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Abstract

In this paper we consider characterizations of the robust uncertainty sets associated with coherent and
distortion risk measures. In this context we show that if we are willing to enforce the coherent or distortion
axioms only on random variables that are affine or linear functions of the vector of random parameters, we
may consider some new variants of the uncertainty sets determined by the classical characterizations. We
also show that in the finite probability case these variants are simple transformations of the classical sets.
Finally we present results of computational experiments that suggest that the risk measures associated with
these new uncertainty sets can help mitigate estimation errors of the Conditional Value-at-Risk.
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1. Introduction

Coherent risk measures and their relation to robust optimization have received significant attention in
the literature (Artzner et al., 1999; Bertsimas and Brown, 2009; Natarajan et al., 2009; Shapiro et al.,
2009; Ben-Tal et al., 2009; Wächter and Mazzoni, 2013). It is known that every coherent risk measure is
associated with a precisely determined convex uncertainty set with properties that are strongly tied to the
axioms characterizing coherent risk measures (e.g. Bertsimas and Brown (2009); Natarajan et al. (2009)).
Similar results have also been given for a special class of coherent risk measures known as distortion risk
measures, which include the widely used Conditional Value-at-Risk (Bertsimas and Brown, 2009; Pichler
and Shapiro, 2013; Shapiro, 2013). All these characterizations are based on the restrictions imposed by
the coherence or distortion axioms on the actions of the coherent risk measure over all possible random
variables. However, in many settings, the random variables considered are either an affine or linear function
of a, potentially correlated, vector of random parameters. A classical example is portfolio optimization (see
for example Markowitz (1952); Konno and Yamazaki (1991); Black and Litterman (1992); Cvitanić and
Karatzas (1992); Krokhmal et al. (2002); Zymler et al. (2011); Lim et al. (2011); Kawas and Thiele (2011);
Fertis et al. (2012); Kolm et al. (2014)) where the random return of a portfolio is usually modeled as a
weighted linear combination of the random returns of individual assets (with weights equal to the fraction
invested in a given asset) plus a possibly null constant representing investment in a riskless asset. In this
paper we show that imposing the coherence and distortion axioms only on random variables that are a
linear, or affine linear function of a vector of random variables allows the inclusion of uncertainty sets that
are deemed invalid by the classical characterizations. In particular, we show that in the finite probability
case these additional sets at least include certain expansions of the classical sets. We also show that such
expansions are in turn related to the common practice of taking the convex combination of a risk measure
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with the expected value. More specifically, we show that risk measures associated to these expansions are
affine combinations of a risk measure with the expected value.

Finally we present computational experiments that suggest that the risk measures associated with these
uncertainty sets can help mitigate estimation errors of the Conditional Value-at-Risk.

The rest of this paper is organized as follows. In Section 2 we give some notation and background on risk
measures and robust optimization. In Section 3 we show the existence of uncertainty sets that do not fall in
the classical characterizations, but do yield distortion risk measures on the subspace of random variables that
are either affine or linear functions of a fixed random vector. In Section 4 we show that the risk measures
associated to these uncertainty sets are affine combinations of a risk measure with the expected value. Then,
in Section 5 we present some results of computational experiments showing that these uncertainty sets could
be useful to mitigate estimation errors. Finally, in Section 6 we present some final remarks.

2. Notation and Background on Risk Measure and Robust Optimization

2.1. Notation

Throughout the paper we will use bold letters to denote column vectors, and we will use an apostrophe
to denote the transposition operation. Thus, x P Rd is a column vector and x1 its transpose. We also note
e as the vector with a 1 in every component and eN :“ 1

N e. For a given set S Ď Rn we denote by affpSq,
convpSq and convpSq its affine, convex and closed convex hull respectively. We also let linpSq be the linear
space spanned by S and ripSq the relative interior of S. For a given convex set C we denote by extpCq the
set of its extreme points. To denote index sets, we use rms :“ t1, . . . ,mu.

2.2. Coherent Risk Measures

Let pΩ,F ,Pq be a probability space and L1pΩ,F ,Pq be the set of integrable random variables that are an
outcome of the uncertain parameter in Ω. We use a tilde to identify random variables as in g̃ P L1pΩ,F ,Pq.

Definition 2.1. A function ρ : L1pΩ,F ,Pq Ñ R is a coherent risk measure if it satisfies the following
properties.

(C1) Convexity: ρptg̃1 ` p1´ tqg̃2q ď tρpg̃1q ` p1´ tqρpg̃2q for all g̃1, g̃2 P L1pΩ,F ,Pq and t P r0, 1s.

(C2) Positive Homogeneity: ρptg̃q “ tρpg̃q for all g̃ P L1pΩ,F ,Pq and t ą 0.

(C3) Translation Equivariance: ρpt` g̃q “ t` ρpg̃q for all g̃ P L1pΩ,F ,Pq and t P R.

(C4) Monotonicity: ρpg̃1q ď ρpg̃2q for all g̃1, g̃2 P L1pΩ,F ,Pq such that g̃1 ď g̃2 a.s.

The following theorem gives another characterization of coherent risk measures (Shapiro et al., 2009,
Theorem 6.4).

Theorem 2.2. Let

∆ :“

"

f P L8pΩ,F ,Pq :

ż

Ω

fpωqdPpωq “ 1

*

and (1a)

∆` :“

"

f P L8pΩ,F ,Pq :

ż

Ω

fpωqdPpωq “ 1, fpωq ě 0 a.s.

*

. (1b)

Then a function ρ : L1pΩ,F ,Pq Ñ R satisfies (C1)–(C3) if and only if there exists J Ď ∆ such that

ρpg̃q “ sup
fPJ

ż

Ω

g̃pωqfpωqdPpωq. (2)

The function additionally satisfies (C4) if and only if J Ď ∆`. Finally, if ρ satisfies (C1)–(C3), then it is
additionally continuous. In that case, we have that J is convex and weakly* compact.
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A relation between risk measures and robust uncertainty sets emerges when we focus on random vari-
ables that are affine or linear functions of a fixed d-dimensional random vector ru P Ld1pΩ,F ,Pq (i.e.
rui P L1pΩ,F ,Pq for each i P rds). For instance ru could be the random returns on d assets and we may

be interested in analyzing random portfolio returns of the form g̃x prupωqq :“
řd
i“1 xiruipωq where x P Rd

indicates the fractions invested in each asset (i.e. x P r0, 1sd and
řd
i“1 xi “ 1). In general, this corresponds

to restricting attention to the subspaces of L1pΩ,F ,Pq given by

V pruq :“
 

rg P L1pΩ,F ,Pq : Dpx, x0q P Rd ˆ R such that rgpωq “ rgx,x0
pωq :“ x1rupωq ` x0

(

and

V0 pruq :“
 

rg P L1pΩ,F ,Pq : Dx P Rd such that rgpωq “ rgxpωq :“ x1rupωq
(

.

From now on we assume that the random vector ru P Ld1pΩ,F ,Pq is fixed and we simplify the notation to V
and V0, to which we colloquially refer to as the spaces of affine and linear random variables.

