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Abstract In this paper, we show that the Chvéatal-Gomory closure of any
compact convex set is a rational polytope. This resolves an open question of
Schrijver [17] for irrational polytopes', and generalizes the same result for
the case of rational polytopes [17], rational ellipsoids [8] and strictly convex
bodies [7].
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1 Introduction

Gomory [12] introduced the Gomory fractional cuts, also known as Chvétal-
Gomory (CG) cuts [5], to design the first finite cutting plane algorithm for
Integer Linear Programs (ILP). Since then, many important classes of facet-
defining inequalities for combinatorial optimization problems have been iden-
tified as CG cuts. For example, the classical Blossom inequalities for general
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Matching [10] - which yield the integer hull - and Comb inequalities for the
Traveling Salesman problem [13,14] are both CG cuts over the standard linear
programming relaxations. CG cuts have also been effective from a computa-
tional perspective; see for example [2,11]. Although CG cuts have traditionally
been defined with respect to rational polyhedra for ILP, they straightforwardly
generalize to the nonlinear setting and hence can also be used for convex In-
teger Nonlinear Programming (INLP), i.e. the class of discrete optimization
problems whose continuous relaxation is a general convex optimization prob-
lem. CG cuts for non-polyhedral sets were considered implicitly in [5,17] and
more explicitly in [4,7,8]. Let K C R™ be a closed convex set and let hx rep-
resent its support function, i.e. hx(a) = sup{{a,z) : © € K}. Given a € Z",
we define the CG cut for K derived from a as the inequality

{a,2) < |hx(a)] . (1)

The CG closure of K is the convex set whose defining inequalities are exactly
all the CG cuts for K. A classical result of Schrijver [17] is that the CG closure
of a rational polyhedron is a rational polyhedron. Recently, we were able to
verify that the CG closure of any strictly convex body? intersected with a
rational polyhedron is a rational polyhedron [8,7]. We remark that the proof
requires techniques significantly different from those described in [17].

While the intersections of strictly convex bodies with rational polyhedra
yield a large and interesting class of bodies, they do not capture many nat-
ural examples that arise in convex INLP. For example, it is not unusual for
the feasible region of a semi-definite or conic-quadratic program [1] to have
infinitely many faces of different dimensions, where additionally a majority of
these faces cannot be isolated by intersecting the feasible region with a ra-
tional supporting hyperplane (as is the case for standard ILP with rational
data). Roughly speaking, the main barrier to progress in the general setting
has been a lack of understanding of how CG cuts act on irrational affine sub-
spaces (affine subspaces whose defining equations cannot be described with
rational data).

As a starting point for this study, perhaps the simplest class of bodies
where current techniques break down are polytopes defined by irrational data.
Schrijver considers these bodies in [17], and in a discussion section at the end
of the paper, he writes 3:

“We do not know whether the analogue of Theorem 1 is true in real
spaces. We were able to show only that if P is a bounded polyhedron
in real space, and P’ has empty intersection with the boundary of P,
then P’ is a (rational) polyhedron.”

2 A full dimensional compact convex set whose only non-trivial faces are vertices. It this
paper, we call zero dimensional faces as vertices.

3 Theorem 1 in [17] is the result that the CG closure is a polyhedron. P’ is the notation
used for CG closure in [17]
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In this paper, we prove that the CG closure of any compact convex set* is
a rational polytope, thus also resolving the question raised in [17]. As seen by
Schrijver [17], most of the “action” in building the CG closure will indeed take
place on the boundary of K. While the proof presented in this paper has some
high level similarities to the one in [7], a substantially more careful approach
was required to handle the general facial structure of a compact convex set
(potentially infinitely many faces of all dimensions) and completely new ideas
were needed to deal with faces having irrational affine hulls (including the
whole body itself).

This paper is organized as follows. In Section 2 we introduce some notation,
formally state our main result and give an overview of the proof. We then
proceed with the full proof which is presented in Sections 3-5.

2 Definitions, Main Result and Proof Idea

Definition 1 (CG Closure) For a convex set K C R” and S C Z" let
CC(K,S) :=yeg{z €R" : (v,2) < [hg(v)]}. The CG closure of K is de-
fined to be the set CC(K) := CC(K,Z").

The following theorem is the main result of this paper.

Theorem 1 If K C R™ is a non-empty compact convez set, then CC(K)
is finitely generated. That is, there exists S C Z" such that |S| < oo and
CC(K) =CC(K,S). In particular CC(K) is a rational polyhedron.

Following are some definitions and notation we will use throughout the
paper. For more details on definitions from convex analysis, we refer the reader
to [15]. For a positive integer n, we let [n] be the set {1,...,n}. For z,y € R™,
let [z,y] ={ a+(1—-Ny:0< A< 1} and (z,y) = [z,9]\ {z,y}. For z € R,
we let ||z]l, = (X, 9657)%7 p > 1, denote the standard [, norms, where we let
||| = maxi<;<n |2;|. For notational simplicity, we shall write ||z|| to denote
the standard euclidean norm. Let B} := {z € R" : ||z||, < 1}, the standard [,
ball, and let S~ ! := {z € R™ : ||z|| = 1}, the euclidean sphere. For A C R",
let aff(A) denote the smallest affine subspace containing A. Furthermore let
aff;(A) = aff(aff(A) N Z"), i.e. the largest integer subspace in aff(A). Let
int(A),bd(A) denote the interior and boundary of A with respect to R™. Let
relint(A), relbd(A) denote the interior and boundary of A with respect to
aff(A) (under the subspace topology). For A C R™, a € R™ and b € R we
let a +bA = {a+bx : x € A}. For sets A, B C R", we define d(A, B) =
inf {|ly — x| : y € A,z € B} to be the distance between A and B. If B = {z} is
a singleton, we shall write d(A4, z) for notational convenience. For a convex set
Kandv e R, let H,(K) :={x € R": (v,2) < hg(v)} denote the supporting

4 If the convex hull of integer points in a convex set is not polyhedral, then the CG closure
cannot be expected to be polyhedral. Since we do not have a good understanding of when
this holds for unbounded convex sets, we restrict our attention here to the CG closure of
compact convex sets.
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halfspace defined by v for K, and let H; (K) := {x e R": (v,z) = hx(v)}
denote the supporting hyperplane. A subset F' C K is a face of K if for every
line segment [z,y] C K, (z,y)NF # () = [x,y] C F. A face F of K is proper if
F # K and is exposed if F' = KNH; (K) for some v. Let Fy,(K) := KNH;(K)
denote the face of K exposed by v. If the context is clear, then we drop the K
and simply write H,, H and F;,. Finally, a vector € K is an extreme point
if {z} is a face of K (i.e. x is a zero dimensional face). We let ext(K) denote
the set of extreme points of K.

