
Submitted to INFORMS Journal on Optimization
manuscript

Authors are encouraged to submit new papers to INFORMS journals by means of a style file template,
which includes the journal title. However, use of a template does not certify that the paper has been
accepted for publication in the named journal. INFORMS journal templates are for the exclusive
purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print
or online or to submit the papers to another publication.

Picking Winners in Daily Fantasy Sports Using Integer

Programming

David Scott Hunter

Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, dshunter@mit.edu

Juan Pablo Vielma

Department of Operations Research, Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139,

jvielma@mit.edu

Tauhid Zaman

Department of Operations Management, Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139,

zlisto@mit.edu

We consider the problem of selecting a portfolio of entries of fixed cardinality for contests with top-heavy payoff

structures, i.e. most of the winnings go to the top-ranked entries. This framework is general and can be used to model a

variety of problems, such as movie studios selecting movies to produce, venture capital firms picking start-up companies

to invest in, or individuals selecting lineups for daily fantasy sports contests, which is the example we focus on here. We

model the portfolio selection task as a combinatorial optimization problem with a submodular objective function, which

is given by the probability of at least one entry winning. We then show that this probability can be approximated using

only pairwise marginal probabilities of the entries winning when there is a certain structure on their joint distribution.

We consider a model where the entries are jointly Gaussian random variables and present a closed form approximation to

the objective function. Building on this, we then consider a scenario where the entries are given by sums of constrained

resources and present an integer programming formulation to construct the entries. Our formulation uses principles based

on our theoretical analysis to construct entries: we maximize the expected score of an entry subject to a lower bound on

its variance and an upper bound on its correlation with previously constructed entries. To demonstrate the effectiveness

of our integer programming approach, we apply it to daily fantasy sports contests that have top-heavy payoff structures.

We find that our approach performs well in practice. Using our integer programming approach, we are able to rank in the

top-ten multiple times in hockey and baseball contests with thousands of competing entries. Our approach can easily be

extended to other problems with constrained resources and a top-heavy payoff structure.
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1. Introduction
Imagine one must select a portfolio of entries for a contest where all or nearly all of the winnings go to

the top performing entry. Because of the top-heavy payoff structure, one natural strategy is to select the

entries in such a way that maximizes the probability that at least one of them has exceptional performance

and wins the contest. We refer to this as the picking winners problem. In Hunter and Zaman (2017) the

picking winners problem is introduced, and this study illustrates how this framework can be used to model

the challenge faced by a venture capital fund. In particular, a venture capital fund will invest in a portfolio

of start up companies and due to the top-heavy return structure, if one of the companies becomes a huge

success, the fund will earn a large return. The picking winners framework can be also be used to model a

wide variety of other problems that have top-heavy payoff structure. For instance, pharmaceutical compa-

nies want to select a set of drugs to invest research resources in such that the probability at least one of the

drugs is a major success is maximized. For another example, consider a movie studio that has to select a set

of movies to produce, and the movie studio achieves success if one of the movies is a blockbuster hit. This

framework can also model daily fantasy sports contests where people enter lineups of players in a sport

(such as hockey or baseball) into daily contests where the top scoring entry wins a huge amount of money.

All of these examples require one to select a set of entries (drugs, start-up companies, movies, lineups of

players) to maximize the probability that at least one of them has exceptional performance and wins.

Many applications of the picking winners framework require one to select entries from a fixed set, such

as start-up companies for venture capital funds. However, there are also scenarios where the set of entries is

not provided in advance. Instead, the entries must be constructed from a set of constrained resources. One

example of this is daily fantasy sports contests, where one must select players for a lineup, but the players

must satisfy budget and position constraints imposed by the company running the contests. For instance, in

hockey contests, a lineup can only have one goalie. In these types of situations one must develop a method to

construct the entries in a manner that respects the constraints but still maximizes the probability of winning.

To select the entries one requires some predictive model of how well the entries will perform. However,

this information alone will not be sufficient to select a good set of entries. The goal is to maximize the

probability that at least one entry wins. One may select entries that have a high probability of individually

winning. However, if these entries have a high positive correlation, then the probability that at least one of

them wins may not be as large as for a set of entries with slightly lower winning probabilities, but lower

correlation so they cover more possible outcomes. Therefore, choosing a good set of entries would require

information on their joint distribution in addition to their marginal probabilities of winning. Intuitively, a

good set of entries will each have a high probability of winning, but also not be too positively correlated in

order to diversify the set of entries. What one needs to do is understand the trade-off between the winning

probability of the entries and their correlations in order to select a good set of entries.
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In Hunter and Zaman (2017) it was shown that the general picking winners problem is NP-hard. Nev-

ertheless, it has a non-negative, non-decreasing, and submodular objective function, which implies that a

greedy solution has strong performance guarantees. Naturally then, these results motivate using a greedy

approach to solve the picking winners problem. However, Hunter and Zaman (2017) focuses on the sce-

nario where at each iteration of the greedy approach one simply chooses the entry (for instance, a start-up

company) from a particular ground set that maximizes the marginal gain in the objective function. In this

study, we will focus on the situation where the entries must be constructed from constrained resources and

cannot simply be chosen from a ground set. Our problem is closely related to the problem of maximizing a

stochastic monotone submodular function with respect to a matroid constraint (Asadpour and Nazerzadeh

2015). However in our case the objective function is the probability of at least one entry winning, which

many times lacks a closed form expression. Therefore, we cannot even evaluate the objective function for a

set of entries, which will prevent us from directly applying the greedy approach.

To overcome these challenges, we develop a greedy approach for constructing entries from constrained

resources for top-heavy contests, where at each step in the greedy approach we solve an integer program-

ming problem. Our approach is fairly general and can be applied to a variety of problems. To demonstrate

the effectiveness of our approach, we use it to construct entries for daily fantasy sports competitions. We

were able to perform exceptionally well in these contests across multiple sports. To provide more context

for our results, we next present a brief overview of the structure of daily fantasy sports contests.

1.1. Daily Fantasy Sports Contests

Daily fantasy sports have recently become a huge industry. For instance, DraftKings, the leading company

in this area, reported $30 million in revenues and $304 million in entry fees in 2014 (Heitner 2015). While

there is an ongoing legal debate as to whether or not daily fantasy sports contests are gambling (Board

2015, Easton and Newell, Getty et al. 2018), there is a strong element of skill required to continuously win

contests as evidenced by the fact that the top-one percent of players pay 40 percent of the entry fees and gain

91 percent of the profits (Harwell 2015). This space is competitive, with many users employing advanced

analytics to pick winning lineups. Several sites such as Rotogrinders have been created that solely focus

on daily fantasy sports analytics (Rotogrinders 2015). Other sites such as Daily Fantasy Nerd even offer to

provide optimized contest lineups for a fee (DailyFantasyNerd 2015).

There are a variety of contests in daily fantasy sports with different payoff structures. Some contests

distribute all the entry fees equally among all lineups that score above the median score of the contest.

These are known as double-up or 50/50 contests. They are relatively easy to win, but do not pay out much.

Other contests give a disproportionately high fraction of the entry fees to the top scoring lineups. We refer

to these as top-heavy contests. Winning a top-heavy contest is much more difficult than winning a double-

up or a 50/50 contest, but the payoff is also much greater. Typical entry fees range from $3 to $30, while
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the potential winnings range from thousands to a million dollars (DraftKings 2015). These contests occur

nearly every day, providing multiple opportunities to test and evaluate different strategies. For these reasons,

daily fantasy sports provide a great opportunity for us to test our approach to picking winners.

The entry to a daily fantasy sports contest is called a lineup, and it consists of a set of players in the given

sport. An added complication is the fact that there are constraints on the players used to build a lineup. A

daily fantasy sports company sets a price (in virtual dollars) for each player in a sport. These prices vary

day-to-day and are based upon past and predicted performance (Steinberg 2015). Lineups must then be

constructed within a fixed budget. For instance, in DraftKings hockey contests, there is a $50,000 budget

for each lineup. There are further constraints on the maximum number of each type of player allowed and

the number of different teams represented in a lineup. Finding an optimal lineup is challenging because

the performance of each player is unknown and there are hundreds of players to choose from. However,

predictions for player points can be found on a host of sites such as Rotogrinders (Rotogrinders 2015) or

Daily Fantasy Nerd (DailyFantasyNerd 2015) that are fairly accurate, and many fantasy sports players have

a good sense about how players will perform. This suggests that the main challenge is not in predicting

player performance, but in using predictions and other information to construct the lineups.

There have been many previous studies on how mathematical optimization and analytical methods can be

used to assist sporting organizations. For instance, Sharp et al. (2011) use integer programming to construct

Cricket teams, Pantuso (2017) propose an optimization model to maximize the expected value of a Euro-

pean football club,

¨

Ozl¨u and Sokol (2016) employ integer programming to solve the problem of assigning

and scheduling minor league scouts for Major League Baseball teams, and Sokol (2003) generate optimal

baseball batting orders that are robust under uncertainty in skill measurement. Additionally, there have been

many studies that have applied analytical methods to in consumer sporting competitions. For instance, mul-

tiple studies have considered the problem of predicting the maximum number of winners in the National

Collegiate Athletic Association (NCAA) March Madness college basketball tournament (Brown and Sokol

2010, Guestrin et al. 2005, Kaplan and Garstka 2001, Kvam and Sokol 2006). There has also been work

that considers ranking NCAA Football teams (Kolbush and Sokol 2017).

In addition to these studies, there has been previous research on the topic of season-long fantasy sports.