An advantage of restricting our attention to V or to Vo is that the effect of a coherent risk measure on
such random variables can be interpreted using the language of robust optimization as follows. Let ρ be a
risk measure satisfying (C1)–(C3) and let J Ď ∆ be a convex and weakly* compact set satisfying (2). Then,
for any rgx,x0

P V we have

ρprgx,x0q “ sup
fPJ

ż

Ω

`

x1rupωq ` x0

˘

fpωqdPpωq “ x0 ` sup
uPUpρq

x1u, (3)

where

Upρq :“

"
ż

Ω

rupωqfpωqdPpωq : f P J
*

Ď Rd.

We have that Upρq is the image of convex and weakly* compact set J under M : L8pΩ,F ,Pq Ñ Rd given by
Mipfq :“

ş

Ω
ruipωqfpωqdPpωq. Because rui P L1pΩ,F ,Pq we have that M is linear and weakly* continuous

and hence Upρq is a compact and convex set satisfying Upρq Ď affpsupppruqq, where supppruq is the support
of ru. If ρ additionally satisfies (C4) then J Ď ∆`, and we have that Upρq Ď convpsupppruqq. In the robust
optimization literature this set Upρq is usually denoted the robust uncertainty set and the following well
known theorem (e.g. Theorem 4 of Natarajan et al. (2009)) states that its existence essentially characterizes
coherent risk measures over V.

Theorem 2.3. ρ : V Ñ R satisfies properties (C1)–(C3) of Definition 2.1 over V if and only if there exists
a closed convex set U Ď affpsupppruqq such that

ρprgx,x0
q “ x0 ` sup

uPU
x1u (4)

for every rgx,x0 P V. In such case we have that the set U satisfying (4) is unique and equal to

Upρq :“
 

u P Rd : x1u ď ρprgxq @x P Rn
(

. (5)

Furthermore, ρ additionally satisfies property (C4) if and only if Upρq Ď convpsupppruqq.

Proof. For the forward implication of the first equivalence note that because ρ is a real valued function
that is convex and positive homogeneous over V0 Ď V, we have that ρpx1ruq is a continuous sub-linear
function of x. Then ρpx1ruq “ supuPUpρq x

1u for the closed convex set Upρq defined in (5) (Theorem C - 3.1.1

of Hiriart-Urruty and Lemaréchal (2001)). Now, let u0 P Rd and L Ď Rd be a linear subspace such that
affpsupppruqq “ L`u0. If x P LK then x1ru “ x1u0 a.s. and hence ρpx1ruq “ x1u0. Then, by (5) we have that

Upρq Ď
 

u P Rd : x1u ď x1u0 @x P LK
(

“
 

u P Rd : x1u “ x1u0 @x P LK
(

“ L` u0 “ affpsupppruqq.

The implication then follows from the translation equivariance property. The reverse implication is straight-
forward.
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For the forward implication of the second equivalence note that Upρq Ď convpsupppruqq is equivalent
to supuPUpρq x

1u ď supuPsupppPq x
1u for all x. If supuPsupppruq x

1u “ 8 this last inequality holds automat-
ically. If not, by translation equivariance and positive homogeneity of ρ we have ρpsupuPsupppruq x

1uq “
supuPsupppruq x

1u. Then, because of x1ru ď supuPsupppruq x
1u and monotonicity of ρ we have

sup
uPUpρq

x1u “ ρpx1ruq ď ρ

˜

sup
uPsupppruq

x1u

¸

“ sup
uPsupppruq

x1u.

For the reverse implication note that if Upρq Ď convpsupppruqq and x1rupωq ` x0 ď 0 a.s. then ρpx1ru` x0q “

x0 ` supuPUpρq x
1u ď x0 ` supuPsupppruq x

1u ď 0. Together with sub-additivity of ρ this implies that if
rgx,x0 ď rgy,y0 then ρprgx,x0q ď ρprgx´y,x0´y0q ` ρprgy,y0q ď ρprgy,y0q.

Note that in the proof of Theorem 2.3 necessity of Upρq Ď convpsupppruqq was because of dominance
between a constant (supuPsupppruq x

1u) and a linear (x1ru) random variable. In Section 4 we will see that this
condition can sometimes be eliminated when we only consider linear random variables (i.e. if we restrict
ourselves to V0).

Remark 2.1. It is also interesting to note the difference between the characterization of coherent risk
measures over L1pΩ,F ,Pq given by Theorem 2.2 and the characterization of coherent risk measures over
subspace V of L1pΩ,F ,Pq given by Theorem 2.3. While any closed convex set J Ď ∆` induces a convex
uncertainty set U pJ q :“

 ş

Ω
rupωqfpωqdPpωq : f P J

(

Ď convpsupppruqq, the converse does not always hold.
For instance, if we let ru be the uniformly distributed on a compact convex set C and u0 be an extreme point
of C, we have that U “ tu0u is a convex uncertainty set that will induce a coherent risk measure over V
through (4). However, there is no f P ∆` such that

ş

Ω
rupωqfpωqdPpωq “ ω0 and hence by Theorem 2.2

and (3) there cannot be a coherent risk measure over L1pΩ,F ,Pq that coincides with this measure in V.
Therefore the set of coherent risk measures over V is larger than those over L1pΩ,F ,Pq. Note that, if we
restrict ourselves to finite probability distributions, it is not too hard to prove that this difference vanish.
However, in Section 3, we show that this difference no longer vanishes for the so-called Distortion Risk
Measures.

2.3. Distortion Risk Measures

Definition 2.4. A coherent risk measure ρ : L1pΩ,F ,Pq Ñ R is a distortion or spectral risk measure if it
satisfies the following additional properties.

(D1) Comonotonicity: ρprg1 ` rg2q “ ρprg1q ` ρprg2q for all rg1, rg2 such that
prg1pω1q ´ rg1pω2qq prg2pω1q ´ rg2pω2qq ě 0, @ω1, ω2 P Ω.

(D2) Law Invariance: ρprg1q “ ρprg2q for all rg1, rg2 that have the same distribution.

Example 2.1. One of the most well known distortion risk measures is the Conditional Value-at-Risk which
is given by CV aRδprgq :“ inftPR

 

t` 1
δErprg ´ tq

`s
(

.

While some characterizations of distortion risk measures are given for more general probability distri-
butions (e.g. see Shapiro (2013) and Pichler and Shapiro (2013)), we now concentrate on the uniform
probability distribution with finite support. Results in this section can be found in, or are direct corollaries
of results in Bertsimas and Brown (2009).

For uniform discrete distributions we let supppPq “ tωi : i P rN su Ď Ω for which Pptωiuq “ 1
N for all

i P rN s. In this setting we assume Ω “ tωi : i P rN su and that F is the σ-algebra of all subsets of Ω.
Furthermore, under these assumptions sets ∆ and ∆` defined in (1) become

∆N :“

#

q P RN :
N
ÿ

i“1

qi “ 1

+

and ∆N
` :“

#

q P RN :
N
ÿ

i“1

qi “ 1, qi ě 0 @i P rN s

+

.
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With this notation, every random variable rg P L1pΩ,F ,Pq is representable by means of a vector g P RN
where gi :“ rgpωiq for all i P rN s. Indeed, for finite probability spaces it is somewhat meaningless to consider
L1pΩ,F ,Pq as all LppΩ,F ,Pq are trivially equal to space of functions from Ω to R. However, we continue
using this notation to have a consistent way of distinguishing risk measures that are defined over arbitrary
functions of Ω from those that are only defined over V or Vo.