We present the outline of the proof for Theorem 1. The proof proceeds by
induction on the dimension of K. The base case (K is a single point) is trivial.
By the induction hypothesis, we can assume that (f) every proper exposed
face of K has a finitely generated CG closure. We build the CG closure of K
in stages, proceeding as follows:

1. (Section 3) For a proper exposed face F,, where v € R™, show that 3.5 C
Z", |S| < oo such that CC(K,S)N H = CC(F,) and CC(K,S) C H,
using (f) and by proving the following:

(a) (Section 3.1) A CG cut for F, can be rotated or “lifted” to a CG cut
for K such that points in F, Naff;(H ) separated by the original CG
cut for F, are separated by the new “lifted” one.

(b) (Section 3.2) A finite number of CG cuts for K separate all points in
F, \ aff;(H) and all points in R™ \ H,.

2. (Section 4) Create an approximation CC(K,S) of CC(K) such that (i)
S| < o0, (il) CC(K,S) € K naffj(K) (ili) CC(K,S) Nrelbd(K) =
CC(K)Nrelbd(K). This is done in two steps:

(a) (Section 4.1) Using the lifted CG closures of F,, from (1.) and a compact-
ness argument on the sphere, create a first approximation CC(K,S)
satisfying (i) and (ii).

(b) (Section 4.2) Noting that CC(K, S)Nrelbd(K) is contained in the union
of a finite number of proper exposed faces of K, add the lifted CG
closures for each such face to S to satisfy (iii).

3. (Section 5) We establish the final result by showing that there are only a
finite number of CG cuts which separate at least one vertex of the approx-
imation of the CG closure from (2).

3 CC(K,S)N H: = CC(F,) and CC(K, S) C H,

When K is a rational polyhedron, a key property of the CG closure is that
for every face F' of K, we have that (x) CC(F) = F N CC(K). In this set-
ting, a relatively straightforward induction argument coupled with (x) allows
one to construct the approximation of the CG closure described above. In our
setting, where K is compact convex, the approach taken is similar in spirit,
though we will encounter significant difficulties. First, since K can have in-
finitely many faces, we must couple our induction with a careful compactness
argument. Second and more significantly, establishing (x) for compact convex
sets is substantially more involved than for rational polyhedra. As we will see
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in the following sections, the standard lifting argument to prove (x) for rational
polyhedra cannot be used directly and must be replaced by a more involved
two stage argument.

3.1 Lifting CG Cuts

To prove CC(F) = F N CC(K) one generally uses a ‘lifting approach’, i.e.,
given a CG cut CC(F,{w}) for F, w € Z"™, we show that there exists a CG
cut CC(K,{w'}) for K, w’ € Z", such that

CC(K, {w'}) Naff(F) € CO(F, {w}) N aff(F). (2)

To prove (2) when K is a rational polyhedron, one proceeds as follows. For
the face F' of K, we compute v € Z™ such that F,(K) = F' and hg(v) € Z.
For w € Z™, we return the lifting w’ = w + lv, | € Z~(, where [ is chosen such
that hg(w’) = hp(w'). For general convex bodies though, neither of these
steps may be achievable. When K is strictly convex however, in [7] we show
that the above procedure can be generalized. First, every proper face F' of
K is an exposed vertex, hence 3 z € K,v € R” such that F = F, = {z}.
For w € Z"™, we show that setting w’ = w + v’, where v’ is a fine enough
Dirichlet approximation (see Theorem 2 below) to a scaling of v is sufficient
for (2). In the proof, we critically use that F is simply a vertex. In the general
setting, when K is a compact convex set, we can still meaningfully lift CG
cuts, but not from all faces and not with exact containment. First, we only
guarantee lifting for an exposed face F, of K. Second, when lifting a CG cut
for F), derived from w € Z", we only guarantee the containment on aff;(H),
ie. CO(K,w')naff;(H) C CC(F,w)Naff;(H;). This lifting, Proposition 1
below, uses the same Dirichlet approximation technique as in [7] but with a
more careful analysis. Since we only guarantee the behavior of the lifting w’ on
aff ; (H ), we will have to deal with the points in aff (F) \ aff; (H") separately,
which we discuss in the next section.

Lemmas 1-3 are technical results that are needed for proving Proposition 1.

Lemma 1 Let K be a compact convex set in R™. Let v € R™, and let (x;)2,,
x; € K, be a sequence such that lim; o (v, ;) = hi(v). Then

lim d(F,(K),z;) = 0.

1—00

Proof Let us assume that lim;_, o, d(F,(K), z;) # 0. Then there exists an e > 0
such that for some subsequence (x4, )52 of (x;)52, we have that d(F,(K), zq,) >
€. Since (zq,)5°, is an infinite sequence on a compact set K, there exists a con-
vergent subsequence (zg, )72, where lim;_,, x5, = « and z € K. We note that
d(Fy(K),z) = lim;_,o d(F,(K),zp,) > €, where the first equality follows from
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the continuity of d(F,(K),-). Since d(F,(K),z) > 0 we have that « ¢ F,(K).
On the other hand,

hi(v) = Zliglo (v,2;) = lllglo <’va57:> = (v, z)

and hence x € F,(K), a contradiction. O

Lemma 2 Let K be a compact convez set in R™. Let v € R™, and let (v;)$24,
v; € R™, be a sequence such that lim;_,oc v; = v. Then for any sequence (z;)324,
x; € By, (K), we have that

lim d(F,(K),z;) = 0.

i—00

Proof We claim that lim;_, (v, z;) = hx (v). Since K is compact, there exists
R > 0 such that K C RBj. Hence we get that

hi(v) = lim hg(v;) = lim (v;, x;)
1—00 71— 00
= lim (v,2;) + (v; — v, 2;) < lim (v,2;) + ||[v; — v||R = lim (v, z;),

11— 00 71— 00 1— 00
where the first equality follows by continuity of hx (hk is convex on R™ and fi-
nite valued). Since each x; € K, we get the opposite inequality lim;_, (v, z;) <
hi (v) and hence we get equality throughout. Finaly, by Lemma 1 we get that
lim; 00 d(F, (K), 2;) = 0 as needed. a

The next lemma describes the central mechanics of the lifting process ex-
plained above. The sequence (w;)$2; will eventually denote the sequence of
Dirichlet approximates of the scaling of v added to w, where one of these will
serve as the lifting w'.

