a decrease in the residence time, thereby affecting 
the recovery of the valuable specie in each stage for all scenarios.  

    

 
Fig. 3: Optimal configuration of the deterministic average problem.  

 
Table 5 
 Results for the deterministic average problem.   

Variable  
Scenario 

1 2 3 4 5 6 7 8 9 
Volume Cell Rougher (m3) 200 
Volume Cell Scavenger (m3) 200 
Volume Cell Cleaner-Scavenger (m3) 43 
Volume Cell Cleaner (m3) 30 
Volume Cell Re-cleaner (m3) 5 
Copper grade Concentrate % 31.0 31.0 31.0 25.4 25.4 25.4 29.0 29.0 29.0 
Arsenic grade in concentrate % 2.2 2.2 2.2 0.45 0.45 0.45 0.073 0.073 0.073 
Copper Recovery % 52.9 52.9 52.9 62.1 62.1 62.1 62.8 62.8 62.8 
Total real Income MMUS$/y 59.448 

 

In contrast, the stochastic problem can adjust its operational variables to the uncertainty of 
the design parameters. These adjustments increase the final profits by 3,900 MMUS$/y.  In 
this case, the volume increases in the CS, C, and CC stages, corresponding to the optimal 
results for the most favorable scenario of grade and price. Once the first level variables are 
defined, the second level variables to be optimized are the stream directions and operating 
time of each stage. The results are shown in Table 6 and Fig. 4. The overall recovery 
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changes from 67% for the most unfavorable scenario to 86% for most favorable scenario, 
and these values are significantly higher than those obtained by the deterministic average 
problem. The residence times are approximately constant for all scenarios, 7 to 10 minutes 
per cell for the R, S, CS, and C stages. Only in the CC stage the residence time varies from 
8 to 24 minutes depending on each scenario. The difference between all possible 
configurations is the recirculation of the S concentrate. For scenarios with a low copper 
price, except for the combination of low copper price and the highest copper feed grade, the 
optimal configuration considers the recirculation of the S concentrate to the CS stage (Fig. 
4a and 4d). This configuration allows higher grades in the concentrate due to the 
recirculation being sent to early stages. However, due to the low feed grade, the optimal 
design of the process considers an increment in the residence time in the CC stage from 8 
minutes for the most favorable scenario to 24 minutes for the most unfavorable one. This 
increased time improves the overall recovery as well as the arsenic concentration in the 
concentrate.   
Table 6 
Results for the stochastic problem.   

Variable  Scenario 
1 2 3 4 5 6 7 8 9 

Volume Cell Rougher (m3) 200 
Volume Cell Scavenger (m3) 200 
Volume Cell Cleaner-Scavenger (m3) 200 
Volume Cell Cleaner (m3) 200 
Volume Cell ReCleaner (m3) 43 
Copper grade Concentrate % 26.71 26.03 26.03 22.84 24.49 24.49 28.25 28.25 28.25 
Arsenic grade in concentrate % 3.32 3.50 3.50 0.86 1.26 1.26 0.47 0.47 0.47 
Copper Recovery % 67.06 70.44 70.44 37.20 79.63 79.63 85.72 85.72 85.72 
Total real Income MMUS$/y 63.346 

 

The optimal configuration changes as the values of copper grade and price change. For 
example, for scenarios of low and medium levels of feed grade combined with favorable 
levels of price, the configuration changes, sending the S concentrate to the C feed (Fig. 4b) 
increasing the overall recovery. This configuration (from the combinations found for the 
different scenario) delivers a greater recovery because the streams are sent directly to the 
final concentrate through a few flotation stages. Therefore, the amount of concentrate is 
maximized but contains a greater amount of impurities, decreasing the final concentrate 
grade. However, for the scenarios with the highest-value copper grade and price 
parameters, the recirculation of the S concentrate is sent to the R stage (Fig. 4c). With these 
conditions of price and grade, the plant configuration should be the same or change to 
continue increasing the overall recovery, but the results of the optimization problem are 
different from those expected. The optimal configuration changes the recirculation to the 
earlier stage of the plant to reprocess the concentrate streams many times over, which is 
necessary to improve the final concentrate grade. It is also worth mentioning that this 
improvement in the configuration also decreases the arsenic concentration to 0.5%, and 
thus the total cost is considered a penalization and not an additional refining cost.  
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a) Scenario 1 b) Scenarios 2, 3 and 5 

 
 

c) Scenarios 7, 8 and 9 d) Scenario 4 

 
Fig. 4. Optimal configurations for the stochastic problem.  

 

The stochastic problem sacrifices some scenarios to obtain higher profits. Thus, scenarios 
1, 4 and 5 give worse results than the deterministic average problem. However, the greatest 
profit obtained in other scenarios justifies this choice. These differences between the profits 
for each scenario are shown in Fig. 5.  
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Fig. 5. Difference in profit between the stochastic and deterministic equivalent problems in MMUS$/y. 

 

4.3 On the epistemic uncertainty of kinetic parameters 

In this work the stage recoveries were calculated using the kinetic model of Yianatos and 
Henríquez, (2006) for flotation banks. The kinetic parameters were assumed constants, but 
these parameters can change with the flotation circuit design. For example, kinetic 
parameters can change with the cell size and chemical composition of the pulp. Also the 
design can affect other phenomena such as the water recovery, which can affect the 
entrainment. Also, particle size distribution was not considered and the flotation rate is 
particle size dependent. This means that a change in one stage affects the flotation rate of 
minerals in the others stages and therefore the kinetic parameters are not constants. This 
uncertainty in the kinetic parameters and stage recovery, as was indicated previously, 
corresponds to epistemic uncertainty because there is a lack of knowledge on the values of 
these parameters and the behavior of recovery with circuit and stage design. This 
uncertainty was not the focus of this work because previous studies have shown that the 
best flotation circuit is not highly sensitive to the flotation stage recovery (e.g. see Galvez 
and Cisternas, 2014 and its references). However, this section provides a concise analysis 
of the effect of this source of uncertainty. 