Theorem 2.5. If P is a finite uniform distribution over Ω “ tωi : i P rN su, ρ satisfies (C1)–(C3), (D1)–(D2)
over L1pΩ,F ,Pq if and only if there exists q P ∆N such that

ρprgq “ max
σPSN

N
ÿ

i“1

qσpiqgi, (6)

where SN is the group of permutations of N elements. Furthermore, in this representation we can additionally
choose q P p∆N :“ tq P ∆N : q1 ě . . . ě qNu. Finally, ρ further satisfies (C4) over L1pΩ,F ,Pq if and only if

q additionally belongs to ∆N
` or p∆N

` :“
!

q P p∆N : qN ě 0
)

. In both cases we have that

Upρq “ Πq pruq :“ conv

˜#

N
ÿ

i“1

qσpiqu
i : σ P SN

+¸

(7)

where ui “ rupωiq for each i P rN s.

For notational convenience we again drop the dependence of Πq on ru.

Example 2.2. Let δ P r0, 1s be such that δN P Z`. Then UpCV aRδq “ ΠhδpΩq where

hδj :“

#

1
δN j ď δN

0 otherwise
. (8)

3. Distortion risk measures for uniform, discrete random variables in V and Vo

In this section we will prove that, even in the case of P being a finite uniform distribution, there exists
distortion risk measures ρ : V Ñ R that are not induced by any distortion risk measure ρ1 : L1pΩ,F ,Pq Ñ R.
For this, we will need some previous technical lemmas.

Lemma 3.1. If 0 P ri pconv psupp pruqqq then for any rv P Vo, rv ě 0 a.s. implies rv “ 0 a.s.

Proof. Since rv P Vo, then Dx P Rd such that rvpωq “ x1rupωq, @ω P Ω. From this, rv ě 0 a.s. implies that
x1rupωq ě 0, @ω P supp pruq. If x “ 0 the result is direct. By contradiction, assume that there exists
uo P supp pruq such that x1uo ą 0. Now, since 0 P ri pconv psupp pruqqq, there exists U a relatively open
neighborhood of 0 within conv psupp pruqq. However, because uo P aff pconv psupp pruqqq, there exists ε ą 0
such that εuo,´εuo P U Ď conv psupp pruqq. Then, there must exists u1 P supp pruq such that x1u1 has the
same sign as x1 p´εuoq ă 0 which contradicts rv ě 0 a.s..

Lemma 3.1 implies that if 0 P ri pconv psupp pruqqq, then, condition pC4q is moot for Vo.
We then get the following refinement of Theorems 2.3 and 2.5 for linear random variables.

Corollary 3.2. If 0 P ri pconv psupp pruqqq, then

1. ρ : V0 Ñ R satisfies (C1)–(C4) over V0 if and only if Upρq Ď affpsupppruqq and ρprgxq “ supuPUpρq x
1u.

2. If Upρq “ Πq for q P p∆N and ρprgxq “ supuPUpρq x
1u, then ρ satisfies (C1)–(C4), (D1)–(D2) over Vo.
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Proof. For 1 note that the first part of the proof of Theorem 2.3 shows that ρ : V Ñ R satisfies properties
(C1)–(C3) over V0 if and only if Upρq Ď affpsupppruqq and ρprgxq “ supuPUpρq x

1u. To obtain the first
equivalence it only remains to show that if Upρq Ď affpsupppruqq, then ρ satisfies property (C4) over V0. For

this let g̃i :“ xi
1
rupωq for i P t1, 2u be such that g̃1pωq ď g̃2pωq a.s. Then

`

x2 ´ x1
˘1
rupωq ě 0 a.s. and hence

by Lemma 3.1 we have
`

x2 ´ x1
˘1
rupωq “ 0 a.s.. Hence g̃1pωq “ g̃2pωq a.s which implies ρpg̃1q “ ρpg̃2q and

condition (C4) holds.
Statement 2 follows similarly from Theorem 2.5 and Lemma 3.1.

Using this corollary we can characterize inclusion relations between family of sets inducing coherent, or
distortion risk measures for the case 0 P ri pconv psupp pruqqq. For this, we introduce the following definitions:

Definition 3.3. Let W,V,Vo the set of coherent risk measures defined over L1pΩ,F ,Pq,V,Vo respectively;
and let W˚,V˚,V˚o the set of distortion risk measures defined over L1pΩ,F ,Pq,V,Vo respectively. We will
denote Up¨q as the family of sets that induce all risk measures in a given set.

Note that, form the definitions above, we always have that UpH˚q Ď UpHq for any H P tW,V,Vou. With
these definitions, we can write the following result:

Corollary 3.4. If 0 P ri pconv psupp pruqqq, then

1. U pVoq “ tU Ď affpsupppruqq : U is closed and convexu and

U pWq Ď U pVq “ tU P U pVoq : U Ď conv psupp pruqqu .

Hence, U pVq and U pWq can be strictly contained in U pVoq.

2. If P is a finite uniform distribution then
!

Πq : q P p∆N
)

Ď U pV˚o q and

U pW˚q “

!

Πq : q P p∆N
`

)

Ď U pV˚q Ď U pVq .

Hence, U pV˚q and U pW˚q can be strictly contained in U pV˚o q.

Proof. The characterizations are direct from Corollary 3.2 and Theorems 2.2, 2.3 and 2.5. In particular, the
potential lack of equality between U pWq and U pVq comes from Remark 2.1. For the first potential strict
containment it suffices to find a closed convex set U Ď affpsupppruqq such that U Ę conv psupp pruqq. For the

second it suffices to find q P p∆N such that Πq Ę conv psupp pruqq.

Corollary 3.4 shows that, when 0 P ri pconv psupp pruqqq, there are somewhat reasonable uncertainty sets
for random variables in Vo that are not induced by coherent and distortion risk measures over L1pΩ,F ,Pq
or V. However, those sets include points outside conv psupp pruqq. Remembering that the risk measure
with Upρq “ conv psupp pruqq corresponds to the worst case over all possible realizations of the random
variable, we conclude that a risk measure with ρ1 with conv psupp pruqq Ĺ Upρq would be clearly over-
conservative. Considering an uncertainty set that neither contains nor is contained in conv psupp pruqq is a bit
more reasonable, but it still somewhat strange to include points outside conv psupp pruqq in the risk evaluation.
To avoid this philosophical issue we now concentrate on the following result, which holds irrespective of the
assumption 0 P ri pconv psupp pruqqq.

Corollary 3.5. Let P be a finite uniform distribution for which 0 is not necessarily contained in
ri pconv psupp pruqqq. Then

U pW˚q “

!

Πq : q P p∆N
`

)

Ď

!