Lemma 3 Let K C R" be a compact convex set. Take v,w € R™, v # 0. Let
(wi, )52, w; € R™. t; € Ry be a sequence such that

a. lim t; = 0o, b. lim w; — t;v = w. (3)
11— 00 71— 00

Then for every € > O there exists N. > 0 such that for all i > N,

hK(’U}i)—‘rG ZtihK(U)‘f‘hFu(K)(w) > hK(wl) — €. (4)

Proof By (3) we have that

and that we may pick N7 > 0 such that

||lw; — tiv]| < JJw||+1<C  fori> Nj. (6)
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Let (7;)§2; be any sequence such that z; € Fy,(K) = F,, /;,(K). For each
i > 1, let ¥; = argmingep (i) |z — Y- By (5) and Lemma 2, we may pick
N5 > 0 such that

€

Since hp, (k) is a continuous function, we may pick N3 > 0 such that

\th(K)(wi — ti’l)) — hFU(K)(w)\ S fOl” 7 Z N3 (8)

NN e

Let N. = max {N1, N2, N3}. Since x; € Fy,,,(K) and z; € F,(K) we have
that

(w,,x,) Z <w7,i7> and <t7;’U, ‘i‘l> 2 <tﬂ), I,> . (9)
From (6), (7), (9) we get that for i > N,

(Wi, i) — (Wi, Ti) < (wy, @) — (Ws, &) + (G0, ;) — (Gav, 245) = (w; — tv, x; — T)

~ € €
< Jlwi = tvlla = 0 < € (55) = 5-
(10)

From (10) we see that for i > N,
- € €
hi (wi) > hp, (k) (wi) > (wi, T5) > (wg, 2;) — 5= hc (w;) — 3 (11)
Since (v, -) is constant on F,(K), we have that

hi, () (Wi) = b, (k) (Wi — tiv + tiv) = hp, () (Wi — tiv) + tihg, (1) ()
=hg (K)(wi - ti’U) + tihK(’U) (12)

v

Combining (8), (11) and (12) we get that for i > N,

hK(wi) +e> tihK(U) + th(K)(w) > hK(wZ) —€
as needed. ]
Theorem 2 (Dirichlet’s Approximation Theorem) Let (a1,...,0q) €
R!. Then for every positive integer N, there exists 1 < n < N such that
maxi<i< [na — [nai]| < 1/NVL
Proposition 1 Let K C R" be a compact and convex set, v € R™ and w €

Z"™. Then Jw' € Z™ such that CC(K,w") Naff;(H;(K)) C CC(F,(K),w) N
affr (Hy (K)).
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Proof First, by possibly multiplying v by a positive scalar we may assume that
hix(v) € Z. Let S = aff {(H, (K)). We may assume that S # 0, since otherwise
the statement is trivially true.

From Theorem 2 for any v € R™ there exists (s;,%)52,, s;i € Z", t; € N
such that (a.) t; — oo and (b.) ||s; — t;v|| — 0. Define the sequence (w;, ;)32
where w; = w+s;, i > 1. Note that the sequence (w;, t;) satisfies (3) and hence
by Lemma 3 for any € > 0, there exists N, such that (4) holds. Let ¢ = 3 (1 —
(th(K)(’UJ) — LhFU(K)(w)J)), and let N1 = Ne. Note that Lth(K)(’LU) + EJ =
LhFU(K)(w)J. Hence, since hy (v) € Z by assumption, for all ¢« > N; we have
that LhK(wi)J < LtihK(U) + th(K) (w) + EJ = tihK(’l}) + LhFU(K)(w) + EJ =
tihK(U) + ULF“(K) (U})J .

Pick z1,...,2z € S NZ" such that aff(z1,...,2,) = S and let R =
max {[|z;|| : 1 < j < k}. Choose N3 such that [|w; — t;v — w|| < 5% for i > Nj.
Note that for i > N, |(ws,z;) — Gv+w,2;)| = |(w; —tiv—w,z;)| <
hwi — tio— wlllzy] < Rp = & Wi € {1,.... k).

Next note that since z;,w; € Z", (w;,z;) € Z. Furthermore, t; € N,
(v,2j) = hx(v) € Z and w € Z™ implies that (t,v + w, z;) € Z. Given this, we
must have (w;, z;) = (t,;v +w,z;) Vje{l,...,k},i> Ny and hence we get
(wi, ) = (tiv +w,z) Ve €S, i> Na.

Let w' = w; where i = max {Ny, No}. Let L = {z : (', z) < |hg(w')]}NS.
Here we get that (w;,z) < tihg(v) + |hp,(k)(w)] and (v,z) = hgi(v) for
all z € L. Hence, we see that (w; —t;v,z) < |hp,(x)(w)] for all x € L.
Furthermore, since (w; — t;v,2) = (w,x) for all x € L C S, we have that
(w,z) < thv(K)(w)J for all x € L, as needed. O

3.2 Separating All Points in F, \ aff;(H)

Since the guarantees on the lifted CG cuts produced in the previous section
are restricted to aff (H), we must still deal with the points in F, \ aff; (H7).
In this section, we show that points in F, \ aff;(H;) can be separated by
using a finite number of CG cuts in Proposition 2. To prove this, we will
need Kronecker’s theorem on simultaneous diophantine approximation which
is stated next. See Niven [16] or Cassels [3] for a proof.

Theorem 3 (Kronecker’s Approximation Theorem) Let (z1,...,z4) €
R? be such that the numbers 1,x1, ..., xq are linearly independent over Q. Then
the set {(fr(nx1), ..., fr(nx,)) : n € N} is dense in [0,1)?, where fr(z) = v—|z]
denotes the fractional part of x.

We give the following simple corollary.

Corollary 1 Let v = (21,...,24—r,%1,...,2,) € RY, where z1,...,2q_r € Z,
andl,...,x1,...,2, are linearly independent over Q. Then for any m, Ny € N,
and k € [m], the set {w+nv:w e Z'n=k (mod m),n > Ny} is dense in
7" x R".

Proof Let £ = (z1,...,2,) € R", and let S =Z" + {mn : n > No}.
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Claim 1: S is dense in R": Take y € R", and note that y = |y| + fr(y) (here
|-] and fr(-) are applied coordinate wise) where |y| € Z™ and fr(y) € [0,1)".
For any 0 < € < 1/2 and @ € [r], let If = (fr(y;), fr(y;) + ¢€) if fr(y;) < 5
and If = (fr(y;) — e fr(y;)) if fr(y;) > i. Letting I¢ = If x -+ x IS, we
have that by construction 7€ is an open subset of [0,1)". Since m € N, note
that 1, mx1, ..., mz, are linearly independent over Q. By Theorem 3, we have
that the set {fr(nmg&):n > 1} is dense in [0,1)". Since {fr(nm&):n > Ny}
contains all but finitely many of the elements in {fr(nm&) : n > 1}, we must
have that {fr(nm&):n > Ny} is also dense in [0,1)". Therefore there exists
ng > Ny such that nomé — [nemé| € I¢. Let § = no(mé&) — |[nomé&] + |y].
Since |y| — [nomé&| € Z", we see that § € S. Next note that

15— llo = mxfr(ngme;) — fr(yy)] < e

Since € can be made arbitrarily small, we have that S is dense in R", as needed.
Since (21,...,24_r) € Z%" note that for any n € N, Z¢ + nv = Z4" x

(Z" 4+ n&). Take k € [m]. From the previous remark we see that
{w+nv:weZ'n=k (modm),n>Ny}DZ"" x (Z"+ S + ké)

Since S is dense in R", we clearly also get that S + k¢ is dense in R” (indeed
this holds for any translation of S). Therefore the set Z4~" x (S +k¢) is dense
in Z4" x R" as needed. (]

The following lemmas will allow us to normalize the vector v defining F,
and H; and simplify the analysis that follows.

