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ABSTRACT 

During early phases of open-pit mining production planning many parameters are uncertain, 
and since the mining operation is performed only once, any evaluations based only on on 
average outcomes neglects the very real chance of obtaining an outcome that is below average. 
Taking into account also that operation costs are considerable and the mining horizon usually 
extends over several decades it is clear that open-pit production planning is a risky endeavor. In 
this work we take a risk-averse approach on tackling uncertainty in the ore-grades. We consider 
an extended Ultimate-Pit problem, where extraction and processing decisions have to be taken. 
We apply and compare the risk-hedging performance of two approaches from optimization 
under uncertainty: minimize Conditional Value-at-Risk (CVaR) and minimization of a 
combination of expected value and CVaR. Additionally, we compare two decision schemes: a 
static variant, where  all  decisions  have  to  be  taken  “now”,  and  a  two-stage or recourse variant, 
where we take extraction decisions now, then we see the real ore-grade, and just then processing 
decision is taken. Our working assumption is that we have available a large number of ore-
grade scenarios. Computational results on one small size vein-type mine illustrate how 
minimizing average loss provides good on-average results at the cost of having high probability 
of obtaining undesired outcomes; and on the other hand our proposed approaches control the 
risk by providing solutions with a controllable probability of obtaining undesired outcomes. 
Results also show the great risk-hedging potential of using multi-stage decision schemes. 

INTRODUCTION 

The geological uncertainty of ore grades is crucial in mine planning and it has received 
significant attention in the last decade. Studies have shown that incorporating the uncertainty of 
the ore grades into the problem could lead to final pits 15% larger in tonnage, and adding a 10% 
of value, see Dimitrakopoulos (2011). The most common tool to model this uncertainty is the 
use of conditional simulations of orebodies, see e.g. Dimitrakopoulos (1998) and Benndorf and 
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Dimitrakopoulos (2004). For instance Dimitrakopoulos et al. (2007) use conditional simulations 
to obtain candidate plans based on several orebody models, and Whittle and Bozorgebrahimi 
(2004) use conditional simulations to generate so-called Hybrid Pits based on set-theory. 
Marcotte and Caron (2012) estimate the maximum expected value of mine when extraction 
decisions rely on uncertain information but by the time of processing all information is known. 
A characteristic of these approaches is that they aim to optimize the expected profit of the 
operation, an eminently risk-neutral approach; however this may be inconvenient in situations 
where the operation is not being repeated continuously under similar conditions –contrast with 
operations in airline industry–, moreover when losses at stake are considerable. In view of this, 
and in an attempt to directly include risk control into the optimization model, Vielma et al. 
(2009) proposed a chance-constrained model that looks for solutions with low probability of 
obtaining low profits. The work we present here is a follow up on the latter one and builds upon 
its idea of using an optimization process which directly assesses the risk of feasible solutions. 

In this paper we propose several risk-averse optimization methods that take into account the 
uncertainty in the ore-grade parameter. Our basic working assumption is that we have access to 
a pool of independent and identically distributed joint ore-grade vectors. The main advantage of 
this approach is that in this way we separate the optimization model from the geo-statistical 
technique that models the mineralization of the orebody. We work on the Ultimate-Pit problem, 
since it is a simple yet relevant aspect of life of mine planning, and consider an extended 
version where extraction and processing decisions have to be taken. We present and apply two 
risk-averse optimization approaches whose theoretical properties have been well studied, and 
also propose a two-stage decision scheme where after extraction occurs we can see the true 
mineralization of the extracted blocks. We show computational results on a small size vein-type 
mine and exhibit the practical strengths and weaknesses of the proposed models. 

The rest of this text is organized as follows. In Section 2 we present the extended Ultimate-Pit 
problem on which we work. In Section 3 we introduce two decision paradigms available for the 
problem, and illustrate their differences by two opposite optimization models in terms of risk. 
In Section 4 we describe the two risk-averse optimization approaches we propose to use for the 
UPIT problem, and go through their most important properties in the theory of risk-averse 
optimization. In Section 5 we show computational results made on a small size mine and show 
the performance of our proposed method. Lastly, in Section 6 we state the conclusions of our 
work. 