Πq : q P p∆N , Πq Ď conv psupp pruqq
)

Ď U pV˚o q , U pV˚q (9)

Proof. Direct from Theorems 2.3 and 2.5.
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From this corollary, the existence of an actually reasonable uncertainty set for random variables in Vo and
V (i.e. one that is contained in conv psupp pruqq and induces measures that satisfy (C1)–(C4), (D1)–(D2))
that is not induced by coherent and distortion risk measures over L1pΩ,F ,Pq, reduces to the possibility of
a strict containment in (9). We now show that the first containment can indeed be strict.

To show this strict containment we need to find q P p∆N such that Πq Ď conv psupp pruqq and for which

there is no r P p∆N
` such that Πq “ Πr. For this, note that, for any r, by definition, we have that

Πr “ convpt
řN
i“1 rσpiqu

i : σ P SNuq; but each term
řN
i“1 rσpiqu

i can be re-written as M ¨ Pσ ¨ r; where

M “ pu1| . . . |uN q and Pσ is a permutation matrix (i.e. e1Pσ “ e1 and Pσe “ e) that depends on σ. Also,
note that if we know all vertices tvkukPrms of Πq, then, for Πq to be equal to Πr for some r, we need at

least that each vk is the image of some permutation matrix Pσ, i.e. DP k permutation matrix such that
vk “M ¨ P k ¨ r. Proposition 3.6 express this idea as an optimization problem.

Proposition 3.6. For a given q, let tvkukPrms be the set of extreme points of Πq. If there exists r P p∆N
`

such that Πq “ Πr, then, the following optimization problem has optimal value zero.

min
ÿ

kPrms

||sk||1 (10a)

s.t. vk “M ¨ P k ¨ r ` sk @k P rms (10b)

e1P k “ e1 @k P rms (10c)

P ke “ e @k P rms (10d)

ri ě ri`1 @i P rN s (10e)

e1r “ 1 (10f)

P k P t0, 1uNˆN @k P rms (10g)

sk P Rd @k P rms (10h)

r P RN` (10i)

Proof. Problem (10) has as variables the vectors sk, r and binary matrices P k for k P rms. Condi-
tions (10c),(10d) and (10g), ensure that P k is a permutation matrix; conditions (10e),(10f) and (10i) ensure

that r P p∆N
` , while condition (10b) just says that each vk “ M ¨ P k ¨ r ` sk. To finish, just note that the

objective function (10a) can only be zero when all sk are zero, and thus ensuring that each vk correspond
to one of the points generating the set Πr.

Note that in the previous result, (10) having optimal value 0 is not a sufficient condition for Πq “ Πr,
since it only ensures that Πq Ď Πr. However, we show that for a particular q, problem (10) has non-zero
optimal value.

Lemma 3.7. There exist q P p∆N such that Πq Ď convpΩq and Πq ‰ Πq1 for all q P p∆N
` .

Proof. Let d “ 2, N “ 5, supp pruq “ tp8600, 5000q, p5700, 8100q, p1300, 9900q, p´9600, 3000q, p8500,´5200qu

and q “ p27{100, 27{100, 27{100, 27{100, ´2{25q P p∆N . Using a symbolic computation software it is checked
that extpΠqq “ tp905, 3866q, p1920, 2781q, p3460, 2151q, p7275, 4566q, p940, 7436qu and Πq Ď convpΩq. Fur-
thermore, using the exact MIP solvers developed in Espinoza (2006); Cook et al. (2011), we were able to
computationally prove that the optimal objective value of (10), for this data, is greater than or equal to
1000.

Note that the exact MIP solvers from Espinoza (2006); Cook et al. (2011) can only solve linear MIP
problems and problem (10) is a nonlinear MIP problem. However, (10) can easily be transformed into a
linear MIP as follows. The first step is to linearize the products between P k and r in (10b) using a standard
technique (e.g. Adams and Sherali (1986)). For this we introduce matrix variables Gk

P r0, 1sNˆN for all
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k P rms. This matrix will be such that Gk
i,j “ P ki,j ¨ rj for all i, j and k, rj P r0, 1s and P ki,j P t0, 1u. To

achieve this we add the set of linear inequalities given by

Gk
ď P k

@k P rms

Gk
i,j ď rj @i, j P rN s, k P rms

P k
i,j ` rj ď Gk

i,j ` 1 @i, j P rN s, k P rms.

We then simply replace P k
¨r in (10b) with Gke. Finally, to linearize the objective function we introduce

variables spk, smk P Rd` for all k P rms, replace sk in (10b) with spk´smk and replace the objective function
with

ř

kPrms sp
k ` smk.

Corollary 3.5 and Lemma 3.7 shows that there are indeed reasonable uncertainty sets (distortion risk
measures) for random variables in V and Vo that are not induced by coherent and distortion risk measures
over L1pΩ,F ,Pq. However, while theoretically interesting, the conditions for constructing or detecting these
sets can be highly intractable. For this reason, in the next section we present a more practical representation
of the uncertainty sets Πq for q P p∆N .

4. Epsilon Scaling of a Risk Measure

From Lemma 3.7 we know that there exists risk measures represented by q P p∆N whose uncertainty sets
do not coincide with any risk measure in p∆N

` . However, it is possible to give a different characterization of
these uncertainty sets, providing a natural geometrical interpretation of these measures.

Consider for example the finite uniform probability over the N “ 5 points in supp pruq “
 

ui
(n

i“1
“

tp8600, 5000q, p5700, 8100q, p1300, 9900q, p´9600, 3000q, p8500,´5200qu and

q “ p27{100, 27{100, 27{100, 27{100, ´2{25q P p∆N

used in Lemma 3.7. We can check that q “ εq1 ` p1 ´ εqeN for q1 “ p1{4, 1{4, 1{4, 1{4, 0q P p∆N
`

and ε “ 7{5. Note that it is not a convex combination but an affine combination, because ε ą 1.

Figure 1: Uncertainty sets from Lemma 3.7

Figure 1 shows Πq in solid blue, Πq1 in dashed red and
convpsupp pruqq in dotted green. The figure also shows supp pruq as
asterisks and u :“ 1

N

řn
i“1 u

i as a plus sign. We can see from the
figure that Πq is an expansion of Πq1 around the mean u that is
still contained in convpsupp pruqq. In this section we show that this

figure is representative of all q P p∆N in that for such vectors Πq is

always an expansion of Πq1 for some q1 P p∆N
` . This implies that the

risk measures associated with elements in p∆N are always an affine
combination of a distortion risk measure over L1pΩ,F ,Pq and the
expected value. When ε P r0, 1s, this convex combination is a well
known modification of a risk measure (e.g. see Lagos et al. (2011)
and equation (6.68) in Shapiro et al. (2009)), note however that in
this case, ε is not restricted to be within r0, 1s, as it can take values
above 1. Hence the associated measure is an affine combination of a
distortion risk measure over L1pΩ,F ,Pq and the expected value. Because the uncertainty sets associated to
this measures are scalings of the traditional sets, we denote these new measures as epsilon scalings.

