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The rapid growth of the availability of wearable biosensors has created the opportunity for 
using biological signals to measure worker performance.   An important question to ask is can 
one use such signals to not just measure, but predict worker performance on a task under 
stressful or high risk conditions.   Here we show that the biological signal known as galvanic 
skin response allows such a prediction.  We conduct an experiment where subjects answer 
arithmetic questions under different stress conditions while having their galvanic skin 
response monitored.  Using only the galvanic skin response measured under low stress 
conditions, we are able to predict which subjects will perform well under high stress 
conditions, achieving an area under the curve of 0.76. Without using any biological signals, we 
do no better than random guessing.  Our result suggests that performance in high stress 
conditions can be predicted using biological signals obtained in low stress conditions. 
 
For many jobs, it is difficult to test a worker’s performance under real-life conditions 
either because it is prohibitively expensive or because the stakes are too high to risk 
an error.  For instance, it can be difficult to simulate the actual pressure and risk faced 
by a financial trader on a trading floor.  The true risk of an accident is hard to recreate 
for airline pilots or truck drivers.  A soldier can only experience the reality of combat 
on the battlefield.  In each of these examples, the worker’s performance is evaluated 
using some sort of testing in a simulation or another low stress environment.  For 
instance, airline pilots and soldiers are often tested in computer-generated 
simulations (Bymer 2012) (Chang 2013).  The performance of a worker in a simulator 
or in another low stress environment may not be a good predictor of his performance 
in a high stress situation because it is not obvious how he will respond to the 
additional stress.  Some workers may thrive in high stress environments, while others 
may suffer a large degradation in their performance.   In this paper, we show that 
biological data, in particular galvanic skin response (GSR), can be used to predict 
performance under stress and potentially enhance conventional testing methods.  
 
The relationship between stress and performance was first characterized by the 
famous Yerkes Dodson curve (Yerkes 1908) which posits that performance is 
maximized at a certain level of stress and decreases as the stress exceeds this optimal 
level.  Other studies have found that this relationship holds for a variety of tasks and 
types of stress (Ariely 2009, Anderson 1994, S. L. Beilock 2007).  Different theories 
have been proposed to try and explain this relationship.  One theory is that added 
stress causes a shift from automatic to controlled mental processes, resulting in 
decreased performance (Langer 1979), (Baumeister 1984), (Camerer 2005), (Dandy 
2001).  Another theory is that the added stress consumes mental resources and 
interrupts proceduralized routines (S. L. Beilock 2007) .  While these theories provide 
different explanations for the impact of stress on performance, one criticism is that 
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these theories are not predictive because the optimal stress level varies by task and 
person and also it can be difficult to quantifiably measure stress (Neiss 1988).   
 
One proposed way to measure stress involves using what is known as galvanic skin 
response (GSR), which is the electrical conductance of the skin and depends on pre-
secretory activity in the sweat glands (Lader 1962).  GSR was first shown to be 
correlated with stress in (Jung 1908)   and many studies since have supported this 
relationship (Boucsein 2012, Picard 1997).  The recent ubiquity of wearable 
biosensors such as smart watches and wristbands has made GSR data much easier to 
collect and has facilitated a new body of experimental research which uses GSR for 
stress detection. It has been shown to be effective for distinguishing varying degrees 
of stress in both lab studies (Zhai 2005) and real-life settings, such as highway and 
city driving (Healey 2005) and financial trading (Lo and Repin 2002). Experiments 
have also shown that GSR can be used to infer the difficulty or cognitive load 
associated with a task (Setz 2010) , (Nourbakhsh 2012).   
 
While the large body of work on GSR has shown that it is correlated with stress and 
task difficulty, what has not been established is the ability of GSR to predict the 
performance of a worker under stressful conditions.  Being able to predict 
performance under stress using GSR would make it an incredibly useful signal for a 
host of applications, such as testing and evaluating workers.  Here we show that GSR 
measured while performing a task under low stress is actually predictive of 
performance of the same task under high stress.  That is, by testing a person under a 
low stress condition, we can predict how well they will perform when there is 
increased stress. 
 