For instance, in Becker and Sun (2016) the authors present a mixed integer program that optimizes draft

selection and weekly lineup selection for fantasy football. Fry et al. (2007) present a dynamic programming

approach for fantasy football draft selection. Bergman and Imbrogno (2017) use optimization tools for

National Football League survivor fantasy pools. All of these studies illustrate that optimization can be a

useful tool in fantasy sports. However, all of these studies focus on season-long fantasy contests, which do

not necessarily coincide with the problem of picking winners in daily fantasy contests that we study in this

work.
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In a recent study a stochastic integer programming approach is proposed to construct lineups for daily

fantasy sports contests that maximizes the expected payout (Newell and Easton 2017). In this study, the

author’s assume that each athlete’s fantasy points and independent. Using their approach they are able to

maximize the probability of achieving a payout, but they do not find success in real DraftKings contests.

We take a different approach to this problem, and with our approach we are able to win several DraftKings

contests. Achieving this required real entries in the contests that generated winnings of up to thousands

of dollars per entry (See Figure 1). To avoid any related ethical or conflict of interest issues, we donated

all winnings generated during this study (around $15,000) to the Greater Boston Food Bank, which is a

non-profit hunger-relief organization in eastern Massachusetts.

1.2. Our Contributions

Integer programming is a natural tool to use to construct entries because of the different constraints. The

challenge comes in understanding how to formulate the integer program to maximize the probability of

winning. In this work we present a sequential integer programming approach that attempts to do this. We

begin by finding a tractable approximation for the objective function (the probability of winning), and

show that the error of this approximation is small when the underlying distribution of the entries satisfies

certain natural properties. From this approximation we are able to extract a set of heuristic principles for

constructing entries. First, the entries’ scores should have a large expected value and variance. This increases

the marginal probability of an entry winning. Second, the entries should also have low correlation with each

other to make sure they cover a large number of possible outcomes. These principles form the foundation

of our integer programming approach that sequentially constructs entries with maximal mean subject to

constraints on their variance and correlation with previously constructed lineups.

We apply our approach to top-heavy hockey and baseball contests in DraftKings. The contests we focus

on had thousands of entrants and top payouts of several thousand dollars. The entries that we construct with

our integer programming approach are able to rank in the top ten in these contests multiple times, as shown

in Figure 1. This is a non-trivial achievement given the large size of the contests. One may be concerned

that our integer programming approach is a betting tool that constitutes cheating. However, daily fantasy

sports have been shown to be games of skill (Getty et al. 2018), so the use of such tools is considered fair

game and are routinely offered as a for-profit service (DailyFantasyNerd 2015, Rotogrinders 2015). Our

hope is that by making our results and code here public, we can help to elevate the level of the players that

compete by introducing them to advanced operations research and management science techniques, which

they could then apply elsewhere. Nonetheless, as mentioned before, all winnings were donated to charity to

avoid any conflict of interest issues.

Previous studies (Kvam and Sokol 2004, Sokol 2004) have found that sports can be used as a valuable

tool to teach students analytical tools. Our success in using integer programming in daily fantasy sports
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has also exposed a whole new audience to analytics and optimization. We have presented our results at the

Sloan Sports Analytics Conference in 2016 and 2017 (Hunter et al. 2016, Zaman 2017b), giving a non-

technical audience a tutorial on integer programming via daily fantasy sports. We have also presented our

work in multiple analytics classes for undergraduate, graduate and MBA students at MIT and Harvard. Our

optimization code is available on GitHub (Hunter 2016, Zaman 2017a). Daily fantasy sports have proved

itself to be an excellent application to get new people interested in studying analytics and optimization. In

particular, graduate students at MIT routinely present extensions of this work to other sports as part of their

class projects.

We strongly believe that a crucial aspect for the past and future success of this study as an educational tool

to disseminate the effectiveness of operations research and analytics tools is its relative simplicity. Indeed,

the models and tools are intuitive and interpretable for anyone with a basic background in optimization.

Nonetheless, these tools provided a significant edge in an environment where highly technical machine

learning tools are widely used by both experts and users that barely understand their principles. For this

reason we have purposely avoided adding complexity for complexity’s sake, particularly when it does not

provide a practical benefit.

The remainder of the paper is structured as follows. In Section 2 we reconsider the picking winners prob-

lem, and develop an algorithm to sequentially construct each entry using an integer program. We present an

empirical analysis of hockey data and develop predictive models of player performance in Section 3 for use

in our integer programming formulation. In Section 4 we specialize our integer programming formulation

for daily fantasy sports contests, with a focus on hockey. We evaluate the performance of our approach in

actual fantasy hockey contests in Section 5. We conclude in Section 6. All proofs, unless otherwise stated,

are included in the appendix.

2. Problem Formulation
Using similar notation to Hunter and Zaman (2017), we consider a set of events E = {Ei}mi=1 defined on

a probability space (⌦,F ,P), with sample space ⌦, �-algebra F , and probability measure P. Using this

notation, each event Ei corresponds to an entry i in the contest winning. The goal then is to select a subset

S ✓ [m] = {1, . . . ,m} of size k such that we maximize the probability that at least one item in S wins,

which is given by P
�S

i2S Ei

�
. For notational convenience, we denote U (S) = P

�S
i2S Ei

�
. Formally

then, the picking winners problem is given by the following optimization problem

max

S✓[m],|S|=k
U(S). (2.1)

Before continuing with our analysis, we first begin by reviewing some of the key results from Hunter

and Zaman (2017) concerning the picking winners problem. For convenience, we reproduce the proofs of
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Figure 1 Screenshots of the performance of our top integer programming lineups in real DraftKings

hockey contests with 200 linueps entered.

these results in Section 7. For notation, we will let Sg be the greedy maximizer of U(S) and let S⇤
be the

maximizer of U(S).
In general, solving the picking winners optimization problem can be difficult, as shown by the following

result.

Theorem 2.1 (Hunter and Zaman (2017)) Maximizing U(S) is NP-hard even for discrete uniform distri-

butions.

Despite the computational complexity in maximizing U(S), the objective function possesses some nice

properties that we can use to obtain good solutions efficiently, which are given by the following result.

Lemma 1 (Hunter and Zaman (2017)) The function U(S) is non-negative, non-decreasing and submod-

ular.

From Theorem 2.1, we know that the picking winners problem given by (2.1) can be difficult. However,

the submodular property from Lemma 1 allows us to find a good solution using a greedy approach where

we choose the events one at a time to give the maximal increase in the objective function. For submodular

functions we have guarantees on the sub-optimality of such greedy solutions, as the following classic result

shows.

Theorem 2.2 (Nemhauser et al. (1978)) Let U(S) be a non-decreasing submodular function and let Sg be

its greedy maximizer. Then

U(Sg)

U(S⇤
)

� 1� e�1. (2.2)
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Theorem 2.2 provides a strong bound for the sub-optimality of a greedy solution to the picking winners

problem. In practice, a greedy solution can often be found efficiently, which is important as time can be a

limiting factor in many applications. For these reasons, we will continue by considering a greedy approach

to the picking winners problem.

Ideally, a greedy solution to the picking winners problem would also be an optimal solution. In the case

of all the events Ei being independent, from Hunter and Zaman (2017) we know that a greedy solution is in

fact optimal:

Theorem 2.3 (Hunter and Zaman (2017)) For a set of independent events E = {E1, . . . ,Em}, let the k

element greedy maximizer of U(S) be Sg. Then Sg is an optimal solution to the picking winners problem

(2.1).

This result also suggests that when the events have low dependence, greedy solutions should perform well.

In practice, the events will often have some dependency structure, and thus we will consider this case in

more detail.

2.1. Dependent Events

When the underlying events are dependent, solving the picking winners problem is especially difficult. In

general, a greedy solution is not an optimal solution. Additionally, with an arbitrary dependency structure

between the events it is often non-trivial to even evaluate the objective function U(S). Because of this, in

this section we provide a tractable approximation to the objective function when the events are dependent

and characterize the quality of the approximation as a function of properties of the underlying distribution.

We will see that when the events are not too dependent upon each other, our approximation will have low

error.

We start with an approximation for the objective function U(S). The difficulty of optimizing this objec-

tive function comes from the lack of independence in the events, which requires us to understand their entire

joint distribution. Many times this distribution will not be available to us, or if it is, evaluating the required

probability will be difficult. To obtain something more tractable, we define the following objective function,

which only utilizes pairwise correlations:

U2(S) =
X

i2S

P (Ei)�
1

2

X

i,j2S,i 6=j

P
⇣
Ei

\
Ej

⌘
. (2.3)

This objective function is obtained by expanding U(S) using the inclusion-exclusion principle and then

only keeping terms that involve the intersection of two or fewer events. The benefit of U2(S) is that it only

requires us to know the probability of intersections of pairs of events, which is much easier to calculate than

probabilities of higher order intersections. In order for this objective function to act as a good surrogate for
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U(S), we must show that the difference U(S)�U2(S) is small. If we impose certain conditions on the joint

density of the events, we can bound this difference. To do this we define a few new terms.

We assume we have chosen a subset S of the entries. Let q0(S) = P(

T
i2S E

c
i ) be the probability that

none of the entries in S win the contest. For 1  l  k, let Sl be the set of all l-element subsets of S .

For instance, if S = {a, b, c} then S1 = {{a} ,{b} ,{c}} and S2 = {{a, b} ,{a, c} ,{b, c}}. For an element

T 2 Sl, let p0T = P
⇣�T

i2T Ei

�T⇣T
j2S/T Ec

j

⌘⌘
be the probability that all the entries in T but no other

entries in S win the contest. We then have the following result regarding the difference between U(S) and

U2(S).

Theorem 2.4 Let E be a set of events on a probability space and assume |E| = m. Assume there are

constants 0< p< 1 and c > 0 such that for any S ⇢ [m] with |S|= k <m, q0(S) = (1�p)k, kp < 1/2, and

for any 1 l k and T 2 Sl, p
0
T  cpl. Then

kp� 1

2

(kp)2 U(S) kp

and

0U(S)�U2(S) 20c(kp)3.

