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Abstract Generalizing both mixed-integer linear optimization and convex op-
timization, mixed-integer convex optimization possesses broad modeling power
but has seen relatively few advances in general-purpose solvers in recent years.
In this paper, we intend to provide a broadly accessible introduction to our
recent work in developing algorithms and software for this problem class. Our
approach is based on constructing polyhedral outer approximations of the
convex constraints, resulting in a global solution by solving a finite number of
mixed-integer linear and continuous convex subproblems. The key advance we
present is to strengthen the polyhedral approximations by constructing them
in a higher-dimensional space. In order to automate this extended formulation
we rely on the algebraic modeling technique of disciplined convex programming
(DCP), and for generality and ease of implementation we use conic represen-
tations of the convex constraints. Although our framework requires a manual
translation of existing models into DCP form, after performing this transfor-
mation on the MINLPLIB2 benchmark library we were able to solve a number
of unsolved instances and on many other instances achieve superior perfor-
mance compared with state-of-the-art solvers like Bonmin, SCIP, and Artelys
Knitro.
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1 Introduction

Mixed-integer linear programming (MILP) has established itself as a practi-
cal framework for optimization problems in scheduling, logistics, planning, and
many other areas. Although these problems are in general NP-Hard, more than
50 years of investment in MILP techniques has resulted in powerful commer-
cial and open-source solvers that can solve MILP problems of practical interest
within reasonable time limits [38]. The aim of this paper is to develop method-
ologies for solving the more general class of mized-integer convex optimization,
or mixed-integer convex programming (MICP), problems by reducing them to
a sequence of MILP problems.

In order to employ MILP, we relax the convex constraints by representing
them as an intersection of a finite number of half-spaces, that is, a polyhedron.
Based on this idea, Duran and Grossman [25] and Leyffer [42] developed the
outer approzimation (OA) algorithm which solves a sequence of MILP and con-
tinuous, convex subproblems to deliver a globally optimal solution for MICP
problems in a finite number of iterations; we present a generalized version of
this algorithm in Section 2. In recent benchmarks by Mittelmann [47], the
implementation of the OA algorithm in the Bonmin [12] package (combined
with a commercial MILP solver) ranked the fastest among MICP solvers.

Despite the fact that many MICP approaches, including the OA algorithm,
build on MILP approaches, there remains a significant performance gap be-
tween the two problem classes. Bonami, Kiling, and Linderoth [13] note in a
recent review that continued advances in MILP have translated into “far more
modest” growth in the scale of problems which MICP solvers can solve within
reasonable time limits. Hence, despite numerous potential applications (see
the reviews [13,9]), our perception is that MICP has not entered the main-
stream of optimization techniques, perhaps with the exception of the special
case of mized-integer second-order cone programming (MISOCP) which we
will discuss at length.

The cases in which the OA algorithm and others based on polyhedral ap-
proximation perform poorly are those in which the convex set of constraints
is poorly approximated by a small number of half-spaces. In Section 3, we re-
view a simple example identified by Hijazi et al. [35] where the OA algorithm
requires 2" iterations to solve an MICP instance with n decision variables.
Fortunately, [35] also propose a solution based on ideas from [54] that can
significantly improve the quality of a polyhedral approximation by construct-
ing the approximation in a higher dimensional space. These constructions are
known as extended formulations, which have also been considered by [57,41].
Although Hijazi et al. demonstrate impressive computational gains by using
extended formulations, not a single MICP solver to date has implemented these
techniques. Doing so requires more structural information than provided by
“black-box” oracles through which these solvers interact with nonlinear func-
tions. In Section 4 we identify the modeling concept of disciplined convex
programming (DCP) [30], popularized in the CVX software package [29], as
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a practical solution to the problem of automatically generating extended for-
mulations based on a user’s algebraic representation of an MICP problem.

Our investigation of DCP leads us in Section 5 to consider conic optimiza-
tion as a representation of convex constraints that compactly encodes all of
the information needed to construct extended formulations. This key obser-
vation links together a number of streams in convex optimization and MICP
research, and in particular explains the increasingly popular role of MISOCP
and how it can be extended to cover “general” MICP. Pulling these pieces to-
gether, in Section 6 we develop the first OA algorithm for mized-integer conic
optimization problems based on conic duality. In Section 7, we present Pa-
jarito, a new solver for MICP based on the conic OA algorithm and compare
its efficiency with state-of-the-art MICP solvers. We report the solution of a
number of previously unsolved benchmark instances.

This paper is meant to be a self-contained introduction to all of the con-
cepts beyond convex optimization and mixed-integer linear optimization needed
to understand the algorithm implemented in Pajarito. Following broad interest
in our initial work [45], we believe that a primary contribution of this paper is
to compile the state of the art for readers and to tell a more detailed story of
why DCP and conic representations are a natural fit for MICP. For example,
in Section 2 we present the OA algorithm in a straightforward yet generic
fashion not considered by previous authors that encompasses both the tradi-
tional smooth setting and the conic setting. A notable theoretical contribution
beyond [45] is an example in Section 6 of what may happen when the assump-
tions of the OA algorithm fail: an MICP instance for which no polyhedral outer
approximation is sufficient. Our computational results in Section 7 have been
revised with more comparisons to existing state-of-the-art solvers, and as a fi-
nal contribution above [45], our solver Pajarito has now been publicly released
along with the data and scripts required to reproduce our experiments.

2 State of the art: polyhedral outer approximation

We state a generic mixed-integer convex optimization problem as

min ¢’z
xT

st. zeX, (MICONV)
x;, €7, <z <y Vie[,

where X is a closed, convex set, and the set I C {1,2,...,n} indexes the
integer-constrained variables, over which we have explicit finite bounds /; and
u; for ¢ € I. We assume that the objective function is linear. This assumption is
without loss of generality because, given a convex, nonlinear objective function
f(z), we may introduce an additional variable ¢, constrain (¢, ) to fall in the
set {(t,z) : f(x) < t}, known as the epigraph of f, and then take ¢ as the linear
objective to minimize [13]. For concreteness, the convex set of constraints X
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could be specified as
X={zeR":g;(zx) <0,j€J}, (1)

for some set J where each g; is a smooth, convex function, although we do
not make this assumption. We refer to the constraints z; € Z Vi € I as
integrality constraints. Note that when these integrality constraints are relaxed
(i.e., removed), MICONV becomes a convex optimization problem.

A straightforward approach for finding the global solution of (MICONV) is
branch and bound. Branch and bound is an enumerative algorithm where lower
bounds derived from relaxing the integrality constraints in (MICONV) are
combined with recursively partitioning the space of possible integer solutions
based. The recursive partition is based on “branches” such as x; < k and
x; > k + 1 for some integer-constrained index i € I and some value k£ chosen
between the lower bound [; and the upper bound u; of x;. In the worst case,
branch and bound requires enumerating all possible assignments of the integer
variables, but in practice it can perform much better by effectively pruning
the search tree. Gupta and Ravindran [32] describe an early implementation
of branch-and-bound for MICP, and Bonami et al. [14] more recently revisit
this approach.

On many problems, however, the branch-and-bound algorithm is not com-
petitive with an alternative family of approaches based on polyhedral outer
approximation. Driven by the availability of effective solvers for linear pro-
gramming (LP) and MILP, it was observed in the early 1990s by Leyffer and
others [42] that it is often more effective to avoid solving convex, nonlinear
relaxations, when possible, in favor of solving polyhedral relaxations using
MILP. This idea has influenced a majority of the solvers recently reviewed
and benchmarked by Bonami et al. [13].