THE ULTIMATE-PIT PROBLEM 

The Ultimate-Pit problem (UPIT), also known as uncapacited open-pit mine planning problem, 
consists in finding the set of blocks which should be ultimately extracted, in the absence of 
capacity constraints, in order to maximize the value of the mine. Despite its simplicity, UPIT is 
a key problem for mine planning. In Caccetta and Hill (2003) they prove that the optimal multi-
period capacitated open-pit mine planning problem is included in the solution of the UPIT. 
Moreover, a series of UPIT problems are solved to construct the nested pits, see Whittle (1988), 
which is the basis of the most common methodology to schedule open-pit mines. 

We consider the following extended UPIT problem, where extraction as well as processing 
decisions have to be made. Let B  be a set of blocks, each one with an associated cost bc  --a 



 

 

negative cost is a profit-- for all Bb . Let BBP   be a set of precedences, that is, if 
Pb)(a,   then in order to extract block a , block b  should also be extracted. Only if it is 

extracted a block can be processed, and an extracted one can be either processed or discarded. 
Extraction of block b  incurs a cost of e

bc ; if it is discarded it does not incur any additional cost, 

but if it is processed it incurs an additional cost of bb
p
b pρc  , where p

bc  is the processing cost, 

bρ  is its mineral content or ore grade, and bp  is the unitary profit for processing a unit of 
mineral in it. A mathematical formulation of the UPIT optimization problem is 
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and where binary variables e
bx  and p

bx  indicate if block b  should be extracted (resp. 

processed) or not. Of course, 1=x p
b  if and only if 1=xe

b  and 0<pρc bb
p
b  , which allows to 

decide a priori if a block will be processed if extracted; with this, one can eliminate the 
processing variables in (1) and include all the processing decisions and costs in the extraction 
costs, as in Marcotte and Caron (2012). We choose however to skip this preprocessing step and 
build upon the formulation (1) for clarity of exposure, and also because this formulation, 
applied with the risk-averse models shown hereafter, is readily extendible to other mining 
models and constraints, e.g. one can include constraints on the processing decisions, include 
planning over several time periods, etc. 

UPIT UNDER ORE-GRADE UNCERTAINTY 

Uncertainty Model for the Ore Grades 

A weakness of problem (1) is that it does not account for the inherent uncertainty of the 
estimated ore grade vector ρ . Indeed, the precise mineral composition in each location of the 
orebody is only partially known since the only information available are exploration drillings. 
To assess for this uncertainty we assume in this work that, first, the ore vector is actually a 
random vector ρ~  in B

+ , and second, that we can take as many independent and identically 
distributed (i.i.d.) samples of it. Note that this assumption allows modeling non-i.i.d. samples, 
and also capturing correlations between different blocks. Note also that thus we are not 
requiring knowledge of the actual joint distribution of the random vector ρ~ . 

Static vs. Two-Stage Decision Schemes and Basic Risk Models 

We first note that the following formulation is completely equivalent to (1): 

 min ρ),Q(x+xc=ρ),(xL ee
b

e
b

erec :  s.t.  Ee Xx   (2) 



 

 

where 

=ρ),Q(xe :  min 



Bb

p
bbb

p
b )xpρ(c  

s.t. e
b

p
b xx    Bb  

  0,1p
bx  Bb  

and 

  .:0,1: P(a,b)xxx=X e
b

e
a

BeE   

This formulation emphasizes the dependence of the processing decision on the extraction 
decision. An apparently unnecessary complication of (1), both formulations in fact differ when 
uncertainty is introduced. Indeed, suppose ρ  is now a random vector ρ~  and we want, for 
instance, to minimize the expected loss; since we are assuming only availability of an i.i.d. 
sample Nρ,,ρ 1 , N as big as we want, then we can either minimize the average loss of (1): 

 min 
N

=k

kpestat )ρ,x,(xL
N 1

1  s.t.  ,X)x,(x EPpe   (3) 

or the average loss of (2): 

 min 
N
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kerec )ρ,(xL
N 1

1  s.t.  Ee Xx   (4) 

both computationally tractable formulations. 