This result shows that the error of U2(S) is approximately (U(S))3 multiplied by a constant. We will

generally be in a situation where the events are rare, so U(S) is small. Then the cubic term in the error is

negligible compared to U(S). The error then depends mainly on the constant c, which is related to how

correlated the events are. We now illustrate this with an example.

Consider the case where k = 3, and assume the marginal probability of any single event occurring is

0.01. If the events are independent and identically distributed (i.i.d.), then q0(S) = (1� p)3 = (1� .01)3,

resulting in p = 0.01. The condition p0T  cpl from the theorem is satisfied with c = 1. For this case, we

have U(S) = 0.029701 and U2(S) = 0.029700, resulting in an error of U(S)� U2(S) = 10

�6
. From the

theorem the error is upper bounded by 20c(kp)3 = 5.4⇥ 10

�4
.

Now consider the case where the three events are the same. This represents a situation of maximal cor-

relation. We have q0(S) = (1 � p)3 = (1 � .01), resulting in p = 0.0033. To satisfy the condition in the

theorem, we only need to consider the set T = S , since for all other subsets T we have p0T = 0. When T = S ,

the condition from the theorem gives 0.01 c(0.0033)3. This is satisfied with c= 2.7⇥ 10

5
. For this case,

we have U(S) = 0.01 and U2(S) = 0, resulting in an error of U(S)�U2(S) = 0.01. From the theorem the

error is upper bounded by 20c(kp)3 = 5.4. We see that when the events are highly correlated, the constant

c increases and the upper bound becomes loose (trivial in this case).

These examples show that the error bound from the theorem is tighter when the events are not highly

correlated, and the constant c is a way to capture the strength of the correlation. In the situations we consider,
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the events will have a low occurrence probability and will not have very strong correlations. Therefore, we

will use U2(S) instead of U(S) in the remainder of this work because U2(S) is much easier to work with

than U(S), and it will be a good approximation to U(S).

2.2. Multivariate Gaussian Random Variables

We now consider a probability model that captures a fairly general class of events. Let {Xi}mi=1 be jointly

Gaussian random variables with mean vector µ and covariance matrix ⌃. We define the events Ei =

{Xi � t} for some constant t. If we imagine each Xi as the return of a company we invest in, then the

event says that company i has a return greater than t. For fantasy sports competitions, Xi can be the points

of lineup i and Ei corresponds to the lineup exceeding t points. We further assume that t >max1im µi

because we are interested in the unlikely event that one of the Xi exceeds its mean by a large amount. For

instance, in daily fantasy hockey contests, the maximum mean of a lineup is around 30 points, while the

winning threshold t is near 60 points.

We want to choose a set of entries S ✓ [m] to maximize U2(S). To do this, we must first calculate the

marginal and joint probabilities of the events. Since no closed form expression exists for these probabilities

for multivariate Gaussian random variables, we instead resort to approximations. We have the following

result.

Theorem 2.5 Let {Xi}mi=1 be jointly Gaussian random variables. Let the marginal mean and variance of

Xi be µi and �2
i and let the correlation coefficient of Xi and Xj be ⇢ij . In addition, let zi = (t� µi)/�i.

Define the function U l
2(S) as

U l
2(S) =

X

i:Ei2S

1p
2⇡�i(zi +1/zi)

exp

✓
�z2i

2

◆

� 1

2

X

i,j:
Ei,Ej2S

i 6=j

1p
2⇡(2t�µ1 �µ2)

exp

 
� (2t�µi �µj)

2

2

�
�2
i +�2

j +2⇢ij�i�j

�
!
. (2.4)

Then U2(S)�U l
2(S).

The function U l
2(S) is a lower bound on U2(S) and has a closed form expression. We use this function

to gain insights on good entries. From the expression for U l
2(S) we observe some important features that

characterize a subset S that will have a high chance of winning. We assume that zi � 1,, which can be

done by having t be large enough. In this case, the contribution of the first summation to U l
2(S) increases

for large µi and large �i. The contribution of the second summation increases for small ⇢ij . There is an

intuitive explanation for how µi, �i, and ⇢ij impact the objective function. First, the means of the chosen

entries should be large so that there is a greater probability that they exceed t. Second, the variance of the

entries should be large as well. This is less obvious, but the intuition here is that all one cares about is
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having some entry’s score exceed t. If entries with large variances are chosen, this increases the probability

of exceeding t. While this also increases the probability that some of the entries will have a low value, this is

not a concern as the goal is to have at least one exceed t. Third, the correlation between each pair of entries

should be small. What this does is diversify the selected entries so there is a better chance that one of them

exceeds t. In short, one would like S to consist of entries with high means and high variance that have low

correlation with each other.

2.3. Picking Winners with Constrained Resources

We now consider a case where entries are constructed from a set of resources {Yj}pj=1 that are jointly

Gaussian random variables. We define the mean and standard deviation of Yj as µ0
j and �0

j , respectively.

We define the correlation coefficient of Yj and Yl as ⇢0jl. Each entry is given by the sum of n resources.

Let us define xij as variables that are one if resource j is in entry i and zero otherwise. Then we can write

Xi =
Pp

j=1 Yjxij . We assume that there are certain constraints on the resources such that not every possible

subset of q resources is a feasible entry. In this scenario, we want to construct k feasible entries from the

given resources to maximize the probability of winning. To do this we will develop an integer programming

formulation that builds upon the intuitions gained in Section 2.2. Specifically, our general paradigm for the

formulation will make use of the following three insights.

1. Each entry has a high mean in order to increase the probability it exceeds the threshold t.

2. Each entry has a high variance in order to increase the probability it exceeds the threshold t.

3. Each pair of entries have minimal correlation to increase the probability that at least one of the entries

exceeds the threshold t.

We can write the mean of Xi as

µi =

pX

j=1

µ0
jxij. (2.5)

The variance of Xi is

�2
i =

pX

j=1

(�0
j)

2xij +

pX

j=1

pX

l=1,l 6=j

⇢0jl�
0
j�

0
lxijxil, (2.6)

and the covariance of Xi and Xq is

Cov(Xi,Xq) =

pX

j=1

(�0
j)

2xijxqj +

pX

j=1

pX

l=1,l 6=j

⇢0jl�
0
j�

0
lxijxql, (2.7)

With these expressions we want to understand how to construct a set of entries that will have a high

probability of winning. To achieve a high mean, each entry should be chosen to maximize the sum of its

resources’ means. This insight is fairly obvious and natural. The more interesting insights come from the

variances and covariances of the entries. To obtain a more intuitive understanding of what entries have good
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properties with respect to their variance and covariance, suppose the variance of each resource is equal to

one, and the correlation coefficient to be either zero, �, or �� for some � > 0. We can then characterize the

variance of an entry by the number of pairs of resources that have a positive or negative correlation, and the

covariance of a pair of entries by the number of their shared resources and the number of pairs of resources

with positive and negative correlations. Let us define for Xi the number of positively and negatively pairs of

correlated resources as n+
i and n�

i . Let us also define for Xi and Xq the number of positively and negatively

pairs of correlated resources as n+
iq and n�

iq, and the number of shared resources as niq. We will also refer to

niq as the overlap of entries Xi and Xj because this is the number of resources they have in common. With

this notation, the variances and covariances can be written as

�2
i = n+ �

�
n+
i �n�

i

�
(2.8)

Cov(Xi,Xq) = niq + �
�
n+
iq �n�

iq

�
(2.9)

From these expressions we gain some useful insights concerning the variances and covariances. A high

variance can be achieved if the entry has a large n+
i and a small n�

i . That is, the entry’s resources should be

chosen so many of them are positively correlated, and few of them are negatively correlated. By avoiding

negative correlations, we are making it more likely that either the resources all have a high value or all have

a low value. The covariance of a pair of entries can be reduced in two ways. First, reduce the overlap niq.

If the entries share fewer resources, they will clearly be less correlated. Second, increase the number of

pairs of resources between the lineups that have a negative correlation, and decrease the number of pairs of

resources with positive correlation. Limiting the number of positively correlated resources between lineups

reduces their covariance and subsequent correlation coefficient.

2.4. Sequential Integer Programming Approach with Constrained Resources

Constructing a set of entries that optimizes the U l
2(S) is non-trivial. The function is non-linear and non-

convex. Therefore, we will not directly maximize U l
2(S). Instead, we will use the three properties discussed

about U l
2(S) to guide the development of a sequential integer programming approach for constructing a

set of entries from constrained resources that have a high probability of winning. We choose a greedy

approach for three important reasons. First, from the submodular property of the original objective function

we have a lower bound on the performance of a greedy solution. The objective function we will use in our

integer programming formulation is different from the original objective function, but shares some of its key

properties, so we assume the loss in optimality with our greedy approach will not be significant. Second,

the integer programming approach we propose is linear and can be solved quickly, which will be important

in applications we consider later. Third, and most importantly, we will show in Section 5 that this approach

performs well on actual data. In particular, we will see that with this approach we are able to consistently

perform well in daily fantasy sports contests.
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We consider the situation described in Section 2.3 where we want to construct k entries consisting of n

resources each from a set of p resources. As previously stated, our decision variable is xij , which is 1 if

resource j is in entry i. Let

�
x⇤
ij

 p

j=1
correspond to the ith greedy entry. This is the solution to our integer

program in the ith iteration. We will construct the entries sequentially in the following manner. We choose

a set of positive constants {✏i}ki=1 and {�iq}ki,q=1. Assume we have obtained the first i� 1 entries. We then

construct the ith entry to maximize its mean subject to its variance being larger than ✏i, and its covariance

with entry q being less than �iq for q= 1, . . . , i�1. For i= 2, . . . , k, our integer program for the ith entry is

maximize

x

pX

j=1

µ0
jxij

subject to

pX

j=1

(�0
j)

2xij +

pX

j=1

pX

l=1,l 6=j

⇢0jl�
0
j�

0
lxijxil � ✏i

pX

j=1

(�0
j)

2xijx
⇤
qk +

pX

j=1

pX

l=1,l 6=j

⇢0jl�
0
j�

0
lxijx

⇤
ql  �iq, q= 1, . . . , i� 1

pX

j=1

xij = n

x2 G.