Lemma 4 Let K C R™ be a closed convex set, and let T : R™ — R" be an
invertible linear transformation. Then hy(v) = hrx (T ') and TF,(K) =
(Fr-4,(TK)) for all v € R™. If T is a unimodular transformation, then for
S CZ*, TCC(K,S)= (CC(TK,T~'S)). Furthemore, TCC(K) = CC(TK)
and T aff; (K) = aff ; (TK).

Proof Observe that

hri(T ') = sup <T_tv,x> = sup <T_tv,Tx> = sup (v, z) = hg(v).
rzeTK reK reK

Note that
T (Fr-(TK) =T ( {z: 2 € TK, hyx(T""'v) = (T "v,z)} )

= {m : Te € TK, hrg(T ') = (T ", Tz)}
o 2 e K, hiv) = (v,2)} = F,(K).

Next for S C Z", note that since T is unimodular, we have that TS C Z".

Therefore

“HCC(TK,T'S)=T""({z:2 €TK, (v,2) < |hrk(v)] VveT 'S}

=T " {z:2eTK, (T"'v,z) < |hpx(T""v)| VveS}
={z: Tz eTK, (v,2) < |hg()| YveS}
={z:zeK, (v,) <|hg(v)] Yve S} =CC(K,S).
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Furthermore, by unimodularity of T, we have that T7'Z" = Z" and hence
CO(K) =T 'CC(TK, T~tZ") = T"'CC(TK), as needed. Lastly, note that
T(aff(K)NZ") = aff (TK)NZ"™, and hence T'(aff; (K)) = aff ; (T K) as needed.
O

An affine subspace A C R™ is rational if A = {& € R" : Cz = d}, where C, d
define a rational linear system (i.e. the entries of C,d are in Q). Equivalently,
A is rational if A = span(z1,...,2x) + xg+1, where x; € Q™ for ¢ € [k + 1]. We
will need the following standard theorem.

Theorem 4 Let V C R"™ denote a rational linear subspace of dimensionr > 1.
Then there exists vectors by,...,b, € Z™ such that

1LY Zh =V T
2. 30 Zh = 7"

Lemma 5 For v € R, let
rdim(v) = min {dim(A) : v € A, A CR" a rational affine subspace} .
Then there exists a unimodular transformation T € Z"*™, such that
Tv=(0,...,0,\ a,...,a,), (13)

where A € Q>p, r = rdim(v), and the numbers 1,a1,...,a, > 0 are linearly
independent over Q.

Proof Let A = {x € R": Cx = d} denote the smallest rational affine subspace
containing v, and let r = dim(A). Clearly, we may assume that the rows of
C are linearly independent, and hence that C € Q™" "*™ and d € Q"™ ". Let
€1, .., Cn_r denote the rows of C. Since v € A, note that d; = (c¢;,v) for all
i € [n—r|]. Let H = span(cy,...,¢n—r). Since H is a rational linear space,
note that span(H N Z™) = span(H). Therefore, by Theorem 4, there exists
bi,...,b, € Z™ such that

Z Zb; = span(H)NZ" and ZZbi =7". (14)
i=1 =1

Let f € R™ denote the n-dimensional vector satisfying f; = (b;,v) for i € [n].
Note that by possibly negating the vectors in by, ...,b,, we may assume that
f > 0. Since for each i € [n — r|, the vector b; can be obtained as a rational
combination of ¢p,...,¢,—., we also have that (b;,v) = f; € Q. Further-
more, since span(by,...,byp—r) = H, we see that A = {x e R": Cz =d} =
{z e R": (bj,x) = fi,i € [n—r]}.

If fi = = fuoor =0, let ¢ = 1. Otherwise, there exists ¢ € Qso,
such that o f1,...,0fn—r € Z>o and that ged(of1,...,0fn—r) = 1. Here we
note that of; = (b;,0v). Since o € Q, we also have that rdim(v) = rdim(ov)
(just replace the system Cx = d by Cax = od). Since it suffices to prove the
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statement for ov, we shall assume that o = 1 satisfies the requirements for
both cases.

Let us assume that we are still in the latter case, i.e. that fy,..., fn_» €
Z>o and that ged(fi,..., fn—r) = 1. Then from the euclidean algorithm,
we may construct a unimodular matrix U € Z" "*"~" (corresponding to
the performed sequence of elementary integral column operations) such that
(fiseoos fuor)U = (0,...,0,1). Let (b1,...,bp—p) = (b1,b2,...,b,—)U. Since
U is unimodular we have that Y "Zb; = > . "Zb; = H N Z"™, and hence
the basis b1,...,bp—r,bp—ry1,...,b, satisfies (14). Lastly, by construction of
bi,...,b,_, the following holds

Vb1, b ) = 0 (b1, b )U = (fiye oy foer)U = (0,...,0,1).

From the above, we may assume that we have an integral basis b1,...,b,
satisfying (14), such that (f1,..., fn—r) equals either (0,...,0,1) or (0,...,0).

Let o; = fn—r4i for ¢ € [r]. Note that o, ...,q, > 0since f > 0. We claim
that 1,aq,...,q, are linearly independent over Q. Assume not, then there
exists a non-trivial combination aq,...,a, € Q such that 22:1 a;a; € Q.
Note that w = >0, a;by,—r+i € Q™ and that (w,v) = > a; (by—rts,v) =
Z: a;a; € Q. Furthermore, w is linearly independent from by,...,b,_,, and
hence the subspace A’ = {x € R": (w,z) = (w,v), (bi,x) = fi,i € [n—r]} C
A is rational, contains v, and dim(A’) < dim(A). However, this contradicts
our assumption on A, and therefore such a combination cannot exist.

Let T € Z™*™ denote the matrix with rows by, ..., b,, and note that Tv =
f. Since the rows of T' generate Z", we note that 7" is unimodular. Lastly, by
the previous arguments, we have that f satisfies (13) as needed. ]

We show that the points in F,, \ aff;(H;) can be separated using a finite
number of CG cuts. We first give a rough sketch of the proof. We restrict
to the case where aff;(H;) # (. From here one can verify that any rational
affine subspace contained in aff(H’) must also lie in aff;(H ). Next we use
Kronecker’s theorem to build a finite set C' C Z™, where each vector in C is at
distance at most € from some scaling of v, and where v can be expressed as a
non-negative combination of the vectors in C. By choosing € and the scalings of
v appropriately, we can ensure that the CG cuts derived from C' dominate the
inequality (v, x) < hg(v),ie. CC(K,C) C H,. If CC(K,C) lies in the interior
of H,(K), we have separated all of H; (including F, \ aff;(H;)) and hence
are done. Otherwise, T := CC(K,C) N H is a face of a rational polyhedron,
and therefore aff(T") is a rational affine subspace. Since aff(T") C aff(H), as
discussed above we obtain T' C aff (T") C aff;(H") as required.

The following lemma will be needed in the proof of Proposition 2.