Note that (3) gives an extraction and processing plan that should be used in any scenario, and in 
contrast (4) gives an extraction plan to use in any scenario and a processing plan for each 
scenario. Essentially, (4) uses a two-stage decision scheme where extraction decision is taken 
now, then the real ore-grade is revealed, and only then processing decision needs to be taken; 
and (3) uses a static decision scheme, where all decisions need to be taken now. Using the 
terminology of optimization under uncertainty community, we say then that (3) is a static 
approach, and (4) is a recourse approach, since in the latter we have the extra recourse of 
“seeing”  the  uncertain parameter before deciding the processing decision. 

We remark also that Marcotte and Caron (2012) work with the recourse scheme (4) since it is a 
better approach than (3) when estimating the value of mine, under the hypothesis that at later 
stages of the operation there will be better ore-grade estimates. Note that, when optimizing the 
average loss, the static approach (i.e. (3)) is equivalent to just plugging-in the average ore-grade 
in (1), so essentially Marcotte and Caron (2012) are comparing working with the average ore-
grade and working with profit scenarios. In contrast, we seek to compare the static decision 
scheme with the recourse one under several risk-averse optimization models. 



 

 

Note that minimization of average losses is essentially a risk-neutral approach, since it ignores 
the distribution of below- and above-average losses. Although by design this approach is the 
one that will provide the best on-average outputs, it can return solutions with high probability of 
obtaining big losses. On the contrary, an extreme risk-averse approach would be to minimize de 
worst possible loss. In this case we are sure that the obtained solution will do well –better than 
any other solution, by design– even in the worst possible scenario. A computationally tractable 
formulation, for the static and the recourse versions, is easily obtained by minimizing the 
maximum-loss scenario when considering losses over a finite sample of ore-grades. We 
consider then minimization of expected- and worst-loss as the two opposite benchmarks when 
evaluating the performance of the risk-averse approaches presented in the following section. 

RISK-AVERSE MODELS FOR UPIT UNDER UNCERTAINTY 

We now introduce the two risk-averse optimization models that we compare in our work: 
optimization of Conditional Value-at-Risk model and ε-Modulated Convex-Hull model. A 
closely related approach to the first model is the optimization of Value-at-Risk model, in which 
one optimizes the ε-quantile of the worst losses, as in Vielma et al. (2009). However, in Lagos 
et al. (2011) we showed that this model returned plans with good Value-at-Risk but at the 
expense of having higher chance of exhibiting bad losses. This inadequate manage of risk lastly 
deems the model inappropriate for the use in large scale open-pit mining planning problems, 
and such is the reason we do not include it in this study. 

All the models in this section can be applied to both the static and the recourse decision 
schemes, however for the sake of space economy we explain them only for the static version. 
To obtain the recourse versions in all models it is sufficient to replace ρ),x,(xL pestat  by 

)ρ,(xL kerec , and EPpe X)x,(x   by Ee Xx  . All strategies and properties shown here will hold 
for the recourse variant as well: we rely on the SAA approximation too for computational 
tractability, we have the same risk-hedging properties, convergence of optimal value and 
solution set, etc. 

CVaR Model 

Given a risk level ](ε 0,1  (lower ε  means lower risk), and given a real random variable l~  
representing losses, the Conditional Value-at-Risk (CVaR) at level ε  is roughly speaking the 
mean of the ε  portion of the worst losses. In Rockafellar and Uryasev (2000) it is shown that 
CVaR can be defined, consistently with the previous notion, in the following way: 
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+
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where a=[a]+ if 0>a  and 0  otherwise. Theoretically, CVaR is a good measure of the risk of 

the random loss l~  since it is a coherent risk measure in the sense of Artzner et al. (1999). 
Moreover, it is the fundamental distortion risk measure, see e.g. Bertsimas and Brown (2009). 