Definition 4.1. For a given risk measure ρ : L1pΩ,F ,Pq Ñ R and ε ě 0 let the epsilon scaling of the
measure be pρε prvq :“ ε ρ prvq ` p1´ εq Errvs.
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It is straightforward to show that if ρ is a distortion risk measure over S Ď L1pΩ,F ,Pq then, for any
ε P r0, 1s, pρε is also a distortion risk measure over S. It is also easy to see that for ε ě 0 the only property
that pρε may fail to inherit is monotonicity. Fortunately, for S “ V or S “ Vo we can give simple conditions
for pρε to be a distortion risk measure. To give these conditions note that the uncertainty set associated with
pρε is Uppρεq “ u` εpUpρq ´ uq where u :“ Errus.

Proposition 4.2. Let ε ě 0, ρ be a distortion risk measure over V and P be an arbitrary distribution.

1. If u` εpUpρq ´ uq Ď conv psupp pruqq, then pρε is a distortion risk measure over V and Vo.

2. If 0 P ri pconv psupp pruqqq, then pρε is a distortion risk measure over Vo even if u ` εpUpρq ´ uq Ę
conv psupp pruqq.

Proof. Direct from Lemma 3.1, Theorem 2.3 and the preservation of (D1) and (D2) under linear combina-
tions.

If we restrict to finite uniform distributions we can show that epsilon scalings precisely correspond to the
uncertainty sets associated with elements in p∆N .

Proposition 4.3. If P is a finite uniform distributions, then
!

Πq : q P p∆N
)

“ tU ppρεq : ε ě 0 and ρ PW˚u.

Proof. For q P p∆Nzp∆N
` let ε :“ 1´NqN ą 0 and q1 :“ 1

ε pq ` pε´ 1q eN q. Then q “ εq1`p1´ εqeN , ε ě 0

and q1 P p∆N
` . The result then follows from Corollary 3.4.

5. Computational Stability of Epsilon Scalings

In this section we present a computational example that shows that epsilon scalings seem to be less
susceptible to estimation errors when approximated using samples. The need for such estimations is common
in applications (e.g. Lagos et al. (2011); Vielma et al. (2009)) and, unfortunately, risk measures such as the
Conditional Value-at-Risk (CVaR) measure have been shown to be highly susceptible to estimation errors
in this setting (Lim et al., 2011). For this reason we study how using the epsilon scaling of CVaR could help
alleviate these estimation errors. Following an approach similar to that in Lim et al. (2011) we consider a
simple portfolio optimization problem, in which we have d possible assets we want to invest over a single
time period, and we have to decide what proportion of our capital we will invest in each of the assets. Every
asset i has a return ri P r´1,8q, such that if we initially invested Ci on i then at the end of the period
we will have Cip1 ` riq. When the vector r :“ pr1, . . . , rdq

1 of returns is known this problem is formulated
as maxtx1r : x1e “ 1, x ě 0u. Naturally the vector of returns r is subject to uncertainty, hence it is
necessary to adopt some decision scheme that considers the risk inherent to the problem. Let pΩ,F ,Pq be a
probability space and let rr P Ld1pΩ,F ,Pq be the random vector of returns. Interpreting ´x1rr as the random
losses of the portfolio, a classic and well studied approach to this problem is to minimize the Conditional
Value-at-Risk of the losses:

z˚δ :“ min
x

 

CV aRδp´x
1
rrq : x1e “ 1, x ě 0

(

, (11)

where CV aRδprvq :“ mint
 

t` 1
δErprv ´ tq

`s
(

. If the distribution of rr is known, then (11) is a well defined
convex optimization problem which can be solved in theory. However, evaluating CVaR requires multidimen-
sional integration and hence solving (11) is, in general, intractable. Furthermore, more often than not, the
distribution of rr can only be accessed through a finite number of samples. A common data-driven approach
for this issue is to use this finite number of samples to approximate the integrals in the definition of CVaR
with the sample mean. This approximation technique is known as Sample Average Approximation (SAA)
for stochastic programming and its convergence is assured under very broad settings, see e.g. Shapiro et al.
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(2009, §5.1.1). Assume then that we have a finite i.i.d. sample r1, . . . , rN P Rd of the vector of returns rr
(e.g. from past observed returns or simulations). The SAA version of (11) is given by

z˚δ,N

´

 

ri
(N

i“1

¯

:“ min
x

!

CV aRNδ

´

´x1rr,
 

ri
(N

i“1

¯

: x1e “ 1, x ě 0
)

, (12)

where CV aRNδ

´

´x1rr,
 

ri
(N

i“1

¯

:“ mint

!

t` 1
δN

řN
i“1r´x

1ri ´ ts`
)

is CV aRδ for the case in which rr is

uniformly distributed in
 

ri
(N

i“1
. For notational convenience we drop the dependence of z˚δ,N , CV aRNδ and

related values, on
 

ri
(N

i“1
, while noting that any value or solution derived from (12) is dependent on the

N samples of rr and hence is random unless the sample is fixed. With this in mind, it is well known that,
under mild conditions, z˚δ,N converges to z˚δ w.p. 1 as N grows to infinity and that, under slightly stronger
conditions, the optimal set of (12) also converges w.p. 1 to the optimal set of (11) (e.g. Shapiro et al. (2009,
§5.1)). Furthermore, from Rockafellar and Uryasev (2002, 2000) we have that (12) is equivalent to

min
x,t

#

t`
1

δN

N
ÿ

i“1

r´x1ri ´ ts` : t P R, x1e “ 1, x ě 0

+

. (13)

Note that this problem can be formulated as linear programming problem, which can be easily solved.
Unfortunately, as noted in Lim et al. (2011), for moderate values of N and small values of δ, the optimal
solutions of (12)/(13) can have a significant difference between their sampled CV aRNδ and their real CV aRδ.
Furthermore, the real CV aRδ of these solutions can be far from z˚δ . More specifically, if x˚N is an optimal

solution to (12)/(13) it is common to have CV aRNδ px
˚
N q ! z˚δ ! CV aRδ px

˚
N q. We aim to use {CV aRγ,ε (i.e.,

an epsilon scaling of CV aRγ with γ not necessarily equal to δ) to construct a variant of (12)/(13) with optimal
solutions that reduce both these gaps. Our motivation for this construction can be best illustrated if we
consider elliptical distributions, which have the following convenient characterization of U pρq that we prove
in the appendix. The use of this characterization will come from the equivalence between approximating
CV aRδ with CV aRNδ and approximating UpCV aRδq with U

`

CV aRNδ
˘

Lemma 5.1. Let µ P Rd, B P Rdˆd be a non-singular matrix and let rr P Ld1pΩ,F ,Pq be such that rux :“
x1B´1prr ´ µq has the same continuous probability distribution for every x P Sd´1 :“

 

x P Rd : ‖x‖2 “ 1
(

(e.g. rr is the uniformly distribution over the ellipsoid
 

r P Rd : ‖Bpr ´ µq‖2 ď 1
(

or r „ N pµ,BB1q).
Then, for any distortion risk measure ρ we have

U pρq “
 

r P Rd :
∥∥B´1pr ´ µq

∥∥
2
ď ρprux0

q
(

(14)

where x0 is an arbitrary element of Sd´1.