Lemma 6 Let ey,...,e, € R™ denote the standard unit vectors. For s > 0,
let v1,...,vp41 € R™, be vectors such that
s - S
v; — S€; < — 1 € [n), v —s e; < —.
s Z”°°—2(2n+1) Il i ; N 20en+1)
- o0

Then 0 € int(conv(vy,...,vnp+1)) and span(vy, ..., v,41) = R™.
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Proof Since the statement is invariant under positive scalings of vy, ..., vp41,
we may assume that s = 1. Let Sy = conv(eq,..., e, — > 1 €;) and S =
conv(vy,...,Vn41). We first show that for any w € R™, such that ||w|; = 1,
we have that

n
1
hs,(w) = max {fg&xnwi, lel} > o 1
1=

Assume that — > | w; < ﬁ (t). Let I_, I C [n] denote the indices where

w; < 0 and w; > 0 respectively. Then note that

T

Hw”l:Z|wz|: Zwi_ Zwizl

i=1 icly iel_

Combining the above with the () yields

1 1 1
2 > 1 — =2 > 1 — = g >
; Wi 1 S D R e ey |
+
as needed.

From here, we see that

n
Un+1 + Z €;

i=1

)

(15)

max w; —iw» - L > !
1<i<n ! 22n+1) ~ 2(2n+1)°

We claim that mBQO C S. Take z € R", ||z]|o < m Assume that

x ¢ S, then by the separator theorem, there exists w € R™, ||w||; = 1, such

that
1

< = 5/om 11\
hs(w) < (w,z) < ||2|lcollw]l: 2(2n+ 1)’

a clear contradiction to (15). Since 0 € int (mBO@), we clearly have that
0 € int(S). Assume that span(vy,...,v,4+1) # R™. Then there exists w € R™,
lwl]|1, such that (vi,w) = -+ = (vp41,w) = 0. Again, this contradicts (15),
and hence span(vy, ..., Un4+1) = R™ as needed. O

Lemma 7 Let P C R"™ be a polytope with extreme points ext(P) = {w1, ..., wg}.
If x € relint(P), then there exists a conver combination Ai,...,A; > 0,
Zle X = 1, such that Zle Aiw; = .
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Proof Let w = Ele %wi. By convexity @ € P. Since z € relint(P) and
w € P, there exists € > 0 such that z. = (1 + €)x — ew € P. Since z. € P,

we may write z. = Zle a;w; for a convex combination aq,...,ar > 0. Let
i = %ﬂai + ﬁ for i € [k]. Note that the \;s are strictly positive and form
a convex combination. Lastly, we have that
k k k
1 € 1
3 i (o) o5 (S k)
i=1 i=1 =1
(14 o — ew) + ——
= — €)x — €w =ux,
1+¢ 1+¢
as needed. O

Proposition 2 Let K CR"™ be a compact conver set and v € R™. Then there
exists C C Z", |C| = rdim(v) + 1, such that

CO(K,C) C Hy(K) and CCO(K,C)n HI(K) C aff(HZ (K)).

Proof By scaling v by a positive scalar if necessary, we may assume that
hix(v) € {0,1,-1}. Let T € Z™ "™ be the unimodular transformation pro-
vided by Lemma 5 for v. By Lemma 4, since T is unimodular, it suffices to
prove the statement for the convex body T~*K and the vector Tw, and hence
we may assume that T is the identity.

From Lemma 5, the vector v is of the form v = (0,...,0,\, aq,...,q;),
where A € Qx¢, 7 = rdim(v), and 1,a1,...,a, > 0 are linearly independent
over Q. Since hg(v) € {0,1,—1} and A € Q>¢, we may scale v by a positive
rational number to achieve hi(v) = v, v € Q, such that v is of the form
0,...,0,b,a1,...,a,) for b€ {0,1}.

We shall distinguish two cases, either aff;(H ) # 0 or aff;(H;) = 0. In
the the former case, we will define CG cuts that yield a subset of aff;(H)
when restricted to H . In the latter case, we will define CG cuts that imply
the inequality (v,z) < hg(v), separating the CG closure from H; entirely.
Since K is compact, we may choose a radius R > 0 such that K C RB}. Let
Wi = €p—rti, © € [r], and wy11 = —Y_._; €n_pyi, where the e;’s denote the
standard unit vectors. Here we note that ||w;||.c =1 for all i € [r + 1].

Case 1: aff;(H) # (). We first claim that v € Z and that aff;(H)) = H, N
{zr €eR" : xp_r4; = 0,1 € [r]}. Pick z € Z" N H. Then by definition, (v, z) =
bzp—r+Y i_y ®izn_pyi = hi(v) = 7. Since bz,_, € Z and vy € Q, we must have
that 22:1 @;Zn—r+1 € Q. However, since 1, o, . . ., o, are linearly independent
over Q, we must have that z,_,4+1 = -+ = 2z, = 0. Therefore we must have
that bz,,_, = 7. Therefore v € Z as needed. If b = 1, we have that z,_,. =,
and therefore H; NZ™ = Z"~"~! xyx 0". Hence, aff;(H) = R" ™"~ xyx 0"
as required. Otherwise, if b = 0, then v = 0 and H; NZ" = Z"" x (0.
Therefore aff;(H, ) = R"" x 0" as required.

From the above remarks, note that we need only find CG cuts that imply

that ,_,y; = 0, V ¢ € [r], when restricted to H . Let € = m. From
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Corollary 1, we know that the set Z" + {nv : n > Ny} is dense in Z"~" x R"
for any No € N. Therefore, for each ¢ € [r+1], there exists an infinite sequence
z; =nv—y; € 0" " xR", y; € Z", such that n; — oo and lim,; o z; — ew;.
By Lemma 3, there exists j' > 1 such hg (y;/) < njhg(v) +hp, k) (—ew;) +¢,
and where ||z — ew;|loc < @R (since lim; o z; = ew;). Let us denote
w; = Zjr, Zi = Yiry and n; = njr, noting that Zi = ;v — W;.

Let C = {z1,...,Z41} C Z". We will show that CC(K,C) satisfies the
requirements of the theorem. For each ¢ € [r + 1], by construction of z; we
have that

|hic(2:)] < |Rihi (v) + hp, () (—ews) + €]
< L hK(U) +€(hRB" (wl + 1 J (16)
= nitc(0) + (Rl + D) < (o) + | ] | = mic)

Here note that the last two inequalities follow since n;hg (v) = 7,y € Z (we
proved earlier that v € Z). From (16), we see that

CCO(K,C) C{z e R": (z;,z) < izhx(v) Vi e [r+1]}. (17)

Again by construction, for each i € [r + 1], the first n — r coordinates

of w; are zero and ||w; — ew;|l0 < m. Therefore wy,...,w,41 satisfy
the conditions of Lemma 6 (restricting to the last r coordinates), and hence
0 € relint(conv(wy,...,wWy41)) and span(@y, ..., Wr41) = 0777 X R” (since

the first n — r coordinates are all 0). By Lemma 7, there exists a convex
combination Aq,..., Apy1 > 0, ZTH i = 1, satisfying > .~ rl 1 Aiw; = 0. From
here, note that

r+1 r+1 r+1
Z \iZ; = Z i (v — ;) Z iU (18)
i=1 1=1

Given the above, and that Aj,..., A.4; form a convex combination, we get

that any © € CC(K, C) satisfies the inequality

r4+1 r4+1

Z i <2i; JJ> < Z /\/ﬁlhK(U) =
7‘+1’L:1 Z:7"1+1
(Z An) (v,z) < (Z /\n> hi(v) = (v,z) < h(v).