The first model we consider then is the minimization of CVaR, where given a risk level 



 

 

](ε 0,1  we choose the plan   EPpe Xx,x   that minimizes ))ρ,x,(x(LCVaR pestat
ε

~ . From 
Rockafellar and Uryasev (2000), this optimization problem can be formulated as 
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ε
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This problem, as it is, is intractable since the expected value in the objective function requires 
multidimensional integration and over a distribution that is unknown. Therefore we use the so-
called Sample Average Approximation (SAA), which consists of approximating the expected 
value by the sample average of a finite sample of the uncertain parameter. That is, we take an 
i.i.d. sample Nρ,,ρ 1  of the grades vector ρ~ and solve instead 
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This latter problem is easily linearized by including one linear variable per each scenario, 
obtaining thus a tractable MILP program –which applies for both the static and the recourse 
versions. 

We call (5) the real CVaR problem and (6) the SAA CVaR problem. SAA approximations have 
been widely studied, see e.g. Linderoth et al. (2006), and under mild assumptions (see Lagos, 
2011, and §5.1.1 Shapiro et al., 2009) it holds that the SAA CVaR problem is consistent with 
the real CVaR problem, in the sense that as the number N of samples increases the optimal 
value and set of optimal solutions of (6) converges to the respective counterparts of (5). 

MCH-ε Model 

The second model we consider is the so-called ε-Modulated Convex-Hull (MCH-ε) model. This 
approach is a modification of the MCH model proposed in Lagos et al. (2011), where a 
modulated convex-hull of an i.i.d. sample was taken as the uncertainty set in a robust-type 
formulation. Although the nice theoretical properties of this latter approach, the advantage of 
MCH-ε model is that its underlying risk measure does not depend on the sample size N, and is 
easily extendible to a two-stage decision scheme, as will be seen in Section 3. 

Consider a risk level ](ε 0,1 . The MCH-ε model consists on choosing the plan that solves 

 min    )ρ,x,(xLCVaRε)(+)ρ,x,(xLEε pestat
ε

pestat ~1~   s.t. EPpe X)x,(x   (7) 

Theoretically this model is attractive since we are minimizing a well-studied distortion risk 
measure of the losses that could be a better estimator of the CVaR-ε, see Lagos et al. (2012). 
Now, as in the CVaR model, this model, as it is, is intractable since it requires high dimensional 
integration and knowledge of the precise distribution of the ore grades vector ρ~ . Hence we 
proceed as before and use the SAA approximation to solve an approximated model: we take an 
i.i.d. sample Nρ,,ρ 1  of ρ~  and approximate  )ρ,x,(xLE pestat ~  and  )ρ,x,(xLCVaR pestat

ε
~  

with the in-sample mean, to obtain the problem 
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s.t. .EPpe X)x,(x,z   

(8) 

This problem is easily linearized by adding one linear variable per scenario, obtaining a 
tractable MILP program. As in the CVaR model, convergence, as the number of samples N 
increases, of the optimal value and set of the problem (8) to the respective counterparts of the 
“true”  problem  (7)  is  a.s. assured under mild assumptions, see Lagos (2011) and §5.1.1 Shapiro 
et al. (2009). 

COMPUTATIONAL EXPERIMENTS 

We apply these models on a small size vein-type mine, for which an i.i.d. sample of 20,000 ore-
grades vectors are available using Emery and Lantuéjoul (2006). The mine consists of 6,630 
10×10×10m3 blocks from a real orebody, and when adding a crown of zero mineral content on 
the sides we obtain a total of approx. 19,700 blocks and approx. 86,450 extraction precedences. 
The extraction and processing costs per block are respectively 1 and 5 monetary units, and each 
mineral unit processed produces a benefit of 25 monetary units. Each experiment consists of the 
following: choose one of the four models (CVaR static, MCH-ε static, CVaR recourse or MCH-
ε recourse), choose a risk level ](ε 0,1 , choose a sample size N and choose at random N ore-
grades vectors out of the 20,000 pool available; with this solve the SAA approximation of the 
model, thus obtaining a candidate production plan. All MILP programs are solved with the 
solver CPLEX v. 12. We also consider the models of, given an ore-grade sample, choose the 
plan that minimizes the expected in-sample loss, and choose the plan that minimizes the worst 
in-sample loss. Additionally, for every obtained plan we calculate the loss in each of the N 
scenarios used for solving the model –we call them in-sample losses–, and also calculate the 
loss in a different ore-grade sample consisting of 10,000 ore-grade scenarios out of the 20,000-
N samples left –this we call the out-of-sample losses. The idea is that the in-sample losses 
provide  insight  of  “what  the  model  thinks  it  is  doing”,  and  the  out-of-sample  losses  of  “what  the  
model is actually  doing”. 