(2.10)

where G ⇢ {0,1}p is some general feasible region. For constructing the first entry we solve the integer

program (2.10), but we omit the covariance constraint from the problem.

The greedy approach only constrains the covariance of a lineup with the previous lineups, whereas a non-

greedy approach would limit all pairwise covariances. By only constraining the covariance with previous

lineups, the number of covariance constraints is linear in the number of previous entries. The variance

constraints are non-linear in this formulation. We can introduce auxiliary variables to make this formulation

linear as is standard in many integer programming formulations. However, we take a different approach

when we apply this approach to fantasy sports contests in Section 4. We will make certain assumptions on

the underlying distribution of the resources, which allow us to makes these constraints linear. We will see

that this allows the integer program to be solved quickly, and it still performs well in real applications.

Our approach gives one the flexibility to choose the parameters ✏i and �iq. We may want the first few

entries’ covariances to be lower in order to force exploration of the space of entries, while for later entries

this constraint can be relaxed to avoid excluding entries with large means. However, we will see that using

a single value for �iq and for ✏i works well in practice. In addition, we will also see that the choice of the

value for �iq depends upon the size of the space of resources.

3. Hockey Data Analysis
To demonstrate the effectiveness of our approach for picking winners, we apply it to top-heavy daily fantasy

sports hockey contests as described in Section 1. The entries into these contests are known as lineups, and
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Figure 2 (top left) Mean and standard deviation of fantasy points per game (FPPG) and average player cost

in DraftKings for each hockey position. (bottom left) Mean absolute error of NHL player FPPG predictions of

Daily Fantasy Nerd and Rotogrinders for each hockey position. (top right) Mean FFPG of forwards in different

types of lines. (bottom right) Screenhsot of an NHL lineup from DraftKings.

these lineups consist of resources that are players in the National Hockey League (NHL), which is the main

hockey league in North America. The daily fantasy contests we focus on are from the site DraftKings. We

begin by describing the basic elements of hockey and hockey daily fantasy sports contests. To apply our

approach, we need to know the mean and correlation of the resources, which are the hockey players. In this

section we present models and analysis for these inputs. Section 3.2 presents predictive models for players

points using publicly available data, and Section 3.3 studies the structural correlations between hockey

players. While our analysis focuses on DraftKings, we note that other daily fantasy sports sites have similar

contests and point scoring systems. All data in this section was collected between October 21, 2015 and

December 31, 2015.

3.1. Hockey Basics

A hockey team consists of six players: one center, two wingers, two defensemen, and a goalie. The centers,

wingers, and defensemen are known as skaters because they are free to skate on the ice rink, whereas the

goalie primarily stays in front of the goal. In hockey the aim is for a team to shoot a puck into the goal of

the opposing team and the goalie’s task is to protect the goal from any opponent scores.
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Score type Points

Goal 3

Assist 2

Shot on Goal 0.5

Blocked Shot 0.5

Short Handed Point Bonus (Goal/Assist) 1

Shootout Goal 0.2

Hat Trick Bonus 1.5

Win (goalie only) 3

Save (goalie only) 0.2

Goal allowed (goalie only) -1

Shutout Bonus (goalie only) 2

Table 1 Points system for NHL contests in DraftKings.

In daily fantasy sports hockey contests there are constraints on the types of players that must be present

in a lineup. For DraftKings, each lineup must consist of two centers, three wingers, two defensemen, one

goalie, and one utility player that is any skater, resulting in a lineup of nine players. We show a screenshot

of one possible DraftKings lineup in Figure 2. The figure also shows a column labeled FPPG, which stands

for fantasy points per game. This is the average number of fantasy points per game the player has earned

throughout the current NHL season. DraftKings provides this information to help users construct their

lineups. The total fantasy points for a lineup is the sum of each player’s fantasy points. The lineup shown

has 34.4 fantasy points per game. This score is in the typical range of NHL lineups in DraftKings, and it

gives a sense of the value of different scoring actions. In a daily fantasy sports contest, there are many ways

for players to score fantasy points. Because we test our approach in DraftKings, we will focus on its points

scoring system. We summarize the details of the DraftKings scoring system in Table 1. In Figure 2 we show

the basic statistics of points per game for each position averaged over all NHL players. We also show the

average DraftKings cost per player in the figure. As can be seen, on average goalies tend to score almost

twice as many points as all other players, and also cost twice as much. Additionally, the standard deviation

of each position’s points per game is roughly the same size as the average value.

The centers and wingers are known as forwards. In the NHL each hockey team plays its forwards in fixed

sets known as lines. This means that if one player from the line, such as the center, is on the ice, then so are

the other two players from the line. Each team has four standard lines and two power play lines, which only

play when there is a power play as a result of a penalty. We show the average points per game for players

based upon their line in Figure 2. The rank of the line typically suggests how well it performs. As can be

seen, line one is generally the highest scoring line.

The points system of DraftKings is similar to most daily fantasy hockey points systems. It gives more

points for players that perform better, but it also has some important properties that we use to construct our

lineups. The first property concerns assists, which is passing the puck to a player who either scores or who

passes the puck to the player that scores. Each assist is worth two points, and DraftKings awards points



Hunter, Vielma, and Zaman: Picking Winners in Daily Fantasy Sports Using Integer Programming
16 Article submitted to INFORMS Journal on Optimization; manuscript no.

for up to two assists per goal. This is an important aspect of the scoring system because it means that for

each goal scored, it is possible for a single lineup to receive seven points (three points for the goal, and

four points for the two assists that led to the goal). However, such a situation can only occur if all players

involved are on a single lineup. This suggests that to score many points, a lineup should contain all players

from a single line. By putting all players from a single line in a lineup, we are essentially increasing the

variance of the lineup. This is a popular fantasy sports tactic known as stacking. Many expert daily fantasy

sports players use stacking to win in a variety of sports contests (Bales 2015a,b, Drewby 2015). The second

property of the points system concerns goalies. If a goalie’s team wins the game, an additional three points

is awarded to the goalie. This is important because as we will see, it is possible to predict who will win an

NHL hockey game with relatively good accuracy, so by choosing goalies on winning teams, an extra three

points can be obtained, which is a significant amount in hockey contests given that lineups average between

30 to 40 points.

3.2. Player Point Predictions

Many fantasy sports players devote a substantial amount of effort in developing elaborate prediction mod-

els for players’ performance. Their advantage comes mainly from the power of their predictive models.

However, we do not have the domain knowledge required to improve upon the prediction models of the

top fantasy players. Therefore, we take a different approach. Publicly available player point predictions are

provided by the websites Rotogrinders (Rotogrinders 2015) and Daily Fantasy Nerd (DailyFantasyNerd

2015). We find the predictions from these sites to be relatively accurate, but the accuracy varies by position.

We plot in Figure 2 the mean absolute error in points of the two sites’ predictions for different hockey

positions using our data from the 2015 NHL season. We obtain each of our predictions from Rotogrinders

and Daily Fantasy Nerd roughly thirty minutes before the corresponding DraftKings contest began. We see

that the prediction errors of both sites are similar. Therefore, it does not seem that either one has a superior

prediction model.

We build a predictive model for the fantasy points for each player in the NHL using these prediction sites.

For a player k, let fk1 and fk2 be the predictions by Rotogrinders and Daily Fantasy Nerd, respectively. For

skaters, we perform a linear regression on the player’s points using these predictions as features. We denote

µk as the predicted points of player k using our model. For skater k our prediction is

µk = �0 +�1f1k +�2f2k + ✏k (3.1)

where ✏k is a Gaussian error term. For goalies, we must also factor in the outcome of the game since there is

a three point bonus for victory. Daily Fantasy Nerd provides win probabilities for each goalie, and we have

found these estimates to be relatively accurate. We perform a linear regression on the goalie points using
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(1) (2) (3) (4) (5) (6)

Skater points Goalie points Goalie points Goalie points Goalie points Goalie points

�1 0.634

⇤⇤⇤
0.628

⇤⇤⇤
0.203 0.203

(Rotogrinders) (0.0203) (0.0864) (0.144) (0.144)

�2 0.282

⇤⇤⇤
-0.0173 -0.0309 -0.0301

(Daily Fantasy Nerd) (0.0242) (0.106) (0.113) (0.113)

�3 4.310

⇤
5.304

⇤⇤
4.176

⇤
5.172

⇤⇤

(Win probability) (2.123) (2.005) (2.064) (1.941)

�0 1.334 1.686

(0.0314) (0.549) (1.032) (1.003) (1.013) (0.983)

R2
0.238 0.0858 0.0179 0.0140 0.0178 0.0139

Samples 10825 565 506 506 506 506

Standard errors in parentheses

⇤ p < 0.05,

⇤⇤ p < 0.01,

⇤⇤⇤ p < 0.001

Table 2 Regression coefficients, R squared, and sample count for different prediction models of skater and

goalie points.

as predictor variables the predictions of Rotogrinders, Daily Fantasy Nerd, and the win probability of the

goalie’s team. For a goalie k, let this win probability by pk. Then the prediction for goalie k is

µk = �0 +�1f1k +�2f2k +�3pk + ✏k (3.2)

where ✏k is a Gaussian error term. We compare different prediction models in Table 2. For skaters, both

Rotogrinders and Daily Fantasy Nerd predictions are significant. For goalies, something different occurs.