Therefore CC(K,C) C H,(K) as needed. Assume that x € CC(K,C)NH; .
Since (v, z) = hg (v), combining with (16) we get that

<1I)i,$> =n,; <’U,.’L‘> — <2i,.1‘> > ’flihK(U) — ’ﬁihK(U) =0 Vie [’I“ + 1}. (20)

(19)

Furthermore, by construction of the w;s

r+1 r+1
> (g, @) = <Z )\ﬂDi,x> = (0,z) = 0. (21)
i=1 i=1
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Since the A1,..., Arq1 > 0, (21) implies that all the inequalities in (20) must
hold at equality, i.e. that (@;,2) = 0 for all i € [r+1]. Since span(wy, . .., Wr41) =
0™~ " x R", the previous statment immediately implies that x,_,.41 = --- =
2y = 0. Therefore z € H, N{z€R" : z,_,1;, =0V i € [r]} = aff;(H), as
needed.

Case 2: aff [(H) = (). As the analysis here closely mirrors that of case 1, we will
refer to arguments in the previous case whenever appropriate. In the previous
case, we saw that (v, x) = hx (v) has an integer solution (i.e. where x € Z™) if
and only if bx,_, = hx(v) admits an integer solution. Since aff;(H) = ), we
can assume that either b=1 and v € Q\ Z, or that b =0 and v € Q\ {0}.

We claim that there exists a scaling n € Q such that nb € Z and % <
fr(ny) < 2. If we are in the case where b = 0 and v € Q\ {0}, we may
set = i This satisfies the requirements since bn = 0 € Z and ny = é
Otherw1se ifb=1and v € Q\ Z, we may write v = 57 where p € Z,
q > 2, and p, q are relatively prime. Therefore, we may choose n € N, such
that np = | 4] (mod g). Since n € N, by € Z, and fr(ny) = %J € (3, 2] (since
q>2).

After scaling v by 7, we may assume that v = (O ,0,b,01,. .., 0),
where b € N, hg(v) € Q, and fr(hg(v)) = fr() € [3, 3]. Let q € N denote
the least integer such that ¢y € Z. By Corollary 1, we know that the set
Z" + {nv:n> Ng,n=1 (mod q)}, for any Ny € N, is dense in Z"~" x R".
Using the identical construction as case 1, for € = m and ¢ € [r + 1], we
can find z; = nv — w; satisfying 7; = 1 (mod q), z; € Z"™, w; € 0"7" X R”
and ||@; — ew;]|oo < @y and hi () < nihg (V) + hi, (k) (—ew;) + €. Let
C={z,..., %211}

Since 7; = 1 (mod ¢), note that fr(n;hx (v))

= fi(ny) = fr(y) € [5.3]-
As before, we have that hp, () (—ew;) +€ < e(R+1) = 1 1

= ; forallie [r+1]
Therefore
_ _ 1 _ 1
hae(3)) < |mac0) + 5| = Lot ()] + () +
5 1 (22)
< |fihk ()| + L}) + 4J = |fhk(v)] < Bihg (V).
As before, by construction of Wy, © € [r + 1], there exists A1,..., Ar41 > 0,

ZTH A; = 1, satisfying Zz 1 ' \;w; = 0. Therefore by (22), any z € CC(K,C)
satisfies the mequahty

r41 r+1 r+1
(Z /\1711) <U, .Z‘> = Z i <2i7 .2?> < (Z )\mi> hK(U) =
(v,z) < hg(v).

Therefore the CG cuts CC(K, C) separate the CG closure from H (and in
particular aff;(H;)) as needed. O
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3.3 Lifting the CG Closure of an Exposed Face of K

Proposition 3 Let K C R" be a compact convez set. Take v € R™. Assume
that CC(F,(K)) is finitely generated. Then 3 S C Z", |S| < oo, such that
CC(K,S) is a polytope and

CO(K,S) N H (K) = CC(F,(K)) (23)
CO(K,S) C H,. (24)

Proof The right to left containment in (23) is direct from CC(F,(K)) C
CC(K,S) as every CG cut for K is a CG cut for F,(K). For the reverse
containment and for (24) we proceed as follows.

Using Proposition 2 there exists S; C Z™ such that CC(K, S1)NH, (K) C
aff;(H; (K)) and CC(K,S1) C {z € R": (v,2) < hg(v)}. Next let G C Z"
be such that CC(F,(K),G) = CC(F,(K)). For each w € G, by Proposition 1
there exists w’ € Z™ such that CC(K,w") Naft;(H; (K)) C CC(F,(K),w) N
aff(H; (K)). For each w € G, add w’ above to Se. Note that

CCO(K, 81U Sy) N HE(K) = CO(K, S1) N CCO(K, Sa) N HE (K)
C CO(K, Sy) Naftr(Hy; (K))
C CO(F,(K),G) Naff(H: (K)) C CC(F,(K)).

Let S5 = {£e;:1 <i<n}. Note that since K is compact CC(K,S3) is a
cuboid with bounded side lengths, and hence is a polytope. Letting S = S U
So U S3, yields the desired result. O

Before we proceed further, we remark here that Proposition 3 taken to-
gether with the main result of the paper, i.e. Theorem 1, implies a generaliza-
tion of another classcial result about CG closures of rational polytopes that
is presented as Corollary 2 below. (As clarification, we note that Corollary 2
below is not used in the proof ofTheorem 1.)

Corollary 2 Let K be a compact convex set and let F' be an exposed face of
K, then we have that CC(F) =CC(K)NF.

4 Approximation of the CG Closure
4.1 Approximation 1 of the CG Closure

In this section, we construct a first approximation of the CG closure of K.
Under the assumption that the CG closure of every proper exposed face is
finitely generated, we use a compactness argument to construct a finite set of
CG cuts S C Z™ such that CC(K,S) C K Naff;(K). We use the following
lemma to simplify the analysis of integral affine subspaces.

Lemma 8 Take A € R™*™ and b € R™. Then there exists A € R™ such that
fora’ = XA, b = \b, we have that {x € Z™ : Ax =b} ={x € Z" : 'z =V'}.
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Proof If {x € R" : Az = b} = (), then by Farkas’ Lemma there exists A € R™
suchthat \A=0and Ab=1.Hence {z e R": Az =b} ={z € R": 0z =1} =
() as needed. We may therefore assume that {z € R" : Az = b} # 0. Therefore
we may also assume that the rows of the augmented matrix [A | b] are linearly
independent.