In this section, we will provide a sketch of an outer approzimation (OA)
algorithm. We derive the algorithm in a more general way than most authors
that will later be useful in the discussion of mixed-integer conic problems
in Section 6, although for intuition and concreteness of the discussion we il-
lustrate the key points of the algorithm for the case of the smooth, convex
representation (1), which is the traditional setting. We refer readers to [12,25,
2] for a more rigorous treatment of the traditional setting and Section 6 for
more on the conic setting (i.e., when X is an intersection of convex cone and
an affine subspace). We begin by defining polyhedral outer approximations.

Definition 1 A set P is a polyhedral outer approximation of a convex set X
if P is a polyhedron (an intersection of a finite number of closed half-spaces,
i.e., linear inequalities of the form a] x < b;) and P contains X, i.e., X C P.

Note that we have not specified the explicit form of the polyhedron. While
the traditional OA algorithm imagines P to be of the form {z € R: Az < b}
for some A and b, it is useful to not tie ourselves, for now, to a particular
representation of the polyhedra.

Polyhedral outer approximations of convex sets are quite natural in the
sense that every closed convex set can be represented as an intersection of an
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infinite number of closed half-spaces [37]. For instance, when X is given in the
functional form (1) and each g; : R™ — R is smooth and finite-valued over R™
then the following equivalence holds:

X={zecR":g;(a') +Vg;() ' (z —2') <0V €R",j€J}, (2

where Vg;(z') is the gradient of g;. When some g; functions are not defined
(or do not take finite values) over all of R™ then these “gradient inequalities”
plus additional linear constraints enforcing the domain of each g; provide
a representation of X as an intersection of halfspaces; see [37] for further
discussion.

Hence, in the most basic case, a polyhedral approximation of X can be
derived by picking a finite number of points S C R™ and collecting the half-
spaces in (2) for 2’ € S instead of for all 2/ € R™. What is perhaps surprising
is that a finite number of half-spaces provides a sufficient representation of X
in order to solve (MICONV) to global optimality, under some assumptions.
This idea is encompassed by the OA algorithm which we now describe.

Given a polyhedral outer approximation P of the constraint set X, we
define the following mixed-integer linear relazation of (MICONYV)

rp = min cTx
xr

st. xz€P, (MIOA(P))
v, €7, 1; <x; <wu; Viel

Note that MIOA(P) is a relaxation because any x feasible to (MICONV)
must be feasible to MIOA(P). Therefore the optimal value of MIOA(P) pro-
vides a lower bound on the optimal value of (MICONV). This bound may
be NP-Hard to compute, since it requires solving a mixed-integer linear op-
timization problem; nevertheless we may use existing, powerful MILP solvers
for these relaxations.

For notational convenience, we sometimes split the integer-constrained
components and the continuous components of x, respectively, writing x =
(z1,27) where I = {1,...,n}\ I. Given a solution * = (z},z3) to MIOA(P),
the OA algorithm proceeds to solve the continuous, convex problem CONV (x7)
that results from fixing the integer-constrained variables x; to their values in
7

T

Vg = min ¢ x
st. zeX, (CONV(z7))
xy = xj.

If CONV (%) is feasible, let 2’ be the optimal solution. Then 2’ is a feasible
solution to (MICONV) and provides a corresponding upper bound on the
best possible objective value. If the objective value of this convex subproblem
equals the objective value of MIOA(P) (i.e., cT'2’ = ¢'z*), then 2’ is a globally
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optimal solution of (MICONYV). If there is a gap, then the OA algorithm must
update the polyhedral outer approximation P and re-solve MIOA(P) with a
tighter approximation, yielding a nondecreasing sequence of lower bounds.
To ensure finite termination of OA it is sufficient to prevent repetition of
unique assignments of the integer-valued components =7, because there is only
a finite number of possible values. The following lemma states a condition on
the polyhedral outer approximation P that helps prove finite convergence.

Lemma 1 Fizing x; € ZV, if z = (v7,x5) € P implies ¢’z > v,, for

all z; € R where v, is the optimal value of (CONV(xy)) then the OA
algorithm must terminate if MIOA(P) returns an optimal solution x* with
integer components matching x5 = xy.

Proof Assume we solve MIOA(P) and obtain a solution x*. If the integer part
of x* matches x1, by our assumptions we have rp = La* > Vg, , where rp is
the optimal value of MIOA(P). Since MIOA(P) is a relazation and vy, is the
objective value of a feasible solution, then we must have rp = vy,. Thus, we
have proven global optimality of this feasible solution and terminate.

Note that Lemma 1 provides a general condition that does not assume
any particular representation of the convex constraints X. In the traditional
setting of the smooth, convex representation (1), if 2’ is an optimal solution
to CONV(z7%) and strong duality holds, e.g., as in Prop 5.1.5 of Bertsekas [11],
then the set of constraints

g;(@") +Vg; (@) (z -2y <0VjeJ (3)

are sufficient to enforce the condition in Lemma 1 for finite convergence. In
other words, within the OA loop after solving CONV(xz7), updating P by
adding the constraints (3) is sufficient to ensure that the integer solution x}
does not repeat, except possibly at termination. Intuitively, strong duality
in CONV(z¥) implies that there are no descent directions (over the continuous
variables) from 2’ which are feasible to a first-order approximation of the
constraints g;(x) < 0 for j € J [11]. Hence a point & = (xr, zf) sharing the
integer components x; = 2} must satisfy c'(z—2') > 0 or precisely ¢’z > (O
See [42,25,2] for further discussion.

If CONV(z?}) is infeasible, then to ensure finite convergence it is important
to refine the polyhedral approximation P to exclude the corresponding integer
point. That is, we update P so that

{zeR":zy=z7}NnP =0 (4)

In the traditional smooth setting, it is possible in the infeasible case to derive
a set of constraints analogous to (3), e.g., by solving an auxiliary feasibility
problem where we also assume strong duality holds [12,2].

To review, the OA algorithm proceeds in a loop between the MILP relax-
ation MIOA(P) and the continuous subproblem with integer values fixed
CONV(z7¥). The MILP relaxation provides lower bounds and feeds integer as-
signments to the continuous subproblem. The continuous subproblem yields
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feasible solutions and sufficient information to update the polyhedral approxi-
mation in order to avoid repeating the same assignment of integer values. The
algorithm is stated more formally in Algorithm 1 and illustrated in Figure 1.

Algorithm 1 The polyhedral outer approximation (OA) algorithm

Initialize: zy < oo, 2z, < —o0, polyhedron P D X such that MIOA(P) is bounded. Fix
convergence tolerance e.
while zyy — zp, > e do
Solve MIOA(P).
if MIOA(P) is infeasible then
(MICONYV) is infeasible, so terminate.
end if
Let z* be the optimal solution of MIOA (P) with objective value wp.
Update lower bound zj, < wr.
Solve CONV (z7).
if CONV(z7}) is feasible then
Let 2’ be an optimal solution of CONV (z}) with objective value Vg

Derive polyhedron Q satisfying = = (z7,z7) € Q implies cTe > Vg for all z7 €
R”~ | by using strong duality (e.g., (3)).
if vz < zy then
Update upper bound zy +— Vgt
Record z’ as the best known solution.
end if
else if CONV(z}) is infeasible then
Derive polyhedron @ satisfying {# € R" : x;y =23} NQ = 0.
end if
Update P < PN Q.
end while

The efficiency of the OA algorithm is derived from the speed of solving
the MIOA (P) problem by using state-of-the-art MILP solvers. Indeed, in 2014
benchmarks by Hans Mittelman, the OA algorithm implemented within Bon-
min using CPLEX as the MILP solver was found to be the fastest among
MICP solvers [47]. In spite of taking advantage of MILP solvers, the tradi-
tional OA algorithm suffers from the fact that the gradient inequalities (3)
may not be sufficiently strong to ensure fast convergence. In the following sec-
tion, we identify when these conditions may occur and how to work around
them within the framework of OA.