When we do not include the win probability we find that only Rotogrinders is significant. When the win

probability is included, it is the only significant feature. From Table 2 we see that the models do not have

high accuracy. However, our metric of interest is not accuracy, but performance in real hockey contests. We

will test these different models in these contests in Section 5.

3.3. Player Correlations

To create high variance lineups we must first understand the correlations between players. There are two

important correlations we look at. The first concerns players in lines. The second concerns forwards and

goalies.

We first begin by examining the correlations of FPPG between players in the same line versus those in

different lines. We calculate the Pearson correlation coefficient between the FPPG for every pair of NHL

forwards (centers and wingers) in the same line, and on the same team but different line. We plot the

resulting average correlation coefficients for each group in Figure 3. We see that the players on the same

line have a much higher correlation than players on different lines. This is not surprising given the way

fantasy points are awarded. This correlation is most likely due to the assist/goal combinations that give
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Figure 3 (left) Average correlation coefficient of FPPG for forwards in the same and different lines. (right)

Average correlation coefficient of FPPG for goalies and skaters in the same and opposing teams.

points to multiple players who are simultaneously on the ice. This correlation should be included in a lineup

to increase the variance.

We next look at the correlation between goalies and skaters in the same game. We consider the correlation

of FPPG for forwards and defensemen with goalies on the same and opposing team in a game. We plot the

resulting average Pearson correlation coefficient of the FPPG for these groups in Figure 3. We find that the

correlation is negative for goalies and skaters on opposing teams. For the same team the correlation is near

zero. The negative correlation is due to the fact that if a skater scores fantasy points, it is typically because

a goal was scored, which gives negative fantasy points to the goalie. On the same team the only structural

condition that would correlate skaters and goalies is the win bonus and points for scoring goals. However,

this is much weaker than the negative correlation of goalies opposing skaters. The negative correlation is

something we want to avoid within a lineup as it would reduce the overall variance. Therefore, to increase

lineup variance, we will avoid putting goalies and skaters on opposing teams in a single lineup.

4. Fantasy Hockey Approach and Integer Programming Formulations
We now present our approach for selecting multiple lineups for hockey contests. The integer program is

based upon the formulation in Section 2.4. For the mean points of a player we use our predictive regression

models. Due to difficulties in estimation, we do not explicitly use the correlations and variances of the

player’s points. Instead we assume that the players all have the same variance and that the magnitude of

the covariance is much smaller than the variance. This will lead to simple constraints for the variance and

covariance. We will construct m lineups from a set of p NHL players, and we let the variable xik equal

one if player k is selected for lineup i, and zero otherwise. Each player k is predicted to achieve µk fantasy

points from our predictive model.
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4.1. Feasibility Constraints

We begin by formulating the basic feasibility constraints of a lineup. Daily fantasy sports contests all

impose a budget B constraint on a lineup. For DraftKings, this budget is B = 50,000 fantasy dollars.

As mentioned earlier, there is also a constraint on the number of players of each type of position. For nota-

tion, we let the cost of player j be cj . There are NT NHL teams playing in a contest, and we denote the set

of players on team l by Tl. In addition, we denote the set of players who are centers, wingers, defenseman,

and goalies by C, W , D, and G, respectively. The DraftKings position constraints for the ith lineup are

given by

2
X

j2C

xij  3,

3
X

j2W

xij  4,

2
X

j2D

xij  3,

X

j2G

xij = 1,

(4.1)

DraftKings also requires each lineup to have players that come from at least three different NHL teams. The

team constraints for lineup i are

til 
X

k2Tl

xik, l= 1, . . . ,NT

NTX

l=1

til � 3,

til 2 {0, 1} , l= 1, . . . ,NT .

(4.2)

We put these constraints together to obtain the feasibility constraints for a lineup:

pX

j=1

cjxij B, (budget constraint)

pX

k=1

xij = 9, (lineup size constraint)

Equations (4.1), (position constraint)

Equations (4.2), (team constraint)

xij 2 {0,1} , j = 1, . . . , p.

(4.3)

4.2. Stacking Lineups Using Structural Correlations

We now present the integer programming constraints on the lineup variance. The constraints we use are

simpler than the general form in equation (2.10). Rather than force the variance of the lineup to be larger than

a lower bound, we constrain the structure of the lineup to ensure that its variance will be large. We assume

equal variance of all players, and covariances that are much smaller in magnitude than the variances. This

allows us to approximate the variance of a lineup using only the number of pairs of positively and negatively
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correlated players. The constraints we present next, which we refer to as different types of stacking, exclude

any negatively correlated players and try to have a large number of positively correlated players.

Goalie Stacking. As discussed in Section 3.3, goalies are negatively correlated with the skaters that they

are opposing. Therefore, to increase the variance of a lineup, we would like to avoid having this negative

correlation by making sure none of the lineup’s skaters are opposing its goalie. We will refer to this con-

straint as goalie stacking. To model this constraint in our integer programming formulation, we denote the

set of skaters who are opposing goalie k by Ok. For lineup i, the goalie constraint is then given by:

X

l2Oj

xil  6(1�xij), 8j 2G.
(4.4)

This constraint will force the goalie variable xik to be zero if the lineup has any skater opposing goalie k.

Line Stacking. Additionally, in Section 3.3 we found that players on the same line are positively cor-

related. Therefore, to increase the lineup variance, we would like to impose additional constraints on our

formulation that will create lineups with players on the same line. We will refer to this as line stacking.

Each entry consists of eight skaters, six being offensive (wingers and centers), and a line consists of three

offensive skaters. The position constraints allow a lineup to include a maximum of two lines. To include as

much positive correlation as possible amongst the players, we can make a lineup have one complete line

of three players, and one partial line with at least two players. We do this by requiring a lineup have two

partial lines and one complete line. Given the position constraints, this will force one of the partial lines to

be the same as the complete line. To formulate the line stacking constraints, we introduce some notation.

Let NL denote the total number of lines, and let Ll denote the set of players on line l. With this notation we

can formulate the constraint of having at least one complete line in lineup i as

3vil 
X

j2Ll

xij, l= 1, . . . ,NL

NLX

l=1

vil � 1

vil 2 {0,1} , l= 1, . . . ,NL.

(4.5)

Under these constraints vil is one if lineup i has all three players from line l, and zero otherwise, and we

require at least one of the vil to be one. To formulate the constraint of having at least two players from two

distinct lines, we use the following constraints:

2wil 
X

k2Ll

xik, l= 1, . . . ,NL

NLX

l=1

wil � 2

wil 2 {0,1} , l= 1, . . . ,NL.

(4.6)
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Similar to the complete line constraints, this constraint sets wil to one if at least two out of three players of

line l are in lineup i, and there must be at least two wil equal to one.

Defensemen Stacking. Lastly, we have found that defensemen that are on the first power play line score

substantially higher than defensemen that are not. While including the stronger defenseman may not affect

the average points of the lineup, it could affect its actual points. If we force the lineup to have three teams,

then the teammates of this defenseman will likely be included in the lineup. This produces additional pos-

itive correlation within the lineup, which is desirable. Because the defenseman is from the first line, when

his team does well, we would expect the lineup to achieve more points than if we had chosen a weaker

defenseman. We will refer to this as defensemen stacking. To model this constraint, let PD denote the set

of defensemen that are on any team’s first power play line. Then, to use only these defensemen in lineup i

we add the following constraints to our integer programming formulation:

xij = 0 8j 2D \PD. (4.7)

This constraint makes sure that any defenseman that is chosen for the lineup is also in the first power play

line of some team.

There are many other constraints that could be added to the model, such as forcing a lineup to have every

player on a team’s first power play, imposing constraints to have seven players from one game, etc. We

did not investigate all the possible types of stacking, but they can all be naturally incorporated into our

integer programming formulation. In this work we focus on the constraints presented because they capture

the major structural correlations in hockey.

4.3. Overlap Constraints

Our integer programming formulation in Section 2.4 had a upper bound on the covariance of lineup i with

the previous i� 1 lineups. We assume that the player variance is much larger in magnitude than the player

covariances. Using this assumption, we approximate the correlation of lineups i and j as simply the overlap

of the two lineups. We can then add constraints to upper bound this overlap with all previous i� 1 lineups.

We will refer to these as overlap constraints. We let x⇤
lj be the optimal value of the variable for player j in

lineup l. We define the overlap constraints for lineup i as

pX

j=1

x⇤
ljxij  �, l= 1, . . . , i� 1. (4.8)

These constraints make sure that lineup i will have no more than � players in common with any previously

constructed lineup. We refer to � as the maximum lineup overlap. Decreasing � forces the lineups to be

more diverse, whereas for larger � the lineups may share more players. We will see in Section 5 how the

choice of � is impacted by the number of NHL games being played on a given night.



Hunter, Vielma, and Zaman: Picking Winners in Daily Fantasy Sports Using Integer Programming
22 Article submitted to INFORMS Journal on Optimization; manuscript no.

4.4. Complete Sequential Integer Programming Approach

We now present the complete sequential integer programming approach for constructing k lineups. We

obtain lineup i= 1, . . . , k by solving

maximize

x

pX

j=1

µjxij

subject to Equation (4.3) (feasibility constraints)

Equation (4.8) (overlap constraints)

Any subset of equations (4.4), (4.5), (4.6), (4.7) (stacking constraints).

(4.9)

By solving this integer programming formulation iteratively k times, each time updating the overlap con-

straints with the previously found solutions, one obtains the k greedy lineups. This formulation allows

flexibility in the choice of stacking constraints, prediction model, maximum lineup overlap, and number of

linueps constructed. We will see next how to select the best settings using data from real fantasy hockey

contests.