Experimental setup 
We conducted a multi-stage experiment with varying degrees of stress, but uniform task 
difficulty to study the relationship between GSR and performance. We recruited 30 
undergraduate students as subjects for the experiment.  The subjects were told they would 
be participating in a study of mathematical ability and stress.  Each subject was fitted with 
a NEULOG GSR finger sensor on the index and middle fingers on their non-dominant 
hand.  The GSR signal was captured throughout the whole experiment at a 5 Hz sampling 
rate.  The subject was first asked to relax for three minutes.  After this rest period they 
began three distinct rounds of a computer-based arithmetic game consisting of a series of 
three digit by two digit multiplication questions.  Between each round the subject was given 
a three minute rest period. Figure 1 shows a screenshot of the game, the finger sensor used 
for the experiment and a diagram depicting the sequence of stages in the experiment. 
 
The first round of the game was for calibration and designed to be minimally stressful in 
order to evaluate the subjects’ baseline performance and GSR response to the arithmetic 
questions. Subjects answered multiplication questions for ten minutes. They did not receive 
any feedback on whether or not their answers were correct and there was no time limit for 
answering individual questions. During this round, subjects were incentivized with a small 
financial reward of $0.25 for each correct response. During the rest period following the 
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calibration round, the subjects’ average response time was calculated and used in the 
following two rounds for the incentive scheme described below.  
 
The second and third rounds of the game were the low and high stress rounds. Both of these 
rounds consisted of 20 multiplication questions. Subjects were given 130% of their average 
answer time from the calibration round to answer each question in these rounds. They were 
instructed that a portion of the time allowed was “bonus” time, during which correct 
answers were worth $1 instead of $0.25. In the low stress round, 85% of the question time 
allowed was bonus time, whereas during the high stress round only 50% of the time was 
bonus time. These percentages were chosen such that achieving the bonus payout in the 
low stress round was only slightly challenging, whereas in the high stress round it was very 
difficult. The time remaining for each question was visible to the subjects on the game 
screen as a bar that reduced in size every second, with bonus and normal time represented 
by green and red shading respectively, as shown in Figure 1. Subjects were alerted when 
they ran out of bonus time by an unpleasant buzzer sound. During these two stress rounds, 
subjects were also given feedback indicating whether the answer they submitted for each 
question was correct.  
 
Exploratory data analysis 
Two different performance metrics can be developed from our experiment: accuracy on 
the 20 questions asked in each round and monetary earnings in each round. In our analysis, 
we focus on the earnings metric as the dependent variable of interest because earnings is 
likely to be more sensitive than accuracy to the impact of stress on the subject’s 
performance. In the Supplementary Information, we include analysis showing that the 
accuracy is not well predicted by either performance features or GSR features. The 
earnings depend upon how fast the subject answers the individual questions and how many 
questions are answered correctly, whereas the accuracy just depends upon the number of 
questions answered correctly.  If a subject is impacted by the stress negatively, this will 
have a larger impact on their earnings (which is sensitive to speed) than accuracy (which 
can remain high even if the subject slows down).  If we believe that GSR is related 
somehow to the stress of the subject, and that the stress is impacting performance, then we 
would expect the good and bad performing subjects to be more easily distinguished in 
earnings than in accuracy. 
 
The simplest hypothesis is that subjects who perform well in the calibration and low stress 
rounds will also perform well in the high stress round.  If this is the case, then performance 
features from the calibration and low stress rounds should be highly correlated with 
earnings in the high stress round.  However, we find that these features are not highly 
correlated with performance in the higher stress rounds.  We plot in Figure 2 each subject’s 
performance metrics, both accuracy and earnings, in calibration and low stress rounds 
versus earnings in the high stress round. There is no clearly visible relationship between 
the performance metrics across rounds.  This is further supported by the correlation 
coefficient of these metrics, which are not statistically significant for each performance 
metric (see Supplementary Information for details).  This suggests that to predict 
performance under high stress conditions, we will likely need more information than 
simply performance in lower stress conditions. This also supports our speculation that 
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simulation and testing methods designed to measure a candidate’s ability in lower stress 
conditions are not necessarily good indicators of real-world performance by themselves. 
  