3 State of the art: outer approximation enhancements

The outer approximation algorithm is powerful but relies on polyhedral outer
approximations serving as good approximations of convex sets. The assump-
tions of the OA algorithm guarantee that there exists a polyhedron P such
that the optimal objective value of MIOA (P) matches the optimal objective
value of (MICONYV), precisely at convergence. In the case that (MICONV)
has no feasible solution, these assumptions furthermore guarantee that there
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Fig. 1 An illustration of the outer approximation algorithm. Here, we minimize a linear
objective ¢ over the ball x% + mg < 2.5 with z7 integer constrained. On the left, the point x’
is the solution of the continuous relaxation, and we initialize the polyhedral outer approx-
imation with the tangent at z’. We then solve the MIOA(P) subproblem, which yields z*.
Fixing z1 = 2, we optimize over the circle and update the polyhedral approximation with
the tangent at =’ (on the right). In the next iteration of the OA algorithm (not shown), we
will prove global optimality of z’.

exists an outer approximating polyhedron P such that MIOA(P) has no fea-
sible solution. In Section 6, we discuss in more detail what may happen when
the assumptions fail, although even in the typical case when they are satisfied,
these polyhedra may have exponentially many constraints. Indeed, there are
known cases where the OA algorithm requires 2" iterations to converge in R™.
In this section, we review an illustrative case where the OA algorithm per-
forms poorly and the techniques from the literature that have been proposed
to address this issue.

Figure 2 illustrates an example developed by Hijazi et al. [35], specifically
the problem,

min ¢’z
n 2
1 n—1
t. == < , 5
o S(eed) o 6

reZ0<z<1,

which, regardless of the objective vector ¢, has no feasible solutions. Any poly-
hedral approximation of the single convex constraint, a simple ball, requires
2™ half-spaces until the corresponding outer approximation problem MIOA (P)
has no feasible solution. At this point the OA algorithm terminates reporting
infeasibility.

Hijazi et al. propose a simple yet powerful reformulation that addresses this
poor convergence behavior. To motivate their reformulation, we recall a basic
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Fig. 2 The example developed by Hijazi et al. [35] demonstrating the case where the outer
approximation algorithm requires 2" iterations to converge in dimension n. The intersection
of the ball with the integer lattice points (in black) is empty, yet any polyhedral outer
approximation of the ball in R™ requires 2" hyperplanes before it has an empty intersection
with the integer lattice, because the line segments (e.g., in blue) between any two lattice
points intersect the ball. Hence, any hyperplane can separate at most one lattice point from
the ball, and we require 2™ of these to prove infeasibility.

example from linear programming. The ¢ unit ball, i.e., {z € R™ : >°1" | |z, <
1}, is representable as an intersection of half spaces in R™, namely the 2™ half
spaces of the form > ; s;z; < 1 where s; = £1. This exponentially large
representation of the ¢; ball is seldom used in practice, however. Instead, it is
common to introduce extra variables z; with constraints

n
zi > xi,2; > —x; for i =1,...,n and Zzigl. (6)

i=1

It is not difficult to show that ||z||; < 1 if and only if there exist z satisfying
the constraints (6). Note that these 2n + 1 constraints define a polyhedron in
R?", which we call an extended formulation of the ¢; ball because the ¢; ball
is precisely the projection of this polyhedron defined in (z, z) space onto the
space of x variables. It is well known that polyhedra, such as the ¢; ball, which
require a large description as half-spaces in R™ might require many fewer half-
spaces to represent if additional variables are introduced [46]. Note, in this
case, that the extended formulation is derived by introducing a variable z; to
represent the epigraph {(z,z) : |z| < z} of each |z;| term, taking advantage of
the fact that the ¢; ball can be represented as a constraint on a sum of these
univariate functions.

The solution proposed by Hijazi et al. and earlier by Tawarmalani and
Sahinidis [54] follows this line of reasoning by introducing an extended formu-
lation for the polyhedral representation of the smooth ¢ ball. Analogously to
the case of the ¢; ball, Hijazi et al. construct an outer-approximating polyhe-
dron in R?" with 2n + 1 constraints which contains no integer points. By the
previous discussion, we know that the projection of this small polyhedron in
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R?™ must have at least 2" inequalities in R™. Their solution precisely exploits
the summation structure in the definition of the /5 ball, introducing an extra
variable z; for each term and solving instead

min ¢’z
T,z

- -1
i=1

1 2
ZiZ(-Ti_2) y Vi:l,...,n

reZ”,0<r<1.

The OA algorithm applied to (7) proves infeasibility in 2 iterations because
it constructs polyhedral approximations (based on gradient inequalities (3))
to the constraints in the (x, z) space. More generally, Hijazi et al. and Tawar-
malani and Sahinidis propose to reformulate any convex constraint of the form
Yo filei) <kas ),z < kand z > fi(x;) for each i where f; are univariate
convex functions. Just by performing this simple transformation before pro-
viding the problem to the OA algorithm, they are able to achieve impressive
computational gains in reducing the time to solution and number of iterations
of the algorithm.

Building on the ideas of Hijazi et al. and Tawarmalani and Sahinidis,
Vielma et al. [57] propose an extended formulation for the second-order cone
{(t,z) € R"*1 : ||z||]2 < t}, which is not immediately representable as a sum of
univariate convex functions. They recognize that the second-order cone is in-
deed representable as a sum of bivariate convex functions, i.e., ), It—z < t, after
squaring both sides and dividing by t¢. T}ley obtain an extended formulation

by introducing auxiliary variables z; > IT and constrain ), z; < t. This sim-
ple transformation was implemented by commercial solvers for mixed-integer
second-order cone optimization (MISOCP) like Gurobi and CPLEX within
months of its initial posting in 2015, yielding significant improvements on
their internal and public benchmarks.

In spite of the promising computational results of Hijazi et al. first re-
ported in 2011 and the more recent extension by Vielma et al., not a single
leading MICP solver has implemented these techniques in an automated way.
To understand why not, it is important to realize that MICP solvers (unlike
mixed-integer nonconvex solvers [54]) historically have had no concept of the
mathematical or algebraic structure behind their constraints, instead viewing
them through black-box oracles to query first-order and possibly second-order
derivative values. The summation structure we exploit, which is algebraic in
nature, is simply not available when viewed through this form, making it quite
difficult to retrofit this functionality into the existing architectures of MICP
solvers. In the following section, we will propose a substantially different rep-
resentation of mixed-integer convex optimization problems that is a natural
fit for extended formulations.
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4 Disciplined Convex Programming (DCP) as a solution

In order to implement the extended formulation proposal of [35] in an auto-
mated way, one may be led to attempt a direct analysis of a user’s algebraic
representation of the convex constraints in a problem. However, this approach
is far from straightforward. First of all, the problem of convexity detection
is necessary as a subroutine, because it is only correct to exploit summa-
tion structure of a convex function h(x) = f(z) 4+ g(z) when both f and g
are convex. This is not a necessary condition for the convexity of h; consider
f(x) = 23 — 23 and g(z) = 223. Convexity detection of algebraic expressions
is NP-Hard [4], which poses challenges for implementing such an approach in
a reliable and scalable way. Ad-hoc approaches [26] are possible but are highly
sensitive to the form in which the user inputs the problem; for example, ap-
proaches based on composition rules fail to recognize convexity of \/z? + x3
and log(exp(x1) + exp(z2)) [54].