If rr is distributed as in Lemma 5.1 with B “ I and µ “ 0, then UpCV aRδq is an Euclidean ball for any δ.
In turn, the characterization from Example 2.2 shows that, if δN P Z`, then U

`

CV aRNδ
˘

is the convex hull

of the
`

N
δN

˘

points in pΩhδ :“
!

řN
i“1 h

δ
σpiqr

i : σ P SN

)

for hδ defined in (8) (pΩhδ corresponds to all averages

of δN points from
 

ri
(N

i“1
). Now, it is well known that to obtain a good approximations of the Euclidean

ball by a set of the form conv
´

pΩhδ

¯

we need the number of extreme points of this set to be quite large

(See Ball (1997)). While it is hard to predict the number of extreme points of conv
´

pΩhδ

¯

, it is likely to be

a non-decreasing function of
ˇ

ˇ

ˇ

pΩhδ

ˇ

ˇ

ˇ
“
`

N
δN

˘

. Hence, we would then expect the approximation of U
`

CV aR0.5

˘

by U
´

CV aRN0.5

¯

to be much better that the approximation of UpCV aRδq by U
´

CV aRNδ

¯

for small δ. This

aligns with the SAA approximation issues of CV aRδ being worse for small δ. Unfortunately, small values
of δ are precisely the ones needed to incorporate appropriate levels of risk aversion and it is unlikely that

U
´

CV aRN0.5

¯

will provide a good approximation of UpCV aRδq for δ ! 0.5. However, by noting that both
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UpCV aR0.5q and UpCV aRδq are Euclidean balls (just with different radii), we have that U
´

CV aRN0.5

¯

is

indeed a good approximation of a scaling of UpCV aRδq for δ ! 0.5. Conversely, for any δ an appropriate

scaling of U
´

CV aRN0.5

¯

will be a good approximation of UpCV aRδq. More precisely, if r0.5 is the radius

of UpCV aR0.5q and rδ is the radius of UpCV aRδq, then UpCV aRδq “ prδ{r0.5qU pCV aR0.5q and hence we

expect prδ{r0.5qU
´

CV aRN0.5

¯

to be a better approximation of UpCV aRδq than U
´

CV aRNδ

¯

(at least for

small δ). The potential advantage of using {CV aRγ,ε emerges by noting that scalings of U
´

CV aRN0.5

¯

are

precisely the uncertainty sets U
´

{CV aR
N

0.5,ε

¯

of {CV aR0.5,ε for an appropriately chosen ε. We formalize this

in the following corollary that shows how to calculate the appropriate ε for elliptical distributions and all
values of δ. Note that the proposition can be directly extended to {CV aRγ,ε for values of γ other than 0.5.

Corollary 5.2. Let µ P Rd, B P Rdˆd be a non-singular matrix and let rr P Ld1pΩ,F ,Pq be such that rux :“
x1B´1prr ´ µq has the same continuous probability distribution for every x P Sd´1 :“

 

x P Rd : ‖x‖2 “ 1
(

.

Then, U pCV aRδq “ U
´

{CV aR0.5,ε

¯

for ε “
CV aRδprux0q

CV aR0.5prux0q
, where x0 is an arbitrary element of Sd´1.

Proof. Note that {CV aR0.5,ε prux0
q “ εCV aR0.5 prux0

q`p1´εqE prux0
q “ εCV aR0.5 prux0

q “ CV aRδ prux0
q.

The following example provides a graphical illustration of the advantage of using U
´

{CV aR
N

0.5,ε

¯

over

U
`

CV aRNδ
˘

to approximate U pCV aRδq.

Example 5.1. The uncertainty set associated with CV aR1{8 for a 3-dimensional standard normal dis-
tributed rr correspond to a sphere of radius 1.6468 centered at the origin. Figure 2 shows the uncertainty

sets associated with CV aRN1{8 (left) and {CV aR
N

0.5,ε (right) for a sample of N “ 8 random points (with ε

selected as in Corollary 5.2). The uncertainty set associated with CV aRN1{8 has 6 vertices and 8 faces. In

contrast, the uncertainty set associated with {CV aR
N

0.5,ε has 30 vertices and 56 faces and seems to give a
closer approximation of the ball.
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Figure 2: Approximation of U
`

CV aR1{8

˘

by U
´

CV aRN
1{8

¯

and U
´

{CV aR
N

0.5,ε

¯

for N “ 8.
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Corollary 5.2 shows that

z˚0.5,ε :“ min
!

{CV aR0.5,ε

`

´x1rr
˘

: x1e “ 1, x ě 0
)

(15)

is equivalent to (11) if rr is elliptically distributed and ε is chosen as in the corollary (in particular z˚0.5,ε “ z˚δ ).
Furthermore, Example 5.1 illustrates how the SAA version (12)/(13) of (11) is not equivalent to the SAA
version of (15) given by

z˚0.5,ε,N :“ min
x

!

{CV aR
N

0.5,ε

`

´x1rr
˘

: x1e “ 1, x ě 0
)

, (16)

where {CV aR
N

0.5,ε p´x
1
rrq :“ εmint

!

t` 1
0.5N

řN
i“1r´x

1ri ´ ts`
)

´ p1 ´ εq 1
N

řN
i“1 x

1ri. However, Exam-

ple 5.1 also suggests that (16) is likely to provide a better approximation of (11) than (12)/(13). While
the equivalence between (11) and (15) no longer holds for general distributions, (16) might still provide

a better approximation than (12)/(13). In particular, it is still reasonable to expect that U
´

{CV aR
N

0.5,ε

¯

has a richer structure than U
`

CV aRNδ
˘

as the former is constructed by taking a larger number of partial
averages of the sample points. This could have a smoothing effect similar to the one depicted in Figure 2,
which could provide more stability for small sample sizes. Still, as N grows, we can only guarantee that

{CV aR
N

0.5,ε converges to {CV aR0.5,ε, and this last risk measure may not be equivalent to CV aRδ for any

δ. However, Corollary 3.4 shows that {CV aR0.5,ε is a valid risk measure on its own right, which validates

the use of {CV aR
N

0.5,ε independent of its potential approximation of CV aRδ. Nonetheless, in the next two
subsections we test quality of this potential approximation on both elliptical and non-elliptical distributions.
We end this section with two observations. The first one concerns the calculation of the scaling factor ε for
non-elliptical distributions. While Corollary 5.2 no longer provides a precise formula we could still follow its
general idea and choose

ε «
CV aRδp´x

1
rrq ´ Er´x1rrs

CV aR0.5p´x1rrq ´ Er´x1rrs
(17)

for some fixed x P Sd´1. Our approach will be to select a SAA approximation of this ratio.
Our final observation is that, similarly to (13), (16) is also equivalent to the convenient problem given by

min

#

ε

˜

t`
1

0.5N

N
ÿ

i“1

r´x1ri ´ ts`

¸

´ p1´ εq x1r : t P R, x1e “ 1, x ě 0

+

(18)

where r :“ 1
N

řN
i“1 r

i, which can be also easily formulated as a linear programming problem.