We next look at the predictive power of the GSR signal we measured for each subject.  
Figure 3 shows the trajectory of the raw GSR signal over the course of the experiment for 
two subjects, who in this case are the highest and lowest earners in the high stress round.  
In the figure, each round of the trial is separated by a short rest period, demarcated with 
red lines, and each round and rest period of the experiment is labeled.  The GSR signal is 
measured in microsiemens (µS) which is a unit of conductance.  The figure shows that the 
GSR signal can exhibit a variety of behaviors, such as upward and downward trends and 
rapid oscillations.  There are also significant differences in the GSR signal path for these 
two subjects.  
 
We want to determine what features of the GSR signal will predict performance in the high 
stress round. The GSR signal is very high dimensional, with thousands of sampled values 
per subject.  To obtain a useful characterization the GSR signal for each user, we reduced 
the full high dimensional signal to a set of low dimensional features.  One of the feature is 
drift which is defined as the absolute change in the GSR signal from the beginning to the 
end of a single round in the experiment.  Drift measures any slow variations in the GSR 
signal over the course of a round.  Another feature is the maximum increase which is the 
absolute difference in the GSR signal between its minimum point in the round to the end 
of the round.  Maximum increase measures any trend in the GSR signal that is present at 
the end of the round. We considered other features as well, but none of them proved 
significant. Details can be found in the Supplementary Information. 
 
Classifying performance 
Our prediction task is to distinguish between subjects who perform well in the high stress 
round from those who do not using data from the calibration and low stress rounds. This 
requires us to assign a binary label to each subject indicating if he is a good or bad 
performer in the high stress round. As a simple labeling scheme, we say a subject is a good 
performer if his performance metric is strictly above the median value for all subjects, 
otherwise the subject is a bad performer.  We use the median performance metric as a 
threshold because it is robust to outliers who have extreme values of the metric. We 
checked the robustness of our findings with respect to the classification threshold and we 
also found similar significance results for regression models for continuous earnings (see 
Supplementary Information for details).  
 
To gain a better understanding of our data, we show a scatter plot of the good and bad 
performers in a two dimensional feature space in Figure 4.  We use the features drift and 
maximum increase because these set of features lead to a good separation of the good and 
bad performers.  In the scatter plot the good and bad performers are indicated with different 
shaped markers.  We see that each type of performer occupies a separate region of this 
feature space. The bad performers have a smaller maximum increase and a larger drift.   
 
It is not clear why the features we have used in Figure 4 are effective at separating the good 
and bad performers.  From the figure, it can be seen that the bad performers typically have 
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a low maximum increase and a drift that is near zero or negative in the calibration round.  
This means that during the calibration round the GSR signal does not increase very much.  
If we follow theories which suggest that increases in GSR indicate an increase in stress or 
cognitive load, then the bad performers are not suffering very much stress or cognitive load 
in the calibration round.  In contrast, the good performers have a large maximum increase 
relative to their drift.  These subjects are experiencing a higher level of stress or cognitive 
load.  One possible explanation is that the bad performers do not get themselves focused 
in the absence of any stress, and then when the stress is added, they are not able to perform 
well.  The good performers, on the other hand, are getting themselves mentally focused 
naturally without any additional stress.  Then, when the external stress is added, they are 
not affected by it because they have already prepared themselves mentally.  This is only 
one possible explanation for what we observe and there may be other explanations.  
However, we do not focus on them because our goal is not to explain the relationship 
between GSR and performance, but rather to predict who will perform well under stress.  
Therefore, we will not discuss these explanations further, but instead build a predictive 
model for performance under stress. 
 
To evaluate the statistical significance of these apparent relationships, we developed 
logistic regression models for the above median high stress earnings. For the performance 
features, we considered accuracy, earnings and average answer time and for the GSR 
features, we considered drift and maximum increase, all from both calibration and low 
stress rounds. Table 1 shows estimation results for models with three different feature sets: 
performance features, GSR features, and performance and GSR features combined. We 
compared models according to feature significance and Akaike Information Criterion 
(AIC) and report in the table the two strongest models from each feature set. We see that 
the models built with performance features alone contain features from the calibration 
round only—no performance features from the low stress round were found to be 
significant predictors of high stress earnings. The best performance feature models contain 
only one weakly significant predictor each. The two best GSR feature models pair drift and 
maximum increase features from the same period. The calibration period model exhibits 
both greater statistical significance for both predictors and a lower AIC (which indicates 
better model fit). Finally, the best combined feature models are the same as the best GSR 
feature models with the addition of the calibration accuracy feature, which is not 
statistically significant in either model. However, the AIC for the combined models does 
improve slightly over the GSR feature models.  
 