Instead of attempting such analyses of arbitrary algebraic representations
of convex functions, we propose to use the modeling concept of disciplined
convex programming (DCP) first proposed by Grant, Boyd, and Ye [30,28]. In
short, DCP solves the problem of convexity detection by asking users to express
convex constraints in such a way that convexity is proven by composition
rules, which are sufficient but not necessary. These composition rules are those
from basic convex analysis, for example, the summation of convex functions
is convex, the point-wise maximum of convex functions is convex, and the
composition f(g(x)) is convex when f is convex and nondecreasing and g is
convex. The full set of DCP rules is reviewed in [30,53].

Even though it is possible to write down convex functions which do not
satisfy these composition rules, the DCP philosophy is to disallow them and
instead introduce new atoms (or basic operations) which users must use when
writing down their model. For example, logsumexp([ml o ]) replaces
log(exp(z1) + exp(z2)) and norm([z1 @2 ]) replaces \/z? + 23. Although ask-
ing users to express their optimization problems in this form breaks away from
the traditional setting of MICP, DCP also formalizes and axomatizes the folk-
lore within the MICP community that the way in which you write down the
convex constraints can have a significant impact on the solution time; see, e.g.,
Hijazi et al. [35] and our example later discussed in Equation 13.

The success over the past decade of the CVX software package [29] which
implements DCP has demonstrated that this modeling concept is practical.
Users are willing to learn the rules of DCP in order to gain access to power-
ful (continuous, convex) solvers, and furthermore the number of basic atoms
needed to cover nearly all convex optimization problems of practical interest
is relatively small.

Although we motivated DCP as a solution to the subproblem of convexity
detection, it in fact provides a complete solution to the problem of automati-
cally generating an extended formulation and encoding it in a computationally
convenient form given a user’s algebraic representation of a problem. All DCP-
valid expressions are compositions of basic operations (atoms); for example
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the expression max{exp(z?), =2z} is DCP-valid because the basic composi-
tion rules prove its convexity. A lesser-known aspect of DCP is that these
rules of composition have a 1-1 correspondence with extended formulations
based on the epigraphs of the atoms. Observe, for example, that

t > max{exp(z?), -2z} (8)

if and only if
t > exp(z?),t > —2x (9)

if and only if there exists s such that
s> 22t > exp(s),t > 2z, (10)

where the validity of the latter transformation holds precisely because exp(+)
is increasing and therefore s > 2 implies exp(s) > exp(«?). Furthermore, the
constraints s > 2% and t > exp(s) are convex because square and exp are
convex functions; hence (10) is a convex extended formulation of (8). Note
that while we previously discussed extended formulations derived only from
disaggregating sums, disaggregating compositions of functions in this form also
yields stronger polyhedral approximations [54]. The existence of this extended
formulation is no coincidence. Grant and Boyd [28] explain that a tractable
representation of the epigraph of an atom is sufficient to incorporate it into
a DCP modeling framework. That is, if an implementation of DCP knows
how to optimize over a model with the constraint ¢ > f(x) for some convex
function f, then f can be incorporated as an atom within the DCP framework
and used within much more complex expressions so long as they follow the
DCP composition rules.

Our analysis of DCP has led us to the conclusion that DCP provides the
means to automate the generation of extended formulations in a way that
has never been done in the context of MICP. Users need only express their
MICP problem by using a DCP modeling language like CVX or more recent
implementations like CVXPY [22] (in Python), or Convex.jl [55] (in Julia).
Any DCP-compatible model is convex by construction and emits an extended
formulation that can safely disaggregate sums and more complex compositions
of functions.

We do note that in some cases it may not be obvious how to write a
known convex function in DCP form. In our work described in [45] where we
translated MICP benchmark instances into DCP form, we were unable to find
a DCP representation of the univariate concave function 75 which is not in
DCP form because division of affine expressions is neither convex nor concave
in general. Fortunately, a reviewer suggested rewriting imﬁ =1- m—il where
1

1 is a DCP-recognized convex function so long as x +1 > 0. With this trick

we were able to translate all of the benchmark instances we considered into
DCP form, as we discuss in more details in the following section.



Polyhedral approximation in mixed-integer convex optimization 13

5 MIDCP and conic representability

While DCP modeling languages have traditionally supported only convex
problems, CVX recently added support for mixed-integer convex problems un-
der the name of MIDCP, and the subsequently developed DCP modeling lan-
guages also support integer constraints. We will use the terminology MIDCP
to refer to MICP models expressed in DCP form. In the previous section we
argued that an MIDCP representation of an MICP problem provides sufficient
information to construct an extended formulation, which in turn could be used
to accelerate the convergence of the outer approximation algorithm by provid-
ing strong polyhedral approximations. However, an MIDCP representation is
quite complex, much more so than the “black-box” derivative-based represen-
tation that traditional MICP solvers work with. Handling the MIDCP form
requires understanding each atom within the DCP library and manipulating
the expression graph data structures which are used to represent the user’s
algebraic expressions.

It turns out that there is a representation of MIDCP models which is
much more compact and convenient for use as an input format for an MICP
solver, and this is as mized-integer conic optimization problems. Before stating
the form of these problems, we first consider the standard continuous conic
optimization problem:

min ¢’z
st. Az =5> (CONE)
z ek,

where I C R"™ is a closed convex cone, that is, a closed convex set K where
any nonnegative scaling ax of a point x in the set remains in the set. A simple
example of a cone is the nonnegative orthant R = {x € R" : 2 > 0}. When
K = R then (CONE) reduces to a linear programming problem. Typically,
K is a product of cones K1 X Ko X -+ X K., where each C; is one of a small
number of recognized cones.

One of Grant et al.’s original motivations for developing the DCP frame-
work was to provide access to powerful solvers for the second-order cone
SOC,, = {(t,x) € R™ : ||z|| < t} [43] and the cone of positive semidefinite
matrices PSD,, = {4 € R®™" : A = AT 2TAz > 0¥z € R"} to users not
familiar with how to represent their problems in this form. CVX, for exam-
ple, does not use smooth, derivative-based representations of the epigraphs of
atoms but instead uses a conic representation of each of its atoms. For instance
, for z,y > 0 the epigraph of the negated geometric mean f(z,y) = —/xy is
a convex set representable as ¢t > —,/zy iff 32 > 0 such that —t < 2 < /zy iff

—t<zand 22 <y iff —t<zand (¢/V2,y/V?2,2) € RSOCs, (11)
where

RSOC,, := {(z,y,2) ER xR x R" 2 : 2zy > ||z||3,2 > 0,y > 0} (12)
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is the n-dimensional rotated second-order cone, a common cone useful for
modeling (e.g., also for functions like x2?) which itself is representable as a
transformation of the second-order cone [10]. While this conic representation
of the geometric mean is known in the literature [10], it is arguably unneces-
sarily complex for modelers to understand, and CVX, for example, provides a
geo_mean atom which transparently handles this transformation.

Subsequent to the second-order and positive semidefinite cones, researchers
have investigated the exponential cone EXP = cl{(x,y,2) € R? : yexp(z/y) <
z,y > 0} [52] and the power cone POW,, = {(z,y,2) € R3 : |z| < 2%yl ™ x >
0,y > 0} [34] which can be used to represent functions like entropy (—x log(x))
and fractional powers, respectively. This small collection of cones is sufficient
to represent any convex optimization problem which you may input within
existing DCP implementations, including CVX.