5. Performance
We now evaluate the performance of our approach on real daily fantasy sports hockey contests. To obtain

data on the performance of the population lineups in several actual DraftKings hockey contests we need

to enter the contests. As entrants, we are able to download the lineups and points of every lineup in the

contest. In total we have data for 38 different top-heavy contests between October 21, 2015 and December

31, 2015, with each containing several thousand entrants. We evaluate how much profit our lineups would

have made in each contest competing against the actual population lineups. We investigate a variety of

settings, including the number of lineups, type of stacking, prediction model, and maximum overlap.

We combine the different constraints from Section 4.2 to create six different types of stacking, which

are summarized in Table 3. The first type is no stacking, which only uses the basic constraints and none

of the stacking constraints. All the other types of stacking use goalie stacking (equation (4.4)) as this is a

natural negative correlation we wish to avoid. In addition, all the other types of stacking require at least

one complete line (equation (4.5)), and at least two partial lines (equation (4.6)). Only two defensemen are

allowed in Type 2, the logic being that the utility player should be a forward that will score more points, as

was seen in Figure 2. Types 3 and 4 use defensemen stacking (equation (4.7)). Types 4 and 5 require exactly

three different teams to be represented on a lineup. This constraint increases the lineup variance by having

more players on the same team in the lineup.

5.1. Impact of Stacking and Number of Lineups

We begin by investigating the performance of each type of stacking versus the number of lineups entered.

We create different numbers of lineups for each type of stacking with a maximum lineup overlap of seven
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No stacking Type 1 Type 2 Type 3 Type 4 Type 5

Equation (4.3) Equation (4.3)

Equation (4.4)

Equation (4.5)

Equation (4.6)

Equation (4.3)

Equation (4.4)

Equation (4.5)

Equation (4.6)

X

j2D

xij = 2

Equation (4.3)

Equations (4.4)

Equations (4.5)

Equations (4.6)

Equations (4.7)

Equation (4.3)

Equations (4.4)

Equations (4.5)

Equations (4.6)

Equations (4.7)

NTX

k=1

tik = 3

X

k2Tl

xik  6til,

l= 1, . . . ,NT

Equation (4.3)

Equations (4.4)

Equations (4.5)

Equations (4.6)

NTX

k=1

tik = 3

X

k2Tl

xik  6til,

l= 1, . . . ,NT

Table 3 Summary of the constraints for different types of stacking in our integer programming formulation

for constructing hockey lineups.
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Figure 4 Plot of the mean profit margin in DraftKings hockey contests versus the number of integer

programming lineups. The plots are for different types of stacking constraints. The maximum lineup overlap

allowed is seven.
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Figure 5 Boxplot of the profit margin in DraftKings hockey contests versus the number of integer

programming lineups. The lineups use Type 4 stacking and a maximum lineup overlap of seven.
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and calculate the mean profit margin across all contests. In calculating the mean profit margin, we must

adjust for the fact that when we enter more lineups, there will be some entries that cannot be in the contest

pool now because of DraftKings lineup entry limits. To adjust for this, we randomly sample lineups to delete

from the historical data as we increase the number of lineups we enter, and we report our mean profit margin

across one-thousand trials of this random process. We plot the results in Figure 4. We observe that the lowest

profit margin is achieved by no stacking. This shows the importance of stacking lineups to increase lineup

variance. Type 4 stacking achieves the highest profit margin for 100 and 200 lineups. For one lineup, Type

3 stacking has a higher mean profit margin due to a single contest where the profit margin is quite large.

Excluding this single outlier, Type 4 stacking has the highest mean profit margin for one lineup. Recall

that Type 4 stacking includes goalie stacking, line stacking (complete and partial), defensemen stacking,

and at most three different teams. It has more stacking than all other types, which we expect to give its

lineups more variance. We see from the data that this maximizing variance strategy is effective for winning

top-heavy contests.

It seems from Figure 4 that the mean profit margin is largest for one lineup. However, this is a deceiving

statistic because the mean is dictated essentially by a single outlier for these top-heavy contests. A more

accurate picture is provided by the boxplot in Figure 5. Here we show the profit margin for Type 4 stacking

with a maximum lineup overlap of seven. We see that with one lineup, the median profit margin is -100%.

However, with more lineups, the median profit margin becomes larger. In addition, the 75th percentile is

larger for 200 lineups than for 100 lineups. Moreover, for 100 and 200 lineups it can be seen there are many

outliers that produce much of the profit, whereas with one lineup there are no outliers. This shows that with

more lineups the distribution of the profit margin is shifted upward and given a slightly fatter tail. Therefore,

to win more money consistently, it is advantageous to use more lineups (at least up to the limit imposed by

real-life contests).

5.2. Impact of Prediction Models

We next investigate the impact of the different prediction models we developed in Section 3.2 on our perfor-

mance. We consider Type 4 stacking, a maximum lineup overlap of seven, and 200 lineups. The prediction

models we consider use Rotogrinders predictions, Daily Fantasy Nerd predictions, both sites’ predictions,

and both sites plus the win probability. We show in Figure 6 the mean profit margin of different prediction

models for different numbers of integer programming lineups. We see here that the model with all three

features does the best or near the best for each number of lineups. The reason here may be that by including

the win probability, the integer programming lineups are more biased towards goalies expected to win the

games, resulting in a better chance of obtaining the game win bonus of three points. However, we saw in

Section 3.2 that the regression models had poor performance in terms of predictive accuracy. Therefore, it

is not clear from our analysis which model has the clear advantage.
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Figure 6 Plot of the mean profit margin of our integer programming approach in DraftKings hockey

contests with different prediction models. The models considered are Daily Fantasy Nerd predictions (DFN),

Rotogrinders predictions, DFN and Rotogrinders predictions, and DFN and Rotogrinders predictions with

Vegas odds. The maximum lineup overlap allowed is seven and constraint type four is used for the integer

programming lineups.
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Figure 7 Plot of the mean profit margin 200 integer programming lineups with Type 4 stacking in DraftKings

hockey contests versus maximum lineup overlap for different number of NHL hockey games being played.

5.3. Impact of Maximum Lineup Overlap

One parameter we can adjust in our model is the maximum lineup overlap. By decreasing the allowed

overlap, we force the lineups to be more diverse. We find that the degree of diversity we want depends

upon how large the space of lineups is. The size of the lineup space on a given night is larger if there are
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more NHL games being played. We plot the mean profit margin for 200 integer programming lineups as

a function of the number of games played in a night for different values of the maximum lineup overlap

in Figure 7. These lineups were created using Type 4 stacking. For nights with fewer than four games, a

maximum lineup overlap of seven does best. For a larger number of games, it seems that decreasing the

maximum lineup overlap improves performance. For instance, for nights with more than nine games, an

overlap of four does best. The reason for this is that when there are few games being played, the lineup

space is smaller and probably has fewer good lineups. By reducing the maximum lineup overlap, we end

up not selecting these good lineups and instead choose many poor lineups. However, on nights with many

games, there is a huge lineup space that has several different good lineups. A smaller maximum lineup

overlap causes the integer program to choose several of these good lineups, increasing the chance that one

of them will achieve a high rank. For maximum lineup overlaps smaller than four we found that it becomes

difficult to obtain 200 feasible lineups. Maximum lineup overlaps larger than seven produce lineups that are

too similar and do not provide enough diversity. Therefore, the maximum lineup overlap should be tuned

between four and seven depending on how many games are being played on a given night.

5.4. Lineup Creation Order Versus Lineup Performance Rank

In constructing our lineups, each one is constructed sequentially to create multiple lineups. One question

to ask is do the lineups that are created earlier perform better? To investigate this, we set the integer pro-

gramming approach to create 200 lineups with Type 4 stacking and a maximum overlap of seven. We then

evaluate their performance rank relative to each other in the contests. This allows us to look at several statis-

tics relating the creation rank and the performance rank of the lineups. We first investigate the Spearman

rank correlation coefficient between these two rankings. We find that the average value of the correlation

coefficient across the different contests is 0.09 with a standard deviation of 0.1. This suggests that there is

little correlation between the creation rank and performance rank of the lineups. To dive deeper into the

analysis, we plot in Figure 8 two different sets of data. First, we show a boxplot of the creation rank of the

best performing lineup. Second, we show the performance rank of the first created lineup. We see that the

median performance rank of the first created lineup is 74.5. This shows that the first created lineup has a

slightly, but not substantially improved performance. For the best performing lineup, the median creation

rank is 124.5. Therefore, while the first created lineup is slightly better, the winning lineup is generally

one of the later created lineups. This supports our finding of a low correlation between the creation and

performance rank of the lineups.

5.5. Mean and Standard Deviation of Lineup Points Versus Profit Margin

One way to characterize the lineups produced by our approach is by the mean and standard deviation of their

points. We can compare these with the mean and standard deviation of the points of all lineups in a contest.

Let us define the mean and standard deviation of our optimized lineups as µ1 and �1 and of the population
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Figure 8 Plot of the performance rank of the first created lineup and the creation rank of the best

performing lineup. There were 200 integer programming lineups created with Type 4 stacking and a maximum

overlap of seven.

lineups as µ0 and �0. We will look at the difference in these parameters for our lineups and the population

lineups for each contest. We use 200 integer programming lineups with Type 4 stacking and a maximum

overlap of seven and plot the profit margin versus the difference in the mean and standard deviation in Figure

9. One can see that there is a substantial variation in mean difference, which ranges from -10 to 20 points.

When it is below zero, no profit is made, but when it is above zero, a substantial profit is made. This is a

result of the fact that the lineups must satisfy the stacking constraints that increase their individual variance.