Let T = span(ay,...,am), where ai,...,a,, are the rows of A. Define
r: T — R as r(w) = Ab where A € R™ such that AA = w. Since the
rows of A are linearly independent we obtain that r is well defined and is
a linear operator. Let S = {zx € Z": Az =b}. For z € Z", examine T, =
{weT: (w,z)=r(w)} By linearity of r, we see that T} is a linear subspace
of T. Note that for z € Z", T, = T iff z € S. Therefore V z € Z" \ S, we
must have that T, # T, and hence dim(7,) < dim(7T") — 1. Let my denote the
Lebesgue measure on 7. Since dim(7%,) < dim(7"), we see that mp(T,) = 0. Let
T" = U,ezn\s T:- Since Z™ \ S is countable, by the countable subadditivity
of my we have that mp (") < }° 7\ gmr(T:) = 0. Since mp(T) = oo,
we must have that T\ 7" # 0. Hence we may pick ' € T \ T". Letting
b = r(a’), we note that by construction there 3 A € R™ such that AA = a
and A\b = b'. Hence for all z € §, Mz = A\b = o'z = /. Take z € Z" \ S.
Since o’ € T\ T’, we have that o’ ¢ T,. Hence a’z # b'. Therefore we see that
{zeZ":dx=b}={xcZ": Ax = b} as needed. O

Proposition 4 Let ) # K C R™ be a compact convex set. If CC(F,(K)) is
finitely generated for any proper exposed face F,(K) then 3 S C Z", |S| < oo,
such that CC(K,S) C K Naff;(K) and CC(K,S) is a polytope.

Proof Let us express aff (K) as {z € R" : Az = b}. Note that aff (K) # 0 since
K # (. By Lemma 8 there exists A\, ¢ = AA and d = \b, and such that
aff(K)NZ"™ = {x € Z" : {c,x) = b}. Since hx(c) = b and hx(—c) = —b, using
Proposition 2 on ¢ and —¢, we can find S4 C Z" such that CC(K,S4) C
aff({x € Z" : (c,x) = b}) = aff /(K.

Express aff (K) as W 4 a, where W C R" is a linear subspace and a € R™.
Take v € W N S™~1. Note that F,(K) is a proper exposed face and hence, by
assumption, CC(F,(K)) is finitely generated. Hence by Proposition 3 there
exists S, C Z" such that CC(K,S,) is a polytope, CC(K,S,) N H; (K) =
CC(Fy(K)) and CC(K, S,) C H,. Let K, = CC(K,S,), then we have the
following claim.

Claim: There exists an open neighborhood N, of v in W N S™~! such that
v € Ny = hg, (V) < hg(').

Since K, is a polytope, there exists Z C R", |Z| < oo, such that K,, = conv(Z).
Then note that hg, (w) =sup,c, (z,w). Let H = {z : hg(v) = (v,2),2 € Z}.
By construction, we have that conv(H) = CC(F,(K)).

First assume that CC(F,(K)) = 0. Then H = ), and hence hg, (v) <
hx(v). Since K,, K are compact convex sets, we have that hg, ,hx are both
continuous functions on R™ and hence hx — hg, is continuous. Therefore there
exists € > 0 such that hg, (v') < hg(v') for ||v —v'|| < € as needed.
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Assume that CC(F,(K)) # 0. Let R = max,cz ||2||, and let
0=hx(v)—sup{{v,2):2€ Z\ H}.

Let € = % and take any v" such that [|v' — v|| < e. Then for all z € H, we

have that

(z,0") = (z,0) + (2,0 =) = hi(v) + (z,0" = v) 2 he (v) = ||2][]v = v
0

)
> hK('U) — Rﬁ = h[{(’U) - 57

and that for all z € Z \ H, we have that

(2,0") = (2,0)+(2,0" = v) < hg(v)=0+(z,0" = v) < hg(v)=+]z][[o'—v]|
1

5
< hK(v)7(5+§ :hK(U)*i-

Therefore we have that (z,v") > (2/,v') for all z € H, 2’ € Z\ H and hence

hi, (V") = sup (z,0") = sup (z,v') = heor, (k) (V) < hg(v'), (25)
2€Z z€H
since CC(F,(K)) C F,(K) C K. The statement thus holds by letting N, =
{Pewns . |v —o| <€l
Note that { N, : v € W N .S"~!} forms an open cover of WNS™~!, and since
W N S™1 is compact, there exists a finite subcover N,,,..., N,, such that
U N, =WnS8™ L Let S =54 U Ul S,,. We claim that CC(K, S) C
K. Assume not, then there exists z € CC(K,S) \ K. Since CC(K,S) C
CC(K,S4) CW +aand K C W + a, by the separator theorem there exists
w e W NS ! such that hg(w) = sup,cx (w,y) < (w,z) < heok,s)(w).
Since w € W N S"~1, there exists i, 1 <14 < k, such that w € N,,. Note then
we obtain that hoc(k,s)(w) < hec(x,s,,)(w) = hk,, (w) < hix(w), a contra-
diction. Hence CC(K,S) C K as claimed. CC(K, S) is a polytope because it
is the intersection of polyhedra of which at least one is a polytope. |

4.2 Approximation 2 of the CG Closure

In this section, we augment the first approximation of the CC(K) with a finite
number of extra CG cuts so that this second approximation matches CC(K)
on the relative boundary of K.

To achieve this, we observe that our first approximation of CC(K) is poly-
hedral and contained in K, and hence its intersection with the relative bound-
ary of K is contained in the union of a finite number of proper exposed faces
of K. Therefore, by applying Proposition 3 to each such face (i.e. adding their
lifted CG closure), we can match CC(K) on the relative boundary as required.
The following lemma makes precise the previous statements.
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Lemma 9 Let K C R" be a convex set and P C K be a polytope. Then
there exists Fy,,...,F,, C K, proper exposed faces of K, such that P N

relbd(K) € UL, R,

Proof Let F = {F : F C P, F a face of P, relint(F) Nrelbd(K) # 0}. Since P
is polytope, note that the total number of faces of P is finite, and hence
|F| < co. We claim that

Pnrelbd(K) C |J F. (26)
FeF

Take z € PNrelbd(K). Let F,, denote the minimal face of P containing x (note
that P is a face of itself). By minimality of F,, we have that x € relint(F}).
Since z € relbd(K'), we have that F, € F, as needed.

Take F € F. We claim that there exists Fr C K, Er a proper exposed
face of K, such that FF C Ep. Take x € relint(F') Nrelbd(K). Let aff(K) =
W + a, where W is a linear subspace and a € R™. Since z ¢ relint(K), by
the separator theorem, there exists v € W N S™~! such that hg(v) = (v, ).
Let Er = F,(K). Note that since v € W N S"~!, F,(K) is a proper exposed
face of K. We claim that F© C Ep. Since F is a polytope, we have that
F = conv(ext(F)). Write ext(F) = {c1,...,cr}. Since z € relint(F'), there
exists A1, ..., A\p >0, Zle A; = 1, such that Zle Aic; = x. Since ¢; € K, we
have that (c;,v) < hi(v). Therefore, we note that

k k k
(v, ) = <Z )\ici,v> = Z)‘i (c;,v) < Z)\ih;{(v) = hg(v) (27)

Since (v, z) = hi (v), we must have equality throughout. To maintain equality,
since A; > 0 for all 1 < ¢ < k, we must have that (¢;,v) = hx(v) forall 1 <i <

k. Therefore ¢; € Ep for all 1 <4 <k, and hence F = conv(cy,...,cx) C Ep,
as needed.