In the context of MICP, these cones are indeed sufficient from our experi-
ence. We classified all 333 MICP instances from the MINLPLIB2 benchmark
library [1] and found that 217 are representable by using purely second-order
cones (and so fall under the previously mentioned MISOCP problem class),
107 are representable by using purely exponential cones, and the remaining
by some mix of second-order, exponential, and power cones. We refer readers
to [45] for an extended discussion of conic representability. Of particular note
are the trimloss [33] family of instances which have constraints of the form,

q
Zk:l —/Zryr < Tz +b. (13)

Prior to our report in [45], the t1s5 and t1s6 instances had been unsolved since
2001. By directly rewriting these problems into MIDCP form, we obtained an
MISOCP representation because all constraints are representable by using
second-order cones, precisely by using the transformation of the geometric
mean discussed above. Once in MISOCP form, we provided the problem to
Gurobi 6.0, which was able to solve them to global optimality within a day,
indicating the value of conic formulations.

Given that DCP provides an infrastructure to translate convex problems
into conic form, we may consider mixed-integer conic problems as a compact
representation of MIDCP problems. Below, we state our standard form for
mixed-integer conic problems,

min ¢’z
st. Apxr+A,z=0 (MICONE)

L<z<UzeZ" zeKk,

where K C R¥ is a closed convex cone. Without loss of generality, we assume
integer variables are not restricted to cones, since we may introduce corre-
sponding continuous variables by equality constraints. In Section 6 we discuss
solving (MICONE) via polyhedral outer approximation.
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Our analysis here ties together a number of different threads. On one hand,
MISOCP is an active area of research within the integer programming com-
munity (e.g. [5-8,15,16,19-21,24,39,40,48-51,56-58]) and is a problem class
supported by powerful commercial solvers. Yet, MISOCP is viewed as a special
case and not as general as MICP [13]. Authors have proposed extended formu-
lations for MISOCPs and MICPs; these have been implemented within general-
purpose solvers for MISOCPs but not for MICPs. We identified MIDCP as
a modeling framework which encodes the necessary information to generate
extended formulations in an automated way. It turns out that all MIDCP
problems that can be expressed in existing software can also be encoded as
mixed-integer conic optimization problems of the form (MICONE), which is a
more convenient and compact representation. The (MICONE) formulation is
an extended formulation for the original MIDCP problem because the trans-
formation to conic form requires representing the epigraph of each individual
DCP atom. When we ask which cones are needed to represent a particular
problem, we see that the majority of benchmark instances are pure MISOCP
problems, and that only two other cones are needed to represent the remainder
of problems. Hence, we answer the question of MISOCP generality and pro-
vide a direct path to implementing extended formulations for the remainder of
MICPs of practical interest. It is sufficient to develop a solver for (MICONE)
supporting these small number of cones.

6 Outer approximation algorithm for mixed-integer conic problems

The observations of the previous section motivated the development of a
solver for problems of the form (MICONE). In [45] we developed the first
outer-approximation algorithm with finite-time convergence guarantees for
such problems. We note that the traditional convergence theory is generally
insufficient because it assumes differentiability, while conic problems have non-
differentiability that is sometimes intrinsic to the model. Nonsmooth perspec-
tive functions like f(x,y) = 2 /y, for example, which are used in disjunctive
convex optimization [18], have been particularly challenging for derivative-
based MICP solvers and have motivated smooth approximations [31]. On the
other hand, conic form can handle these nonsmooth functions in a natural way,
so long as there is a solver capable of solving the continuous conic relaxations.
In this section, we provide an overview of the key points of the algorithm
and refer readers to [45] for the full description. The finite-time convergence
guarantees of the outer approximation algorithm depend on an assumption
that strong duality holds in certain convex subproblems. Extending [45], we
include a discussion on what may happen when this assumption does not hold.
We begin with the definition of dual cones.

Definition 2 Given a cone K, we define K* := {3 € R¥ : 72 > 0Vz € K}
as the dual cone of K.

Dual cones provide an equivalent outer description of any closed, convex
cone, as the following lemma states. We refer readers to [10] for the proof.
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Lemma 2 Let K be a closed, convex cone. Then z € K iff 278> 0Vp € K*.

We note that the second-order cone SOC,,, the rotated second order cone
RSOC,, (12), and the cone of positive semidefinite matrices are self-dual, which
means that the dual cone and the original cone are the same [10]. While the
exponential and power cones are not self-dual, the discussions that follow are
valid for them and other general cones.

Based on the above lemma, we state the analogue of the MILP relaxation
MIOA(P) for (MICONE) as

T

min ¢’z
st. Apx+A,z=0 (MICONEOA(T))

L<z<UxeZ"
Tz>0vpeT.

Note that if T = K£*, MICONEOA(T) is an equivalent semi-infinite rep-
resentation of (MICONE). If T' C K£* and |T'| < oo then MICONEOA(T) is
an MILP outer approximation of (MICONE) whose objective value is a lower
bound on the optimal value of (MICONE). In the context of the discussion
in Section 2, given T', our polyhedral approximation of K is Pr = {z : 87z >
0V €T}, and we explicitly treat the linear equality constraints separately.

In the conic setting, we state the continuous subproblem CONV (z¥) with
integer values fixed as

Vpx = Min clz
z

st. Az=b— Azz”, (CONE(z*))
z e kK.

Using conic duality, we obtain the dual of CONE(z*) as

max AT(b— A,z¥)

st. B=c— AT\ (14)
B ek

In [45] we prove that under the assumptions of strong duality, the optimal
solutions f to the dual problem (14) correspond precisely to the half-spaces
which ensure the conditions in Lemma 1 when CONE(z*) is feasible; hence,
we add these solutions to the set 7. When CONE(z*) is infeasible and (14)
is unbounded, the rays of (14) provide solutions that satisfy (4), guaranteeing
finite convergence of the OA algorithm.

We previously deferred a discussion of what may happen when the as-
sumption of strong duality fails. We now present a negative result for this
case. When the assumption of strong duality fails, it may be impossible for
the OA algorithm to converge in a finite number of iterations.
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Consider the problem adapted from [36],

min 2z
st. x =0, (15)
(z,y,z) € RSOC;.
Note that (0,y,z) € RSOCj3 implies z = 0, so the optimal value is trivially

Zero.
The conic dual of this problem is

max 0
st. (B8,0,1) € RSOCs, (16)
B free.

The dual is infeasible because there is no g satisfying 06 > 1. So there is no
strong duality in this case. The following lemma demonstrates that polyhedral
approximations fail entirely. The proof is more technical than the rest of the
paper but uses only basic results from linear programming and conic duality.

Lemma 3 There is no polyhedral outer approximation Prsoc, O RSOCs
such that the following relazation of (15) is bounded:

min 2z
st. =0, (17)

(z,9,2) € Prsocs-

Proof Let us assume that Prsoc, = {(z,y,2) : Azx + Ayy+ A,z > 0} for
some vectors Az, Ay, and A.. The right-hand side can be taken to be zero
without loss of generality because RSOC5 is a cone. Since (17) is a linear
programming problem invariant to positive rescaling, it is bounded iff there
exists a feasible dual solution (8, «) satisfying

aTA, =B, (18)
oA, =0, (19)
aTA, =1, (20)

a>0. (21)

Suppose, for contradiction, that there exist (8, «) satisfying these dual feasi-
bility conditions. Let (A, Ay, As:) denote the coefficients of the ith linear
inequality in Prsoc,. Since Prsoc, 15 a valid outer approximation, we have
that

(Azis Ay, Azs) - (z,y,2) >0, V(z,y,2) € RSOCS, (22)

hence (A, Ay, Azi) € (RSOC3)* = RSOCs, recalling that RSOCs is self-
dual. Therefore we have

(o’ Ay, 0T A, 0T A,) € RSOCs (23)



18 Miles Lubin et al.

for a > 0. This follows from the fact that the vector, (a® A,,aTA,,aTA,),
is a mon-negative linear combination of elements of RSOCs and RSOCs is a
convex cone. However, the duality conditions imply (5,0,1) € RSOCs, which
is a contradiction.