The result is that when the actual points are realized, we are either far above or far below the population

mean. The standard deviation of the integer programming lineups is generally below the population standard

deviation. This is because we are choosing lineups that have some correlation because they are designed to

maximize points, even though the individual lineups are designed to have a high variance. From Figure 9

one can see that we are equally likely to be either above or below the population mean. However, because

the contest payoff structure is so asymmetric, with a maximum loss of 100%, but a maximum gain that is at

least an order of magnitude larger, our lineups end up being profitable.

5.6. Implementation and Runtime

All formulations were constructed using the JuMP algebraic modeling language (Dunning et al. 2017,

Lubin and Dunning 2015), which is written in the Julia programming language (Bezanson et al. 2012).

This allowed us to test the runtime of our approach for various integer programming solvers. The complete

software used to construct the integer programming lineups is available at an open-source GitHub webpage

(Hunter 2016).

In practice, we must wait for information about the goalies that are playing to be posted before we

construct our lineups. Goalies do not play every night, so if we do not wait for this information, we may put

goalies in lineups who are not playing and receive zero points for them. This goalie information is generally
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Figure 9 Plot of profit margin versus µ1 �µ0 and �1 ��0 for DraftKings hockey contests with 200 integer

programming lineups created using Type 4 stacking and a maximum overlap of seven. The profit margin for

each contest is indicated through the color and size of the markers and also listed next to the marker. The ⇥
markers indicate contests where the profit margin is not positive.

posted on public websites about 30 minutes before the games begin. We must be able to find a solution in

this time to be able to enter the contest. The first three plots in Figure 10 show the time needed to solve

the algorithm presented in Section 4 with Type 4 constraints and a maximum lineup overlap of six for 100

lineups in each of our contests using different integer programming solvers. We consider the free solvers

CBC (COIN-OR 2016) and GLPK (GNU 2016) and the commercial solver Gurobi (Gurobi Optimization

2016). All computations were done using a Intel Core i5-4570 3.20GHz with 8GB of RAM. We find that

all solvers are able to solve our algorithm for 100 lineups in under four minutes, giving sufficient time to

enter the lineups into the contest.

While our simple formulations were more than adequate for the approach that allowed us to consistently

win over several weeks, solve times could become an issue when more elaborate approaches are used. For

instance, instead of solving for one lineup at a time like we propose, we could solve for two lineups at a

time. To consider lineups i and i+1 we simply combine the i-th formulation (on variables {xij}pj=1) with

the i+1-th formulation (on variables {x(i+1)j}pj=1) by adding a variant of the overlap constraint (4.8) which

restricts the overlap between the two lineups and is given by

pX

j=1

x(i+1)jxij  �. (5.1)

Unlike the original overlap constraint (4.8), constraint (5.1) is a quadratic constraint similar to the first set

of constraints of formulation (2.10). As described in Appendix 8 these constraints can be linearized through

standard techniques. However, the resulting formulation can be much harder to solve. In the fourth box in
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Figure 10 The runtime of our algorithm for generating 100 lineups using Type 4 constraints with an overlap

parameter of 6 for 38 different hockey contests with different integer programming software. The box labeled

“Gurobi: two lineups” is the runtime when solving two lineups at a time using Gurobi. The other boxes are for

the sequential approach where we solve for one lineup at a time.

Figure 10, we show the amount of time it takes to solve for 100 lineups when solving lineups two at a time

using Gurobi. From this plot, it is clear that solving for lineups two at a time leads to a substantial increase

in runtime. We also considered solving for two lineups at a time with the free solvers CBC and GLPK,

but we found that it frequently takes longer than two hours to determine the 100 lineups. Fortunately, over

50 years of integer programming research provide plenty of opportunities to improve solve times of this

and other extensions (J¨unger et al. 2010). In particular, we should note that our specific implementation of

the Goalie Stacking constraint and the full Line Stacking constraints (i.e. (4.4) and (4.5)) are examples of

what classical textbooks call weak formulations and are often associated to increased solve times. These

formulations can be strengthened through standard techniques that are detailed in Appendix 8. However,

nowadays such strengthening can lead to increased solve times, partly because of an increased number of

constraints and partially because of the idiosyncrasies of modern solvers (Conforti et al. 2014, page 69).

Indeed, for our instances this strengthened version resulted in rather significant solve-time increments for

GLPK and no noticeable improvements for Gurobi and Cbc (See Appendix 8). Nonetheless, more advanced

formulation strengthening techniques are regularly used to increase the performance of modern solvers with

very low implementation cost so they should not be automatically ignored (Vielma 2015).

5.7. Baseball
Having demonstrated the success of our approach in hockey contests, a natural goal would be to consider

how much our approach generalizes. To do this, we apply our approach to top-heavy daily fantasy baseball

contests in DraftKings. For baseball we only include results from May and June of 2016, so we have less



Hunter, Vielma, and Zaman: Picking Winners in Daily Fantasy Sports Using Integer Programming
30 Article submitted to INFORMS Journal on Optimization; manuscript no.

data for this sport than hockey. The structure of baseball contests is similar to hockey contests. Therefore,

for brevity we will present here only a brief summary of our baseball approach and its performance on real

contest data. In short, we have found that in our limited number of baseball contests, the method does indeed

perform well and is able to place in the top ten in contests with tens of thousands of entrants multiple times.

We begin with a brief overview of how baseball is played and how fantasy points are scored. A baseball

team consists of pitchers and hitters. The goal is for the hitters to hit the ball pitched by the opposing pitcher

and then run to four bases to score runs. In fantasy sports contests a pitcher scores points for striking out

batters, pitching for more innings in the game, and winning the game. A hitter scores points by hitting the

pitch, scoring a run by reaching home base, or having other hitters score a run as a result of his hit, also

known as a run batted in or RBI.

There is a great deal of similarity between the structure of hockey and baseball lineups, so we are able

to almost directly use the hockey integer programming formulation with some slight modifications. We do

not go through the details of the baseball formulation here, but instead present the basic constraints. First,

our objective is to maximize the expected fantasy points of the lineups. Here we simply use the projections

from Daily Fantasy Nerd for the expected players’ points. Second, there are feasibility constraints related

to the players’ position, team, and salary. A baseball lineup consists of ten players: two pitchers and eight

hitters (catcher, first baseman, second baseman, third baseman, shortstop, and three outfielders). The lineup

must have players from at least two different baseball games and the budget for a lineup is 50,000 fantasy

dollars, just as in hockey. Finally, a lineup cannot have more than five hitters from one team.

We have stacking and overlap constraints for baseball. As in hockey, we want to stack the baseball lineups

to increase their variance. We do this by adding constraints that remove negative correlations and increase

positive correlations within a lineup. We use two different stacking types to do this. First, similar to goalie

stacking in hockey, we do not have a pitcher and any opposing players on the same lineup. Pitchers and

opponents have negatively correlated points, just as in hockey with goalies and opposing skaters. Second,

similar to line stacking in hockey, we use consecutive hitters on a lineup. Consecutive hitters have positively

correlated points because of the structure of baseball. For instance, if the first three batters can get on base

and the fourth batter hits a home run, then the first three batters get points for runs and the fourth batter

gets points for his hit plus the four RBI. In our formulation, we use five consecutive batters in each lineup,

allowing for cyclic orders such as batters in positions (8,9,1,2,3). We choose five consecutive batters

because this is the maximum allowed by DraftKings. The overlap constraint has the same structure for both

baseball and hockey except that we set the maximum overlap parameter � to six for baseball.

Baseball contests allow 200 entries per person, but are typically larger than hockey contests, which makes

them more difficult to win. While top-heavy hockey contests never have more than 24,000 entrants, top-

heavy baseball contests always have more than 38,000 entrants. Nonetheless, our approach has proven
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Date Best Rank Total Number of Entries

5/25/2016 1 47,916

5/26/2016 3 38,333

5/27/2016 1,342 57,500

5/29/2016 7 38,333

5/30/2016 213 38,333

5/31/2016 146 47,916

6/1/2016 400 47,916

6/2/2016 17 46,000

6/3/2016 376 53,666

6/5/2016 2 38,333

Table 4 The date, our top-ranked lineup, and number on entries in DraftKings top-heavy baseball contests.

successful . We show the rank achieved by our best lineup (out of 200) in historic DraftKings daily fan-

tasy baseball competitions and the number of entrants in the competitions in Table 4. As can be seen, our

approach is able to place in the top ten in four competitions, and even comes in first place in one of the

competitions. This success in baseball is significant because we use the same general principles presented

in Section 2.4 that were used for hockey. This suggests that our approach to picking winners is general and

has applicability to a variety of domains.

6. Conclusion
We have presented here an approach for constructing entries from a set of constrained resources, which have

a large probability of winning top-heavy contests. Our approach is developed from insights gained from

analyzing properties of the probability of winning, which is many times a difficult function to evaluate. We

have shown that our approach can consistently win top-heavy daily fantasy hockey and baseball contests.

While we apply our approach to one application domain, it is general and can be applied in many other

settings. At a high level, our approach can be summarized as follows.

1. Build simple prediction models for the resources’ means and understand their pairwise correlations.

2. Formulate an integer program that constructs entries with maximal mean while lower bounding their

variance and upper bounding their correlation with previously constructed entries.

3. Solve the integer programs to sequentially generate entries in a greedy manner.

The success we were able to achieve for both hockey and baseball given the relative simplicity of our

approach shows its power. We do not use the actual value of any correlations, just a basic understanding

of their sign. Our predictions can even be noisy. It is the manner in which the entries are constructed that

allows us to pick winners despite noise in the prediction models.

Our success in using integer programming in daily fantasy sports has created greater awareness for analyt-

ics and optimization. Daily fantasy sports is a great application to generate interest in these topics because it

is a popular hobby and has a structure that is ideal for integer programming. Our initial results and code have

already exposed a large audience to integer programming and demonstrated how easy it is to use. We feel
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that going forward, daily fantasy sports can be a great educational tool for teaching analytics, optimization,

and in particular integer programming.