5.1. Results for Gaussian Distribution

We begin our experiments with a Gaussian distribution as it satisfies the conditions of Corollary 5.2 and
it also allows for the exact solution of (11). To generate the data for our experiments we utilize the same
historical data for 200 stocks listed in SP-500 used in Vielma et al. (2008) to estimate the mean vector µ
and covariance matrix Σ of these assets. We then assume that the real distribution of the assets is Gaussian
with this mean and covariance. Hence, by Lemma 5.1, we have that (11) is equivalent to the second-order
conic problem given by

z˚δ “ min
x,t

!

CV aRδ prνq ¨ t´ x1sr : x1e “ 1,
∥∥∥Σ1{2x

∥∥∥
2
ď t, x, t ě 0

)

(19)

where rν „ N p0, 1q.
Our objective is to compare the approximation effectiveness of CV aRNδ and {CV aR

N

0.5,ε for this problem,
with a particular emphasis on the quality of the obtained feasible portfolios. For this we proceed as follows
for each δ P t0.01, 0.1u.
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1. Generate N i.i.d. samples from our real distribution N pµ,Σq.

2. Solve the sampled CVaR problem (13) and save the optimal solution x˚
CV aRNδ

.

3. Compute εpδq “ CV aRδprνq
CV aR0.5prνq

for rν „ N p0, 1q.

4. Solve the sampled {CV aR
N

0.5,εpδq problem (18) and save the optimal solution x˚
{CV aR

N

0.5,εpδq

.

5. Plot CV aRδp´x
1
rrq v/s CV aRNδ p´x

1
rrq for x P

"

x˚
CV aRNδ

,x˚
{CV aR

N

0.5,εpδq

*

.

6. Repeat steps 1–5 100 times.

Figure 3 shows the results for this experiment. Blue x’s correspond to x˚
CV aRNδ

and green circles corre-

spond to x˚
{CV aR

N

0.5,εpδq

. The vertical magenta line show the exact z˚δ as computed by (19), and the diagonal

blue line corresponds to equal values for the real and sampled CV aR. As expected (e.g. Shapiro et al. (2009,
Proposition 5.6)), the sampled CV aR consistently underestimate the real CV aR and this effect is more
significant for δ “ 0.01. However, the epsilon scaling tends to reduce this downward bias. More importantly,
the epsilon scaling reduces variability of both the sampled and real CV aR of the optimal solutions and tends
to provide better solutions to the original problem.
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Figure 3: Mitigating estimation errors of CVaR (Gaussian distribution).

The increased concentration along the Real CVaR axis of the epsilon scalings solutions can be particu-
larly advantageous when considering hard-to-solve optimization problems. Estimating the real CV aR of a
particular solution can be significantly easier that approximating the whole CV aR function. Hence, if we
can generate a relatively large number1 of potentially good solutions, it is reasonable to estimate they real
CV aR and pick the best one. For instance, if we look at the best among the traditional solutions (the blue
x further to the left) we can see that it is a relatively good solution. However, generating enough solutions
to guarantee we find such best solution may not always be computationally feasible. For example, if we
consider portfolio optimization problems with limited diversification or cardinality constraints problem (11)
becomes a mixed integer problem that can be very hard to solve Vielma et al. (2008). Hence, in some cases,
a more realistic comparison may be to simulate the effect of solving a single instance of the appropriate

1Large enough to have variety, but still significantly smaller that all feasible solutions.
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optimization problem by randomly selecting one of the traditional solutions (blue x’s) and one of the epsilon
scaling solutions (green circles). We explore this evaluation in Table 1 where we also study the effect on the
results of the number of samples and the number stocks.

Table 1 shows results for portfolio sized of 20 and 200 stocks, δ P t0.1, 0.01u and sample sizes of N “ 100,
500 and 101000. Column Best Solution shows the smallest value of CV aRδp´x

1
rrq over the 100 repetitions

for each x P

"

x˚
CV aRNδ

,x˚
{CV aR

N

0.5,εpδq

*

. This is intended to illustrate the case in which the optimization

problem is easy to use and we can generate several candidate solutions, evaluate them and select the best.
In contrast, column Average Solution shows the average value of CV aRδp´x

1
rrq over the 100 repetitions.

This is intended to illustrate the case in which the optimization problem is hard to solve and only one or
very few solutions can be generates (i.e. we expect this average to be representative of a typical single
solution). Finally, column z˚δ shows the exact optimal value obtained through (19). We can see that the
epsilon scaling yields better solutions for all parameters and metrics. This advantage is particularly strong
for the metric of average solution and small number of samples and δ. In Appendix B we show how this
advantage is increased further when we allow short-selling in the portfolio problem (i.e. when we remove the
non-negativity constraint on x variables).

Port. Best Solution Average Solution
Size δ z˚δ Type N “ 100 N “ 500 N “ 101000 N “ 100 N “ 500 N “ 101000

20 0.01 0.3502
CV aRNδ 0.3709 0.3610 0.3509 0.4398 0.3932 0.3535

{CV aR
N

0.5,εpδq 0.3577 0.3521 0.3503 0.3846 0.3576 0.3506

20 0.1 0.2195
CV aRNδ 0.2333 0.2206 0.2197 0.2595 0.2288 0.2200

{CV aR
N

0.5,εpδq 0.2265 0.2208 0.2196 0.2461 0.2253 0.2198

200 0.01 0.2107
CV aRNδ 0.2866 0.2412 0.2140 0.3643 0.2665 0.2171

{CV aR
N

0.5,εpδq 0.2488 0.2190 0.2112 0.2829 0.2267 0.2116

200 0.1 0.1266
CV aRNδ 0.1741 0.1375 0.1272 0.2179 0.1474 0.1277

{CV aR
N

0.5,εpδq 0.1545 0.1342 0.1269 0.1916 0.1395 0.1272

Table 1: Solution quality for portfolio of 20 and 200 stocks for different values of δ and N (Gaussian distribution)

5.2. Results for other non-gaussian distribution

To study a case in which the conditions of Corollary 5.2 do not hold we repeat the previous experiment
assuming that returns follow a uniform and a normal-inverse gaussian distribution. In the first case, each
stock has a return ri “ µi ` rηi, where rηi are independent random variables uniformly distributed in r´1, 1s.
Note that in this case U pCV aRδq for different δs are not scalings of one another. In the second case,
we assume that ri follows a Multivariate Normal-Inverse Gaussian distribution, which is a heavy-tailed
distribution commonly used on finance. In this latter case, we assume that stocks have a return r “
µ `

?
τυ (Aas et al., 2006) where υ „ N p0,Σq and τ follows a generalized inverse Gaussian distribution of

parameters λ “ ´0.5, χ “ 1 and ψ “ 1 (following the notation of Prause (1999)).
On both cases, even evaluating CV aRδ requires multidimensional integration. For this reason we compute

the scaling factor ε in step 3 as the sampled estimation of (17), given by

ε “
CV aRMδ p´x

1
rrq ` 1

M

řM
i“1 x

1ri

CV aRM0.5p´x
1
rrq ` 1

M

řM
i“1 x

1ri

where x is the solution obtained in step 2, and M “ 1001000.
As explained in Shapiro et al. (2009, §5.6.1), it is possible to estimate a lower bound of z˚δ using the law

of large numbers computing the average and the variance of CV aRNδ

´

x˚
CV aRNδ

¯

over the 100 repetitions.
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We use this bound in Figures 4 and 5 to replace the exact value calculated with (19), which is not applicable
here. We now use a vertical dashed magenta line to emphasize that it is only a lower bound that holds with
high probability and not the exact value of z˚δ . Similarly, this bound in Tables 2 and 3 is labeled as z˚δ .
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Figure 4: Mitigating estimation errors of CVaR (Uniform distribution).