Lemma 3 implies that the following MISOCP instance cannot be solved by
the OA algorithm:

min 2z

st. =0,
(z,y,z) € RSOCs, (24)
x € {0,1},

because the optimal value of any MILP relaxation will be —oo while the true
optimal objective is 0, hence the convergence conditions cannot be satisfied.

This example strengthens the observation by [36] that MISOCP solvers
may fail when certain constraint qualifications do not hold. In fact, no ap-
proach based on straightforward polyhedral approximation can succeed. Very
recently, Gally et al. [27] have studied conditions in the context of mixed-
integer semidefinite optimization which ensure that strong duality holds when
integer values are fixed.

7 Computational experiments

In this section we extend the numerical experiments performed in our pre-
vious work [45]. In that work, we introduced Pajarito. Pajarito is an open-
source stand-alone Julia solver, now publicly released at https://github.
com/mlubin/Pajarito.jl, that heavily relies on the infrastructure of

JuMP [44].

Since [45] we have improved the performance of Pajarito and report revised
numerical experiments. We translated 194 convex instances of MINLPLIB2 [1]
into Convex.jl [55], a DCP algebraic modeling language in Julia which performs
automatic transformation into conic form. Our main points of comparison are
Bonmin [12], SCIP [3], and Artelys Knitro [17], state-of-the-art academic and
commercial solvers. We further compare our results with CPLEX for MIS-
OCP instances only. All computations were performed on a high-performance
cluster at Los Alamos National Laboratory with Intel® Xeon® E5-2687W v3
@3.10GHz 25.6MB L3 cache processors and 251GB DDR3 memory installed
on every node. CPLEX v12.6.2 is used as a MILP and MISOCP solver. Be-
cause conic solvers supporting exponential cones were not sufficiently reliable
in our initial experiments, we use Artelys Knitro v9.1.0 to solve the conic
subproblems via traditional derivative-based methods.

Bonmin v1.8.3 and SCIP v3.2.0 are both compiled with CPLEX v12.6.2
and Ipopt v3.12.3 using the HSL linear algebra library MA97. All solvers are
set to a relative optimality gap of 1075, are run on a single thread (both
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Fig. 3 Comparison performance profiles [23] (solver performs within a factor of 0 of the best
on proportion p of instances) over all instances we tested from the MINLPLIB2 benchmark
library. Higher is better. Bonmin is faster on some easier instances, yet Pajarito is able to
solve more overall and with significantly fewer iterations.

CPLEX and Artelys Knitro), and are given 10 hours of wall time limit (with
the exception of gams01, a previously unsolved benchmark instance, where
we give 32 threads to CPLEX for the MILP relaxations). The scripts to
run these experiments can be found online at https://github.com/mlubin/
MICPExperiments.

Numerical experiments indicate that the extended formulation drastically
reduces the number of polyhedral OA iterations as expected. In aggregate
across the instances we tested, Bonmin requires 2685 iterations while Pajarito
requires 994. We list the full results in Tables 1 and 2 and summarize them in
Figure 3. In Figure 4 we present results for the subset of SOC-representable
instances, where we can compare with commercial MISOCP solvers.

Notably, Pajarito is able solve a previously unsolved instance, gams01,
whose conic representation requires a mix of SOC and EXP cones and hence
was not a pure MISOCP problem. The best known bound was 1735.06 and the
best known solution was 21516.83. Pajarito solved the instance to optimality
with an objective value of 21380.20 in 6 iterations. Unfortunately, the origin
of the instance is unknown and confidential.

8 Concluding remarks and future work

In this work, we have presented and advanced the state-of-the-art in polyhedral
approximation techniques for mixed-integer convex optimization problems, in
particular exploiting the idea of extended formulations and how to generate
them automatically by using disciplined convex programming (DCP). We ex-
plain why the mixed-integer conic view of mixed-integer convex optimization
is surprisingly powerful, precisely because it encodes the extended formulation
structure in a compact way. We claim that for the vast majority of problems
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Fig. 4 Performance profile [23] (solver is the fastest within a factor of @ of the best on
proportion p of instances) over the instances representable as mixed-integer second-order
cone problems where we can compare with the commercial CPLEX solver. Higher is better.
CPLEX is the best overall, since notably it already implements the extended formulation
proposed by Vielma et al. [57].

in practice, conic forms using a small number of recognized cones is a sufficient
and superior representation to the traditional smooth “black box” view.

Our developments for mixed-integer conic optimization seem to have out-
paced the capabilities of existing conic solvers, and we hope that the convex
optimization community will continue to develop techniques and publicly avail-
able, numerically robust solvers in particular for nonsymmetric cones like the
exponential cone. In spite of some numerical troubles when solving the conic
subproblems using existing solvers, our new mixed-integer conic solver, Pa-
jarito, has displayed superior performance in many cases to state-of-the-art
solvers like Bonmin, including the solution of previously unsolved benchmark
problems.

This work has opened up a number of promising directions which we are
currently pursuing. In the near term we plan on composing a rigorous report
on the technical aspects of implementing the outer-approximation algorithm
for mixed-integer conic problems, including aspects we have omitted which
are important for the reliability and stability of Pajarito. These will include
a larger set of benchmark instances and experiments with a branch-and-cut
variant of the algorithm.