  



 

 

Figure 1 – In-sample results for CVaR (static) and MCH-ε (static) models. 

In Figure 1 we show histograms of the in-sample losses for the static approaches and for several 
risk levels ε; and above each histogram it is plotted a bar that shows the mean and standard 
deviation of the losses of each plan. Since we do not know the real value of the ore-grade 
vector, histograms provide an idea of the distribution of the losses of the plan obtained with 
each model. This is a fair evaluation method since, to the best knowledge of the authors, there is 
no robust method of  choosing  which  scenario  is  the  “real” one. Results in Figure 1 are obtained 
taking the same sample, which is of size N=400 scenarios. These results show that indeed in all 
models the risk level ε controls how much chance we have of obtaining a bad loss, and also that 
decreasing ε we transit from the performance of minimizing expected loss to minimizing the 
worst loss –the riskier approach to the most conservative one. Most importantly, it is clear that 
minimization of expected loss indeed attains the best average loss, however it achieves this by 
allocating the highest probability on obtaining good as well as bad losses, confirming that such 
an approach provides risky solutions. On the other hand the risk-averse models put less 
probability on bad losses, at the cost of increasing the expected loss though; however the trade-
off between this two effects is controllable with the risk level ε. 

  

Figure 2 – Out-of-sample results for CVaR (static) and MCH-ε (static) models. 

In Figure 2 we show the out-of-sample performance of the same plans obtained for Figure 1. 
That is, for the eight plans whose histograms are shown in Figure 1 we compute their out-of-
sample losses and plot their histograms in Figure 2. Note that when evaluating out-of-sample 
the plans there is not much difference between performances of different models. This loss of 
resolution is observed for the MCH-ε model too, and could imply that the in-sample size, 
N=400, is not a representative sample of the distribution of ρ~ ; ultimately an undesirable 
outcome. 



 

 

  

Figure 3 – In-sample histograms for CVaR (recourse) and MCH-ε (recourse) models. 

In Figure 3 we show the in-sample losses we obtain with CVaR recourse and MCH-ε recourse 
models, where we solve the SAA approximations with N=200 samples of the grades vector ρ . 
Note that with recourse models the outcome between models and risk levels is very similar. But 
remarkably we only obtain negatives losses, i.e. profits, which is a dramatic improvement over 
the non-recourse models. We recall though that recourse variants use a different decision 
scheme than static variants, so both approaches are not directly comparable. Nonetheless, this 
results show that there is a great risk hedging potential in implementing multi-stage decision 
schemes in mining production planning. We also mention that we obtain the same loss of 
resolution, as in non-recourse models, when passing from in- to out-of-sample performance. 

Table 1 – 95% confidence intervals for optimal value of respective "real" problems. 

 ε  =  5% ε  =  10% ε  =  30% ε  =  50% 

CVaR stat. 
N=400 [-3,835, -1,200] [-4,012, -1,934] [-4,923, -3,878] [-5,843, -5,110] 

MCH-ε stat. 
N=400 [-3,988, -1,551] [-4,339, -2,505] [-5,889, -5,135] [-7,143, -6,575] 

CVaR rec. 
N=200 --- [-11,780, -10,623] [-14,031, -13,324] [-15,744, -15,172] 

MCH-ε rec. 
N=200 --- [-12,548, -11,552] [-15,869, -15,303] [-18,065, -17,569] 

 

We also implement a repetitions and screening procedure as shown in §5.6.1 Shapiro et al. 
(2009), where for a given model and risk level ε we take M=30 i.i.d. samples of the same size 
N, and obtain an optimal plan in each of the M samples. This ultimately allows to obtain a 95% 
confidence   interval   for   optimal   value   of   the   “real”   model.   Indeed,   recall that for CVaR and 
MCH-ε, static  and  recourse  versions,  we  first  proposed  a  “real”  problem  (e.g. (5)) related to the 
“real”   distribution   of   ρ~ , and due to its intractability we resorted to solve its SAA 