To conclude the proof, we note that the set {Ep : F € F} satisfies the
conditions of the lemma. O

Proposition 5 Let K C R™ be a compact convex set. If CC(F,) is finitely
generated for any proper exposed face F, then 3 S CZ", |S| < oo, such that

CC(K,S) C Knaff;(K) (28)
CC(K,S)Nrelbd(K) = CC(K) Nrelbd(K) (29)

Proof By Proposition 4, there exists Sy C Z™, |Sy| < oo, such that CC(K, Sy) C
K naff;(K) and CC(K, Sr) is a polytope. Since CC(K, Sr) C K is a poly-
tope, let F,, ..., F,, be the proper exposed faces of K given by Lemma 9. By
Proposition 3, there exists S; C Z", |S;| < oo, such that CC(K, S;) N H,, =
CO(F,,). Let S = S;U UL, Si. We claim that CC(K,S) N relbd(K) C
CC(K) Nrelbd(K). For this note that x € CC(K, S) Nrelbd(K) implies x €
CC(K, Sr) Nrelbd(K), and hence there exists i, 1 <1 < k, such that z € F,,.
Then z € CC(K,S)NH,, C CC(K, S;)NH,, = CC(F,,) C CC(K)Nrelbd(K).

The reverse inclusion is direct. O
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5 Proof of Theorem

Finally, we have all the ingredients to prove the main result of this paper. The
proof is by induction on the dimension of K. Trivially, the result holds for zero
dimensional convex bodies. Using the induction hypothesis, we can construct
the second approximation of CC(K) using Proposition 5 (since it assumes that
the CG closure of every exposed face is finitely generated). Lastly, we observe
that any CG cut for K not dominated by those already considered in the
second approximation of CC(K) must separate a vertex of this approximation
lying in the relative interior of K. From here, it is not difficult to show that
only a finite number of such cuts exists, thereby proving the polyhedrality of
CC(K). The proof here is similar to the one used for strictly convex sets, with
the additional technicality that here aff (K) may be irrational.

Theorem 5 Let K C R™ be a non-empty compact convez set. Then CC(K)
is finitely generated.

Proof We proceed by induction on the affine dimension of K. For the base
case, dim(aff(K)) = 0, i.e. K = {a} is a single point. Here it is easy to see
that setting S = {£e; : i € {1,...,n}}, we get that CC(K, S) = CC(K). The
base case thus holds.

For the inductive step let 0 < k < n. Let K be a compact convex set where
dim(aff (K)) = k+1 and assume the result holds for sets of lower dimension. By
the induction hypothesis, we know that CC(F},) is finitely generated for every
proper exposed face F,, of K, since dim(F,) < k. By Proposition 5, there exists
aset S CZ", |S| < oo, such that (28) and (29) hold. If CC(K, S) = (), then we
are done. So assume that CC(K,S) # 0. Let A = aff;(K). Since CC(K, S) #
(), we have that A # () (by (28)), and so we may pick t € A NZ". Note that
A—t =W, where W is a linear subspace of R” satisfying W = span(W NZ").
Let L = WNZ". Since t € Z™, we easily see that CC(K —t,T) = CC(K,T)—t
for all T C Z". Therefore CC(K) is finitely generated iff CC(K —t) is. Hence
replacing K by K — t, we may assume that aff;(K) = W.

Let my denote the orthogonal projection onto W. Note that for all x € W,
and z € Z", we have that (z,z) = (mw(2),z). Since CC(K,S) C K NW, we
see that for all z € Z™, CC(K,SU{z}) = CC(K,S)n{x : (z,z) < |hk(2)]|} =
CCK,S)n{z: (mw(z),z) < |hk(z)|}. Let L* = mw(Z™). Since W is a ra-
tional subspace, we have that L* is full dimensional lattice in W. Fix an
element of w € L* and examine V,, := {|hk(2)] : 7w (2) = w,z € Z"}. Note
that V,, C Z. We claim that inf(V,,) > —oo. To see this, note that

inf{|hg(2)] : 7w (z) =w,z € Z"} > inf {|hkaw (2)] : 7w (2) = w,z € Z"}
=inf {|hxnw (7w (2))] : 7w (2) = w,z € Z"}
= Lthw(’w)J > —00.

Since V,, is a lower bounded set of integers, there exists z, € 771;,1 (w) N
Z" such that inf(V,,) = |hx(zw)]. From the above reasoning, we see that
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CC (K,SU (my! (z) N Z")) = CC(K, S U {zy}). Let
C={w:wel"CCK,SU{zy}) CCC(K,S)}.

Here we get that

CCO(K)=CC(K,SUZ") = CC(K,SU{zy, : w e L*}) = CC(K,SU{z, : w € C}).

From the above equation, if we show that |C| < oo, then CC(K) is finitely
generated. To do this, we will show that there exists R > 0, such that C' C
RBY, and hence C C L* N RBY. Since L* is a lattice, |[L* N RBY| < oo for any
fixed R, and so we are done.

Let P = CC(K,S). Since P is a polytope, we have that P = conv(ext(P)).
Let I = ext(P) Nrelint(K), and let B = ext(P) Nrelbd(K). Hence ext(P) =
IU B. By assumption on CC(K, S), we know that for all v € B, we have that
v € CC(K). Hence for all z € Z™, we must have that (z,v) < |hg(z)] for
all v € B. Assume that for some z € Z", CC(K,SU{z}) € CC(K,S) = P.
We claim that (z,v) > |hg(z)] for some v € I. If not, then (v,z) < |hg(z)]
for all v € ext(P), and hence CC(K,S U {z}) = CC(K,S), a contradiction.
Hence such a v € I must exist.

For z € Z", note that hx(z) > hxnw(2) = hxaw (mw (2)). Hence (z,v) >
lhi(2)] for v € I only if (mw(2),v) = (z,v) > |hxnw (mw(z))]. Let C’ :=
{welL*: Jvel (v,w) > |hgaw]| (w)}. From the previous discussion, we see
that C' C C".

Since I C relint(K) N W = relint(K N W) we have

dy=sup{r>0:rByNW+vCKNW}>0

for all v € I. Let § = inf, ¢y d,. Since |I]| < co, we see that § > 0. Let R = %.
Take w € L*, ||lw|| > R. Note that Vv € I,

lhraw (w)] > hxaw (W) =1 > by sppynw (w) =1 = (v, w)+ollwl| =1 > (v,w) .

Hence w ¢ C'. Therefore C C C' C RBY and CC(K) is finitely generated. O
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