We intend to investigate the application of polyhedral approximation in
the context of mixed-integer semidefinite optimization, where we expect that
failures in strong duality could be a common occurrence based on the reports
of [27]. It remains an open question what guidance we can provide to modelers
on how to avoid cases where polyhedral approximation can fail, or even if this
could be resolved automatically at the level of DCP.
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Pajarito Bonmin SCIP Knitro CPLEX
Instance Conic rep. Iter Time Iter Time Time Time Time
batch Exp 1 0.26 2 0.60 0.66 0.56
batchdes Exp 1 0.11 1 0.07 0.16 0.02
batchs101006m Exp 3 3.26 10 1.88 5.10 76.96 -
batchs121208m Exp 3 6.74 4 3.14 13.09 316.14 -
batchs151208m Exp 3 10.72 6 7.97 16.90 516.04 -
batchs201210m Exp 2 25.14 8 14.92 29.12 970.51 -
clay0203h sOC 5 1.42 9 0.90 0.70 1.28 0.35
clay0203m SOC 6 1.61 10 0.40 0.86 0.34 0.37
clay0204h SOC 1 1.85 3 3.60 7.14 5.72 1.61
clay0204m sSOC 1 0.55 3 0.33 2.55 3.30 1.02
clay0205h SOC 3 24.40 4 20.89 78.19 168.28 8.93
clay0205m sSOC 3 8.11 6 5.50 9.63 61.91 1.77
clay0303h SOC 5 2.41 9 0.97 1.53 1.96 0.54
clay0303m SOC 7 2.60 10 0.58 1.73 0.76 0.68
clay0304h sOocC 9 13.87 11 5.27 2.50 26.33 1.42
clay0304m sOocC 13 18.97 16 2.84 7.09 7.20 2.13
clay0305h sOocC 3 52.97 4 23.81 1.97 139.27 23.32
clay0305m socC 3 11.83 7 6.16 12.90 52.53 2.51
du-opt SOC 7 3.19 61 0.76 >36000 0.11 1.54
du-opt5 SOC 4 1.55 22 0.22 0.75 0.11 1.97
enpro48pb Exp 1 0.51 2 0.22 1.73 0.85 -
enpro56pb Exp 1 0.60 1 0.22 1.52 4.47 -
ex1223 ExpSOC 1 0.06 3 0.07 0.14 0.03
ex1223a SOC 9 0.02 1 0.03 0.11 0.02 0.01
ex1223b ExpSOC 1 0.08 3 0.07 0.15 0.02 -
ex4 sOocC 2 1.06 2 0.13 1.15 0.25 0.86
fac3 sOocC 2 0.19 6 0.15 0.24 0.16 0.07
netmod_dol2 sOocC 7 49.97 33 167.49 33.93 293.76 12.58
netmod_karl sOcC 12 8.05 102 56.45 3.32 122.98 7.68
netmod_kar2 SOC 12 8.14 102 56.35 3.30 122.28 7.66
no7-ar25-1 SOC 3 67.97 2 25.19 82.09 17601.54 54.34
no7-ar2-1 SOC 1 8.87 1 7.06 31.81 14957.66 21.83
no7-ar3-1 SOC 3 91.36 4 71.04 392.98 16495.95 126.09
no7-ar4.1 SOC 4 107.58 5 85.87 274.72 17865.83 48.97
no7.-ar5-1 SOC 5 115.25 7 69.23 68.90 17452.47 32.60
nvs03 sOocC 1 0.03 1 0.06 0.13 0.18 0.00
slayO4h sOocC 2 0.32 5 0.19 0.68 0.53 0.14
slay04m sOC 2 0.17 5 0.11 0.57 0.32 0.18
slayO5h sOoC 3 0.65 9 0.60 3.29 1.57 0.37
slay05m SOC 3 0.28 7 0.18 0.84 1.02 0.16
slay06h SOC 2 0.76 12 1.94 5.26 4.65 0.69
slay06m SOC 2 0.32 9 0.29 1.57 2.94 0.42
slayO07h SOC 3 1.75 15 5.04 18.35 9.96 0.98
slay07m SOC 3 0.56 12 0.66 2.51 5.75 0.67
slayO8h SOC 3 2.65 22 27.27 180.20 26.47 1.50
slay0O8m SOC 2 0.58 21 2.89 3.69 13.17 0.96
slayO9h sOocC 3 4.36 36 163.31 92.70 79.79 1.93
slay09m SOC 3 1.11 28 17.22 11.01 33.36 1.54
slay10h sOC 4 21.94 80 8155.02 11745.37 442.46 7.55
slayl0m sOC 4 4.36 77 1410.08 516.81 167.81 1.80
syn0O5h Exp 1 0.07 2 0.09 0.31 0.17 —
syn05m Exp 1 0.04 2 0.07 0.28 0.14 —
syn05m02h Exp 1 0.15 1 0.06 0.33 0.11 —
syn05m02m Exp 1 0.08 1 0.07 0.33 0.29 —
syn05m03h Exp 1 0.23 1 0.07 0.33 0.13
syn05m03m Exp 1 0.12 1 0.07 0.32 0.30
syn05m04h Exp 1 0.29 1 0.07 0.38 0.19 -
syn05m04m Exp 1 0.17 1 0.08 0.32 0.61 -
synlOh Exp 0 0.10 1 0.04 0.20 0.09 -
synlOm Exp 1 0.08 2 0.04 0.25 0.23 -
synl0mO2h Exp 1 0.27 1 0.09 0.46 0.21 -
syn10m02m Exp 1 0.16 2 0.09 0.42 3.05 —
synl0mO3h Exp 1 0.38 1 0.08 0.59 0.24 —
syn10m03m Exp 1 0.23 1 0.08 0.54 10.47 -
synl0mO4h Exp 1 0.53 1 0.11 0.52 0.19 -
synl0mO4m Exp 1 0.34 1 0.11 0.72 40.41
synl5h Exp 1 0.22 1 0.06 0.29 0.14
synl5m Exp 1 0.10 2 0.07 0.30 0.32 -
synl5m02h Exp 1 0.51 1 0.09 0.47 0.18 -
synl5m02m Exp 1 0.24 1 0.09 0.44 5.51 -
synl5mO03h Exp 1 44.15 1 0.13 0.99 0.23 -
synl5m03m Exp 1 0.38 2 0.11 0.66 25.67 —
synl5m04h Exp 1 1.47 1 0.14 1.61 0.32 —
synl15m04m Exp 1 0.50 2 0.14 1.43 186.20 —
syn20h Exp 2 0.33 2 0.10 0.34 0.20 -
syn20m Exp 1 0.13 2 0.06 0.39 1.31
syn20mO02h Exp 2 1.07 2 0.15 0.57 0.41
syn20m02m Exp 2 0.44 2 0.10 0.73 381.88 -
syn20mO03h Exp 1 1.21 1 0.13 1.52 0.78 -
syn20m03m Exp 2 0.64 2 0.15 2.00 993.73 -
syn20m04h Exp 1 1.81 1 0.19 2.41 1.11 -
syn20m04m Exp 2 0.91 2 0.27 9.77 1806.83 -
syn30h Exp 3 0.73 3 0.12 0.59 0.28 —
syn30m Exp 3 0.28 3 0.09 0.49 90.26 —
syn30m02h Exp 3 1.77 3 0.21 12.98 0.44 —
syn30mO02m Exp 3 0.82 4 0.19 1.67 1041.13 —
syn30mO03h Exp 3 2.24 3 0.40 11444.39 1.23
syn30m03m Exp 3 1.28 3 0.27 7.78 1878.32
syn30mO04h Exp 3 3.51 3 0.49 >36000 2.74 —
syn30m04m Exp 3 1.81 4 0.42 37.94 3113.33 -
syn40h Exp 3 0.92 4 0.19 0.55 0.33 -
syn40m Exp 2 0.35 4 0.97 0.52 484.94 -
syn40mO02h Exp 3 2.15 3 0.31 2073.62 1.03 -
syn40m02m Exp 3 1.18 3 0.24 5.74 1550.39 —
syn40mO03h Exp 4 4.20 4 0.59 2.88 5.27 —
syn40m03m Exp 4 2.33 5 0.52 204.94 2921.63 -
syn40mO04h Exp 3 8.56 4 1.02 >36000 20.31 -
syn40m04m Exp 5 4.61 5 0.87 974.05 8048.34