7. Proofs
7.1. Proof of Theorem 2.1

We show that maximizing U(S) is NP-hard by reducing it to the maximum coverage problem. In the

maximum coverage problem one is given a set U of n elements and a collection E = {Ei}Ni=1 of N subsets of

U such that

S
E2E E = U . The goal is to select k sets from E such that their union has maximum cardinality.

This is known to be an NP-hard optimization problem. To show that this is an instance of maximizing U(S)

we assume that the sample space ⌦ is countable and finite with R elements. We also assume that each

element ! 2⌦ has equal probability, i.e. P(!) =R�1
. Let F be the �-algebra of ⌦. For any set S 2F , we

can write U(S) =R�1|
S

!2S !|. Then we have

max

S✓E,|S|=k
U(S) = max

S✓E,|S|=k
R�1

�����
[

!2S

!

�����

= max

S✓E,|S|=k

�����
[

!2S

!

����� .

Therefore, maximizing U(S) is equivalent to the maximum coverage problem.

7.2. Proof of Lemma 2.2

The function U(S) is non-negative and non-decreasing because it is the probability of a set of events. We

must show that it is also submodular. A submodular function f satisfies

f
⇣
S
[

v
⌘
� f (S)� f

⇣
T
[

v
⌘
� f (T ) (7.1)

for all elements v and pairs of sets S and T such that S ✓ T . We show that the function U(S) is submodular

as follows. We let the �-algebra of the probability space be F . Consider sets S,T , v 2F such that S ✓ T .

We can write v = vS
S
vT

S
v0 where we define vS = v

T
S , vT = v

T
T
T
Sc

, and v0 = v
T
T c

. Then we

have

U
⇣
T
[

v
⌘
�U (T ) =P (v0)

and

U
⇣
S
[

v
⌘
�U (S) =P

⇣
vT

[
v0

⌘

�P (v0)

�U
⇣
T
[

v
⌘
�U (T ) ,

thus showing that U(S) satisfies the submodularity condition.
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7.3. Proof of Theorem 2.4

We begin by establishing a lower bound for U(S). For k= 1 we have that U(S) = p and for k= 2 we have

that U(S) = 2p� p2. For k� 3 we establish a lower bound as follows. Let use define f(p) = 1� (1� p)k,

so U(S) = f(p). Then we form a second order Taylor series expansion for f(p) about p= 0,

f(p) = kp� 1

2

k(k� 1)p2 +R3(p)

where R3(p) is the Taylor series remainder. For k= 1,2 the remainder is zero. For k� 3 it is given by

R3(p) =
1

4!

k(k� 1)(k� 2)(1� ⇠)k�3p4

for some ⇠ 2 [0, p]. Because p < 1, we have that R3(p)> 0, which gives the lower bound

U(S)� kp� 1

2

(kp)2.

This lower bound also holds for k= 1,2.

The upper bound for U(S) is obtained using Bernoulli’s inequality, which states that (1+ x)k � 1+ kx

for x��1 and integer k� 0. By applying this inequality we obtain

U(S) = 1� (1� p)k  kp.

Next we establish lower and upper bounds on U(S) � U2(S). To do this we rely upon the following

lemma.

LEMMA 1. For a set of entries S , let k= |S|. Then

U2(S) =
1

2

kX

l=1

l(3� l)
X

T2Sl

p0T . (7.2)

With this lemma we can rewrite U2(S) as

U2(S) =U(S)�U(S)+ 1

2

kX

l=1

l(3� l)
X

T2Sl

p0T

=U(S)�
kX

l=1

X

T2Sl

p0T +

1

2

kX

l=1

l(3� l)
X

T2Sl

p0T

=U(S)+ 1

2

kX

l=1

(�l2 +3l� 2)

X

T2Sl

p0T

=U(S)� 1

2

kX

l=3

(l� 1)(l� 2)

X

T2Sl

p0T .
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Above we have used the fact that U(S) =
Pk

l=1

P
T2Sl

p0T . We also adjusted the limits of the final sum

because the terms (l� 1)(l� 2) are zero for l= 1,2. Because (l� 1)(l� 2)� 0 for all l� 3, we obtain the

lower bound U(S)�U2(S)� 0.

We next upper bound U(S) � U2(S). Recall that we assumed for any 1  l  k and any T 2 Sl that

p0T  cpl. In addition note that |Sl|=
�
k
l

�
for l 2 {0,1, ..., k} since this is the number of sets of l elements

chosen from a set of carnality k. With this assumption we can write the difference as

U(S)�U2(S) =
1

2

kX

l=3

(l� 1)(l� 2)

X

T2Sl

p0T

 c

2

kX

l=3

(l� 1)

2

✓
k

l

◆
pl

 c

2

kX

l=3

(l� 1)

2
(kp)l

 c

2

 
kX

l=2

(l� 1)

2
(kp)l � (kp)2

!

 ckp

2

 
kX

l=2

(l� 1)

2
(kp)l�1 � kp

!

 ckp

2

 
1X

l=1

l2(kp)l � kp

!

 ckp

2

✓
kp+(kp)2

(1� kp)3
� kp

◆

 ckp

2

✓
kp+(kp)2 � kp+3(kp)2 � 3(kp)3 +(kp)4

(1� kp)3

◆

 ckp

2

✓
4(kp)2 +(kp)4

(1� kp)3

◆

We now use the fact that kp < 1/2 to lower bound (1�kp)3 by 1/8 and upper bound (kp)4 by (kp)2. Using

these bounds we obtain the upper bound U(S)�U2(S) 20c(kp)3.

7.4. Proof of Lemma 1
We assume without loss of generality that S = {Ei}ki=1. Then we can write U2(S) as

U2(S) =
kX

i=1

kX

l=1

X

T2Sl
Ei2T

p0T � 1

2

kX

i,j=1
j 6=i

kX

l=2

X

T2Sl
Ei,Ej2T

p0T

=

kX

l=1

✓
l

1

◆X

T2Sl

p0T �
kX

l=2

✓
l

2

◆X

T2Sl

p0T

=

1

2

kX

l=1

l(3� l)
X

T2Sl

p0T .
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Above we have used the convention

�
l
k

�
= 0 for l < k and the relation

�
l
1

�
�
�
l
2

�
= l(3� l)/2.

7.5. Proof of Theorem 2.5

We define the marginal mean and variance of Xi as µi and �2
i and we define the correlation coefficient of Xi

and Xj as ⇢ij . We define pi =P(Ei) and pij =P(Ei

T
Ej). We will use the following bounds for Gaussian

random variables.

LEMMA 2. (Gordon 1941) Let X be a Gaussian random variable with mean µ and positive standard

deviation �. For any value t > µ let z = (t�µ)/�. Then we have

exp (�z2/2)p
2⇡�(z+1/z)

P(X � t) exp (�z2/2)p
2⇡�z

. (7.3)

We will also use the following lemma to obtain an upper bound on the joint probability pij .

LEMMA 3. Let (X1,X2) be a pair of jointly Gaussian random variables with means µ1, µ2, positive

standard deviations �1,�2, and correlation coefficient ⇢12. For any value t >max(µ1, µ2), we have

P(min(X1,X2)> t) 1p
2⇡(2t�µ1 �µ2)

exp

✓
� (2t�µ1 �µ2)

2

2 (�2
1 +�2

2 +2⇢12�1�2)

◆
. (7.4)

With these bounds for the relevant probabilities, we can obtain a lower bound on the objective function. Let

zi = (t�µi)/�i. Then using Lemmas 2 and 3 we have

U2(S) =
X

i:Ei2S

pi �
1

2

X

i,j:
Ei,Ej2S

i 6=j

pij

�
X

i:Ei2S

1p
2⇡�i(zi +1/zi)

exp

✓
�z2i

2

◆

� 1

2

X

i,j:
Ei,Ej2S

i 6=j

1p
2⇡(2t�µ1 �µ2)

exp

 
� (2t�µi �µj)

2

2

�
�2
i +�2

j +2⇢ij�i�j

�
!

=U l
2(S).

7.6. Proof of Lemma 3

We can upper bound the probability of interest by

P(min(X1,X2)> t)P(X1 +X2 > 2t)

The sum X1 +X2 is a Gaussian random variable with mean µ1 +µ2 and variance �2
1 +�2

2 +2⇢12�1�2. By

applying Lemma 2 we obtain the desired result.
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8. Additional Formulations
8.1. Linearizing Binary Quadratic Constraint

To linearize quadratic constraint (5.1) we just need to introduce binary variables zj 2 {0,1} for j = 1, . . . , p

that we relate to x(i+1)j and xij through

zj  xij, j = 1, . . . , p,

zj  x(i+1)j, j = 1, . . . , p,

zj � xij +x(i+1)j � 1, j = 1, . . . , p.

(8.1)

Under these constraints, (5.1) is equivalent to

pX

j=1

zj  �.
(8.2)

8.2. Strengthened Goalie and Line Stacking Constraint

A standard way to strengthen Goalie constraint (4.4) is to replace it with the following set of constraints

xij +xil  1, 8j 2G, 8l 2Oj. (8.3)

Similarly, Line Stacking constraints (4.5) can be strengthened to

vil xij, l= 1, . . . ,NL, 8j 2Ll

NLX

l=1

vil � 1

vil 2 {0,1} , l= 1, . . . ,NL.

(8.4)

Unfortunately, this change increases the size of the formulation and modern solvers can often dynamically

implement the strengthening as needed (Conforti et al. 2014, page 69), which can make it hard to predict

the potential improvement of switching (4.4)/(4.5) by (8.3)/(8.4). Figure 11 shows that for our instances the

switch actually increases solve times.
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