 

 

approximation by taking i.i.d. samples (e.g. (6)). This confidence interval then provides an 
estimation   of   the   optimal   value   for   the   “true”   problem,   and   note   that   in   particular   for  CVaR  
models   it  provides  an  estimation  of   the  “true”  minimal  CVaR  possible  by  a   feasible  plan.  We  
refer the reader to §3.3 Lagos (2011) for further details on this procedure. In Table 1 we show 
the aforementioned 95% confidence intervals for CVaR and MCH-ε models, static and recourse 
versions, for several risk levels ε. Recourse models with ε=5% could not be solved due to either 
shortage of memory or no near-optimal solution was found in less than 24 execution hours, so 
those fields in Table 1 are left blank. In this regard, the preprocessing step mentioned in the 
second section could have made this problem easily solvable, however in this work we focused 
solely in evaluating the risk hedging performances of the proposed models. We note that all 
interval widths are considerable and as the risk level ε increases the width of the interval 
decreases. A heuristic argument for this phenomenon is that with lower risk levels ε we are 
focusing on a smaller fraction of the worst losses, which are the most difficult to observe, so 
then we need a larger sample size. 

Table 2 – Expected profit estimator for optimal plan of each model. 

 Minimize 
Worst Loss ε  =  10% ε  =  30% ε  =  50% Minimize 

Exp. Loss 

CVaR stat. 
N=400 6,670 6,878 7,519 7,914 8,106 

MCH-ε stat. 
N=400 6,670 6,979 7,898 8,069 8,106 

CVaR rec. 
N=200 17,621 18,754 19,791 19,894 20,123 

MCH-ε rec. 
N=200 17,621 19,254 19,919 20,064 20,123 

 

Finally, in Table 2 we show, for each model and several risk levels, an expected profit estimator 
obtained with the out-of-sample profits (i.e. the average of 10,000 profits). Additionally we 
include the expected profit of the plans obtained with the models of minimizing worst loss and 
minimizing expected loss. Static models are solved using N=400 samples and recourse ones 
with N=200. Clearly as the risk level increases the expected profit increases. And again, the 
increment in the profit due to using the recourse decision-scheme is dramatic, so much that 
even the most risky non-recourse model (min. exp. loss) attains roughly half of the expected 
profit of the most conservative recourse approach (min. worst loss). 

CONCLUSIONS 

 We propose two risk-averse approaches for the ultimate-pit problem under ore-grade 
uncertainty, and also model two possible decision schemes. We resort to the SAA 
approximation to obtain tractable MILP programs. These models and their 
approximations have good theoretical properties in the risk-averse optimization 
framework. 



 

 

 Computational results show that the classic approach of minimizing expected losses 
indeed attain the best on-average results, however such solutions exhibit the highest 
probability –between the models compared– of obtaining undesirable outcomes. On 
the contrary, the proposed risk-averse models control how much probability the 
decision maker is willing to accept of getting undesired losses. 

 Computational results also indicate that in the proposed models the risk level ε gives a 
fine control of the riskiness –or uncertainty of the final outcome– of the obtained plan. 
However more certainty is achieved at the expense of obtaining on average higher 
losses. 

 Results also suggest that, even for a small size mine, a very big sample of the ore 
grades is needed to capture the distribution of the joint ore grade vector. This is 
ultimately a weakness of the chosen modeling, since as the sample size grows the 
problems require more computational resources to be solved. 

 Although the variants with recourse present the same theoretical properties and 
practical weaknesses as the static variants –e.g. need for a much bigger sample size to 
obtain consistency between in- and out-of-sample performance–, the two-stage 
paradigm shows a dramatic improvement over the static one, since it only attains 
negative losses. And even though there is not much difference between the 
performance of the evaluated recourse variants, even using minimization of expected 
loss provides a good protection to uncertainty in the ore-grade. This great potential 
suggests exploring the feasibility of implementing in practice sequential decision plans 
where relevant decisions are delayed until uncertain parameters are better estimated. 
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