Table 1 MINLPLIB2 instances. “Conic rep” column indicates which cones are used in
the conic representation of the instance (second-order cone and/or exponential). CPLEX is
capable of solving only second-order cone instances. Times in seconds.
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Pajarito Bonmin SCIP Knitro CPLEX
Instance Conic rep. Iter Time Iter Time Time Time Time
synthesl Exp 2 0.06 3 0.04 0.24 0.11
synthes2 Exp 2 0.07 3 0.05 0.42 0.13
synthes3 Exp 2 0.09 6 0.10 0.34 0.13 -
rsyn0805h Exp 1 0.38 1 0.14 0.40 1.10 -
rsyn0805m Exp 2 0.49 2 0.25 0.87 53.62 -
rsyn0805m02h Exp 5 2.38 5 0.71 0.73 3.71 -
rsyn0805m02m Exp 4 2.41 4 2.16 11.21 1617.65 -
rsyn0805m03m Exp 3 3.26 3 4.08 10.71 2930.70 —
rsyn0805m04m Exp 2 2.32 2 2.31 19.17 5202.46 —
rsyn0810m Exp 1 0.37 2 0.24 1.17 211.18 -
rsyn0810mO02h Exp 3 1.87 3 0.58 1.61 9.79 -
rsyn0810m02m Exp 3 2.20 4 5.78 49.36 3098.62
rsyn0810mO03h Exp 3 3.19 3 1.36 1.99 26.42
rsyn0810m03m Exp 3 4.29 3 6.04 41.61 3582.39 -
rsyn0810mO04h Exp 2 3.54 3 1.31 2.87 8.61 -
rsyn0810m04m Exp 3 3.74 4 3.77 52.17 5943.63 -
rsyn0815h Exp 1 19.15 1 0.27 1.27 1.77 -
rsyn0815m Exp 2 0.49 2 0.23 1.21 171.89 -
rsyn0815m02m Exp 4 2.39 5 1.94 58.70 2565.52 -
rsyn0815m03h Exp 5 11.58 5 5.21 38.80 31.62 —
rsyn0815m03m Exp 5 5.66 4 4.59 217.30 3914.97 —
rsyn0815m04h Exp 3 6.16 3 2.03 4.73 20.55 -
rsyn0815m04m Exp 3 6.40 4 7.78 1609.07 7313.05
rsyn0820h Exp 2 1.02 3 0.42 2.04 1.55
rsyn0820m Exp 2 0.61 2 0.24 3.74 772.36 -
rsyn0820m02h Exp 2 2.28 3 0.59 2.83 90.89 -
rsyn0820m02m Exp 3 2.27 3 1.90 712.08 3138.98 -
rsyn0820m03h Exp 2 3.55 2 1.37 4.72 135.69 -
rsyn0820m03m Exp 3 4.08 3 5.14 6372.80 5220.60 -
rsyn0820m04h Exp 4 7.75 4 2.66 6.25 50.72 -
rsyn0820m04m Exp 3 7.22 3 8.65 13412.29 8314.96 —
rsyn0830h Exp 3 1.27 3 0.41 2.53 2.84 —
rsyn0830m Exp 4 0.96 4 0.37 3.37 1012.27 -
rsyn0830m02m Exp 5 10.95 5 1.83 131.12 9151.72
rsyn0830mO03h Exp 2 4.77 2 1.45 6.70 59.98
rsyn0830m03m Exp 4 5.79 4 3.45 4044.25 10519.40 -
rsyn0830mO04h Exp 3 8.44 3 2.35 14.23 209.80 -
rsyn0830m04m Exp 4 11.62 4 11.47 >36000 12709.29 -
rsyn0840h Exp 2 1.15 2 0.30 3.22 0.94 -
rsyn0840m Exp 3 0.86 2 0.26 2.96 1117.90 —
rsyn0840m02h Exp 2 2.97 3 0.72 5.10 8.43 -
rsyn0840m02m Exp 3 3.05 4 1.53 675.24 4443.70 -
rsyn0840mO03h Exp 3 7.24 3 1.85 >36000 41.84 —
rsyn0840m03m Exp 5 7.92 5 2.47 4662.04 10511.67
rsyn0840mO04h Exp 2 40.03 2 2.40 18.71 453.32
rsyn0840m04m Exp 4 18.14 4 7.62 >36000 15336.01 -
gbd socC 0 0.01 1 0.04 0.19 0.12 0.00
ravempb Exp 1 0.79 4 0.33 0.80 0.42 -
portfol_classical050_-1 socC 12 32.66 989 >36000 133.43 452.49 3.31
m3 socC 0 0.04 1 0.68 0.33 0.38 0.07
m6 sSOC 1 0.39 1 0.16 2.07 658.83 0.17
m7 sSOC 0 0.42 1 0.59 4.99 10431.03 0.69
m7-ar25-1 sSOC 1 0.55 1 0.37 1.90 2763.66 0.16
m7_ar2-1 sSOC 1 2.47 1 2.19 5.59 14002.89 1.58
m7-ar3-1 SOC 1 2.33 1 1.88 5.53 25222.75 0.82
m7_ar4_1 SOC 0 0.31 1 0.35 2.08 20537.24 0.84
mT7_ar5-1 SOC 0 1.30 1 0.34 11.88 38924.33 0.98
fo7 socC 4 38.44 3 27.68 89.18 3584.70 23.67
fo7.2 SOC 2 12.52 2 12.52 43.35 6298.85 4.88
fo7_ar25_1 socC 4 22.95 4 9.87 21.94 16685.13 9.92
fo7_ar2_1 sOocC 3 15.19 2 8.68 25.56 16123.12 11.04
fo7_ar3_1 sSOC 3 27.00 3 11.61 28.79 16539.34 22.16
fo7-ar4-1 sSOC 2 11.31 2 9.61 47.19 14674.12 10.27
fo7-ar5-1 sSOC 1 4.44 1 5.66 19.63 16634.28 12.67
fo8 SOC 3 79.22 2 79.50 145.26 6383.13 52.92
fo8_ar25-1 SOC 4 141.68 3 45.80 121.69 23823.27 63.09
fo8_ar2_1 SOC 4 159.12 3 59.24 319.27 19979.89 60.09
fo8_ar3-1 socC 1 10.34 1 14.65 70.68 20336.26 37.85
fo8_ar4._1 SOC 1 12.03 1 10.53 62.21 21961.80 62.60
fo8_ar5_1 socC 1 29.66 2 23.26 94.63 24442.99 59.75
fo9 socC 4 210.11 3 534.56 2079.40 4200.36 227.52
fo9_ar25_1 sSOC 6 6390.32 6 1430.17 2819.53 25608.54 1240.89
fo9_ar2_1 sSOC 2 490.08 2 205.19 896.42 19595.03 631.46
fo9-ar3-1 sSOC 1 18.55 1 16.77 730.51 24190.96 103.84
fo9.ar4.-1 SOC 1 56.32 2 40.77 1440.47 32284.58 785.75
fo9.ar5-1 sSOC 3 131.24 2 39.47 724.35 30368.10 725.60
flayO2h SOC 2 0.10 2 0.09 0.26 1.37 0.02
flay02m SOC 2 0.06 2 0.05 0.15 0.10 0.04
flay03h socC 8 0.98 8 0.40 0.62 0.30 0.20
flayO3m SOC 8 0.44 8 0.17 0.26 0.14 0.24
flayO4h socC 24 23.43 24 19.92 3.75 6.60 1.14
flay04m socC 22 8.24 22 4.43 1.98 2.54 1.00
flayO5h sSOC 164 6709.06 181 6583.08 221.67 357.72 96.62
flayO5m sSOC 171 5030.20 180 3258.45 51.94 118.96 68.91
flayO6h sSOC 31 >36000 30 >36000 13327.17 883.97 6958.36
flayO6m sSOC 56 >36000 68 >36000 2803.53 279.87 4752.04
o7 sSOC 8 2778.14 9 1623.33 2074.22 3060.64 526.94
07-2 SOC 5 803.25 5 435.47 899.41 6423.68 128.95
oT7-ar25.1 SOC 3 421.01 4 259.10 433.72 16789.95 455.29
o7-ar2.1 socC 1 72.03 1 41.51 209.30 15504.16 68.66
oT7_ar3_1 socC 3 1041.48 4 338.68 874.36 17193.08 875.63
oT7_ar4_1 socC 7 2665.40 7 1486.87 1080.95 17803.19 535.17
o7.ar5.1 socC 4 662.44 4 309.86 545.20 21972.83 216.84
o8_ar4.1 sSOC 3 7192.54 4 2736.05 6939.85 26448.75 8447.35
o9_ar4._1 sSOC 6 14143.93 5 7248.84 34990.47 31569.13 21722.78
gams01 ExpSOC 6 23414.37 >19 >36000 >36000 >36000 —

Table 2 MINLPLIB2 instances, continued.