Port. Best Solution Average Solution
Size δ z˚δ Type N “ 100 N “ 500 N “ 101000 N “ 100 N “ 500 N “ 101000

20 0.01 0.2044
CV aRNδ 0.2541 0.2288 0.2123 0.2987 0.2619 0.2144

{CV aR
N

γ,ε 0.2293 0.2173 0.2130 0.2628 0.2243 0.2139

20 0.1 0.0877
CV aRNδ 0.1117 0.0970 0.0894 0.1427 0.1046 0.0902

{CV aR
N

γ,ε 0.1111 0.0931 0.0904 0.1297 0.1000 0.0909

200 0.01 0.0003
CV aRNδ 0.1068 0.0591 0.0271 0.1326 0.0677 0.0294

{CV aR
N

γ,ε 0.0899 0.0425 0.0182 0.1031 0.0475 0.0191

200 0.1 -0.0410
CV aRNδ 0.0092 -0.0183 -0.0359 0.03188 -0.0102 -0.0350

{CV aR
N

γ,ε 0.0058 -0.0222 -0.0363 0.0246 -0.0165 -0.0360

Table 2: Solution quality for portfolio of 20 and 200 stocks for different values of δ and N (Uniform distribution)

We again see that the epsilon scaling provides an advantage, particularly for small number of samples and
δ. Furthermore, while the gap between the traditional CV aR and the epsilon scaling is virtually eliminated
for very large number of samples (N “ 101000), the epsilon scaling still provides better solutions in both
metrics. Again, results for problems were we allow short-selling are included in Appendix B.

6. Conclusions

We have shown that, at least for finite uniform distributions, the family of uncertainty sets associated
with distortion risk measures over affine or linear random variables is strictly larger that those associated
with distortion risk measures over arbitrary random variables. In particular, we have shown that certain
expansions of uncertainty sets associated with distortion risk measures also yield distortion risk measures
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Figure 5: Mitigating estimation errors of CVaR (Normal-Inverse Gaussian distribution).

Port. Best Solution Average Solution
Size δ z˚δ Type N “ 100 N “ 500 N “ 101000 N “ 100 N “ 500 N “ 101000

20 0.01 0.4519
CV aRNδ 0.4836 0.4802 0.4654 0.6074 0.5476 0.4700

{CV aR
N

γ,ε 0.4852 0.4620 0.4627 0.5118 0.4730 0.4637

20 0.1 0.2272
CV aRNδ 0.2438 0.2303 0.2282 0.2832 0.2432 0.2287

{CV aR
N

γ,ε 0.2387 0.2306 0.2278 0.2561 0.2348 0.2282

200 0.01 0.2642
CV aRNδ 0.4238 0.3328 0.2901 0.5388 0.3796 0.2969

{CV aR
N

γ,ε 0.3452 0.3004 0.2795 0.3823 0.3057 0.2833

200 0.1 0.1293
CV aRNδ 0.1901 0.1517 0.1333 0.2472 0.1632 0.1337

{CV aR
N

γ,ε 0.1627 0.1417 0.1324 0.1997 0.1469 0.1326

Table 3: Solution quality for portfolio of 20 and 200 stocks for different values of δ and N (Normal-Inverse Gaussian distribution)
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over affine or linear random variables. This effectively expands the family of uncertainty sets with favorable
theoretical properties. To study the potential advantage of these additional uncertainty sets we have included
some preliminary experiments that suggest that these expansions could be useful to mitigate estimation
errors.

We finally note that the additional uncertainty sets we have considered still do not give a precise char-
acterization of the family of uncertainty sets associated with distortion risk measures over affine or linear
random variables. In particular, it is easy to find examples where the law invariance property is also moot
for linear random variables. For example, consider Ω “ t´1, 0, 2u with the uniform probability. In this space
a linear random variable is represented by a scalar x and its realizations are given by t´x, 0, 2xu. It is easy
to see that the random variables associated with x and y have the same distribution only if ´x “ 2y and
´y “ 2x. The only solution to this system is x “ y “ 0 and hence there are no non-trivial linear random
variables with the same distribution. More general settings might not completely eliminate the possibility of
non-trivial linear random variables with the same distribution. However, a significant limitation of such ran-
dom variables could validate the use of additional uncertainty sets. Still, it is likely that any characterization
of these yet additional sets will be highly dependent on the specific structure of Ω.
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In O. Günlük and G. J. Woeginger (Eds.), IPCO, Volume 6655 of Lecture Notes in Computer Science, pp.
104–116. Springer.
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Hiriart-Urruty, J.-B. and C. Lemaréchal (2001). Fundamentals of convex analysis. Heidelberg: Springer
Verlag.

Kawas, B. and A. Thiele (2011). Short sales in log-robust portfolio management. European Journal of
Operational Research 215 (3), 651–661.
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Appendix A. Proof of Lemma 5.1

Proof.

Upρq “
!

u P Rd : x1u ď ρpru1xq for all x P Sn´1
)

“

!

u P Rd : x1pu´ µq ď ρppru´ µq1xq for all x P Sn´1
)

“

#

u P Rd :

˜

`

B´1
˘1
x∥∥pB´1q

1
x
∥∥

2

¸1

pu´ µq ď ρ

˜

pru´ µq1

˜

`

B´1
˘1
x∥∥pB´1q

1
x
∥∥

2

¸¸

for all x P Sn´1

+

“

!

u P Rd : x1B´1pu´ µq ď ρ
`

x1B´1pru´ µq
˘

for all x P Sn´1
)

“

"

u P Rd : sup
xPSn´1

x1B´1pu´ µq ď ρprux0
q

*

“

!

u P Rd :
∥∥B´1pu´ µq

∥∥
2
ď ρprux0

q

)

.

The first equality comes from translation equivariance of ρ, the second one comes from non-singularity of
`

B´1
˘1

, the third from positive homogeneity of ρ and the fourth comes from ρpruxq “ ρprux0
q for all x P Sn´1

because ρ is law invariant and the assumption on the distribution of rux.

Appendix B. Results for the portfolio problem allowing short-selling
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Figure B.6: Mitigating estimation errors of CVaR allowing short-selling (Gaussian distribution).
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Figure B.7: Mitigating estimation errors of CVaR allowing short-selling (Uniform distribution).
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Figure B.8: Mitigating estimation errors of CVaR allowing short-selling (Normal-Inverse Gaussian distribution).
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