To obtain insight of the effect of the stage recovery uncertainties three numerical 
experiments were performed: First, the cell volume was assumed constant and the kinetic 
parameter  was varied by 5, 10 and 15% and the model was applied for each of the 
scenarios. The results show that two, one and three of the nine scenarios changed when the 
value of Rmax changed to 5, 10 and 15% respectively. The scenarios with high and low 
values of metal prices were unchanged, indicating that the stochastic uncertainty in the 
price of metal has an important effect on the optimal configuration of the circuit. Second, 
the volume of the cells were assumed variables and the kinetic parameter  was varied 
by 10 and 20% and the model was applied for each of the scenarios. Three scenarios 
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changed for a 10% change in the kinetic parameter, and only two scenarios changed for the 
case of 20%. Again, scenarios with high values and low values in metal prices were 
unchanged. In both experiments the circuits changed in some scenarios, but they changed to 
circuits already observed in other scenarios. Finally, the volume of cells were considered 
variables and the value of  was changed in 15%, then five of the nine scenarios 
changed, indicating that in these situations the structure is more sensitive to changes in the 
recovery. This case is an important change in recovery. The scenarios with high and low 
values in the metal price and in the feed grade were unchanged. Also, some circuits 
obtained had not been obtained in previous studies. It can be concluded that the kinetics 
may influence the results, though clearly the price of the metal and the feed grade are 
dominant in the circuit obtained. 

5. Conclusions 
A stochastic optimization problem for the design of flotation circuits under stochastic 
uncertainty has been presented. Uncertainty is represented by scenarios that include 
changes in the feed grade and in the metal price. The problem allows the operating 
conditions (residence time and mass flows of each stream) and flow structure (tail and 
concentrate) to be changed for each scenario while the fixed design (size of cells in 
flotation stages) for all scenarios is maintained. The problem can be modified to include 
other uncertainties and other adaptive variables. 
While the problem is extremely flexible, it can be extremely hard to solve with standard 
software. For this reason several solution approaches were explored. The first approach was 
an appropriate selection of a MINLP solver. The optimization problem developed requires 
the solution by a specialized solver to guarantee a global optimal solution is found. 
However, standard global optimization solvers such as BARON and LINDOGLOBAL 
cannot currently handle the instance sizes considered in this paper. This lead to the 
computational evaluation of solvers that are only guaranteed to provide a local optimal 
solution. These experiments showed that utilizing the solver BONMIN provided an 
excellent compromise between solution time and quality. Unfortunately, solver selection 
alone was not enough to handle the target instances. For this reason two simple stochastic 
programming methodologies were used to solve the optimization problem. These 
methodologies delivered high quality solutions in reasonable times, which allowed an 
analysis of the advantages of the stochastic optimization problem and a sensitivity analysis 
of the parameters that have some epistemic uncertainty.  

The analysis showed that the stochastic problem gives better results than the average 
deterministic problem by allowing the optimal to adapt to the feed composition and the 
price of the metal. The sensitivity analysis to the epistemic uncertainty in the kinetic 
parameters showed small to moderate variability.  
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Finally, it can be concluded that the use of stochastic optimization can be a beneficial tool 
in the design of a metallurgical process, specifically the copper flotation process. The 
optimal configuration is capable of adapting to uncertainty, leading to an increase of the 
profits of the company. Further studies are still needed to incorporate the epistemic 
uncertainty in solving flotation design problems. Fortunately, the flexibility of the 
optimization problems and the effectiveness of standard methodologies should allow these 
issues to be resolved in the near future.   
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Nomenclature 
Sets and indices:  
s: Scenarios. The set of all scenarios is S={  … sn}  where sn is the number of scenarios  
f: Flotation stages. The set of all flotation stages is F={rougher, scavenger, cleaner-scavenger cleaner, 

recleaner}. 
e: Species. The set of all species is E={fully liberated chalcopyrite, partially liberated chalcopyrite, tennantite, 

gangue}. 
l: Streams. The set of all streams is L={ …  6}  
li(f), lc(f), and lt(f): The feed, concentrate output, and tail output streams of stage f, respectively (e.g., 

li(Rougher)=2). These are subsets of L. 
m: Mixers and splitters. The set of all mixers is X, and the set of all splitters is P. 

: The first and second possible outputs for splitter m, respectively  
: The input and output streams of the splitter or mixer m. 

Variables 
 : Flow of specie e on stream l under scenario s. 

 : Operating retention time (one cell) in flotation stage f under scenario s. 
 : Cell volume in flotation stage f. 

 

: Binary variable, for arsenic level decision as in scenario s. 
: Cost associated to arsenic under scenario s.  

 : Operation cost under scenario s. 
 : Income under scenario s. 

: Amortised fixed equipment cost. 

Certain Constants 
 : Flotation rate of specie e for flotation stage f 

: Maximum Recovery of specie e for flotation stage f. 
g-M constant that is larger than the flow in any stream for any specie under any scenario. 

, : Constants for arsenic penalization. 
,  : Pulp aeration factor and corrected density for flotation stage f. 

 : Economic parameter for fixed costs. 
 : Arsenic grade of specie e. 
 : Copper grade of specie e.  

 : Processing and economic parameters for income and operational costs. 
 : Total mass of input to the system. 
 : Amortization constant for fixed cost.  
 : Number of cells in flotation stage f. 

Potentially Uncertain Constants 
 : Copper price under scenario s. 
 : Feed grade corresponding to specie e in scenario s. 

 