Predictive power 
To estimate how much of an improvement GSR features offer over performance features 
for classifying good and bad performers, we evaluate the prediction accuracy for the six 
models shown in Table 1. The predictive power of our models is evaluated using stratified, 
four-fold cross-validation. This technique involves separating the data into four separate 
sets or folds with balanced numbers of each outcome class in all folds. The model being 
tested is fit on three of the four folds and predictions are generated on the fourth held-out 
fold. This fit and predict process is repeated four times, with a different fold being held out 
in order to generate a prediction for each data point. Then, we use these holdout predictions 
to construct a receiver operating characteristic (ROC) curve, a visualization of the trade-
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off between the true positive and false positive rates of your predictions given different 
values for the decision rule (details in Supplementary Information). To assess the predictive 
accuracy of the models, we calculate the area under the ROC curve, or AUC. For context, 
an AUC of 0.5 indicates that a predictive model is no better than random guessing and the 
closer an AUC is to 1.0, the more accurate it is considered to be. We generated 500 different 
random stratified folds to evaluate the results’ sensitivity to the data splits and ran the above 
techniques on each one. Figure 5 shows boxplots for the distribution of AUCs for each 
model. It can be seen that performance feature models perform no better than random 
guessing, whereas the GSR feature models achieve a median AUC of 0.76. It is also worth 
noting that the combined feature models do not appear to achieve higher accuracy than the 
GSR feature models, suggesting that performance features provide very little if any 
predictive information not already contained in the GSR features for our data.  
 
Discussion 
Our results demonstrate that GSR can be used to predict performance on cognitive tasks in 
high stress conditions.  An important aspect of our work is the fact that the GSR signal 
used for prediction is obtained under calibration and low stress conditions.  Therefore it is 
truly predictive of performance under high stress conditions.  We do not yet have a clear 
explanation as to the mechanism of this phenomenon, although we suspect it is related to 
the fact that good performers will get focused and mentally prepared for a task without the 
need for additional stress or pressure.  Nonetheless, even without a clear explanation for 
the mechanism, we are still able to accurately predict the good and bad performers using 
GSR. This suggests that by using wearable biosensors, one can evaluate the performance 
of workers under dangerous, high risk, high stress conditions using data from safer, low 
risk, low stress conditions.  We anticipate that our experiment will lead to more analysis 
on the predictive power of GSR for worker performance under stress in a variety of other 
tasks.  
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Figure 1.  (a) A screenshot of the computer interface used for the experiment.  (b) The Neulog GSR 
sensor used for the experiment.  (c) The sequence of stages in the experiment, beginning on the left 
with a rest stage for the subject and ending on the right with a high stress stage. 
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Figure 2.  Scatter plots of the performance metrics in different rounds: (a) calibration earnings 
versus high stress earnings, (b) low stress earnings versus high stress earnings, (c) calibration 
accuracy versus high stress accuracy, and (d) low stress accuracy versus high stress accuracy.   The 
correlation coefficient for each pair of metrics plotted is not significant at the five percent level. 
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Figure 3.  Plots of the GSR signals during the experiment for the highest and lowest earning 
subjects.  The different rounds and rest periods are demarcated by the vertical lines on each plot. 

Figure 4. Scatter plots of subjects’ calibration drift versus calibration round maximum increase with 
different markers for good and bad performers in the high stress round in terms of (a) above median 
earnings and (b) above median accuracy. 
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Table 1. Predictor coefficients and AIC for six best logistic regression models for predicting good 
performers, defined as above median earnings in the high stress round of the experiment. 
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Figure 5. Box plot of model AUCs for predicting above median earnings developed with stratified, 4-fold 
cross-validation on 500 randomly generated data partitions.  The models use only performance features 
(Perf #1, Perf #2), only GSR features (GSR #1, GSR #2), and both features combined (Comb #1, Comb #2).  
An AUC of 0.5 corresponds to random guessing and indicates no predictive power.  The GSR and 
combined models all have median AUCs above 0.70 and are as high as 0.76, while the performance model 
median AUCs are not above 0.5, which corresponds to random guessing. 


