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On the Chvátal-Gomory Closure of a Compact Convex
Set

Daniel Dadush · Santanu S. Dey · Juan

Pablo Vielma.

Received: date / Accepted: date

Abstract In this paper, we show that the Chvátal-Gomory closure of any
compact convex set is a rational polytope. This resolves an open question of
Schrijver [17] for irrational polytopes1, and generalizes the same result for
the case of rational polytopes [17], rational ellipsoids [8] and strictly convex
bodies [7].
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1 Introduction

Gomory [12] introduced the Gomory fractional cuts, also known as Chvátal-
Gomory (CG) cuts [5], to design the first finite cutting plane algorithm for
Integer Linear Programs (ILP). Since then, many important classes of facet-
defining inequalities for combinatorial optimization problems have been iden-
tified as CG cuts. For example, the classical Blossom inequalities for general
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Matching [10] - which yield the integer hull - and Comb inequalities for the
Traveling Salesman problem [13,14] are both CG cuts over the standard linear
programming relaxations. CG cuts have also been e↵ective from a computa-
tional perspective; see for example [2,11]. Although CG cuts have traditionally
been defined with respect to rational polyhedra for ILP, they straightforwardly
generalize to the nonlinear setting and hence can also be used for convex In-
teger Nonlinear Programming (INLP), i.e. the class of discrete optimization
problems whose continuous relaxation is a general convex optimization prob-
lem. CG cuts for non-polyhedral sets were considered implicitly in [5,17] and
more explicitly in [4,7,8]. Let K ✓ Rn be a closed convex set and let hK rep-
resent its support function, i.e. hK(a) = sup{ha, xi : x 2 K}. Given a 2 Zn,
we define the CG cut for K derived from a as the inequality

ha, xi  bhK(a)c . (1)

The CG closure of K is the convex set whose defining inequalities are exactly
all the CG cuts for K. A classical result of Schrijver [17] is that the CG closure
of a rational polyhedron is a rational polyhedron. Recently, we were able to
verify that the CG closure of any strictly convex body2 intersected with a
rational polyhedron is a rational polyhedron [8,7]. We remark that the proof
requires techniques significantly di↵erent from those described in [17].

While the intersections of strictly convex bodies with rational polyhedra
yield a large and interesting class of bodies, they do not capture many nat-
ural examples that arise in convex INLP. For example, it is not unusual for
the feasible region of a semi-definite or conic-quadratic program [1] to have
infinitely many faces of di↵erent dimensions, where additionally a majority of
these faces cannot be isolated by intersecting the feasible region with a ra-
tional supporting hyperplane (as is the case for standard ILP with rational
data). Roughly speaking, the main barrier to progress in the general setting
has been a lack of understanding of how CG cuts act on irrational a�ne sub-
spaces (a�ne subspaces whose defining equations cannot be described with
rational data).

As a starting point for this study, perhaps the simplest class of bodies
where current techniques break down are polytopes defined by irrational data.
Schrijver considers these bodies in [17], and in a discussion section at the end
of the paper, he writes 3:

“We do not know whether the analogue of Theorem 1 is true in real
spaces. We were able to show only that if P is a bounded polyhedron
in real space, and P 0 has empty intersection with the boundary of P ,
then P 0 is a (rational) polyhedron.”

2 A full dimensional compact convex set whose only non-trivial faces are vertices. It this
paper, we call zero dimensional faces as vertices.

3 Theorem 1 in [17] is the result that the CG closure is a polyhedron. P 0 is the notation
used for CG closure in [17]
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In this paper, we prove that the CG closure of any compact convex set4 is
a rational polytope, thus also resolving the question raised in [17]. As seen by
Schrijver [17], most of the “action” in building the CG closure will indeed take
place on the boundary of K. While the proof presented in this paper has some
high level similarities to the one in [7], a substantially more careful approach
was required to handle the general facial structure of a compact convex set
(potentially infinitely many faces of all dimensions) and completely new ideas
were needed to deal with faces having irrational a�ne hulls (including the
whole body itself).

This paper is organized as follows. In Section 2 we introduce some notation,
formally state our main result and give an overview of the proof. We then
proceed with the full proof which is presented in Sections 3–5.

2 Definitions, Main Result and Proof Idea

Definition 1 (CG Closure) For a convex set K ✓ Rn and S ✓ Zn let
CC(K,S) :=

T
v2S {x 2 Rn : hv, xi  bhK(v)c}. The CG closure of K is de-

fined to be the set CC(K) := CC(K,Zn).

The following theorem is the main result of this paper.

Theorem 1 If K ✓ Rn
is a non-empty compact convex set, then CC(K)

is finitely generated. That is, there exists S ✓ Zn
such that |S| < 1 and

CC(K) = CC(K,S). In particular CC(K) is a rational polyhedron.

Following are some definitions and notation we will use throughout the
paper. For more details on definitions from convex analysis, we refer the reader
to [15]. For a positive integer n, we let [n] be the set {1, . . . , n}. For x, y 2 Rn,
let [x, y] = {�x+ (1� �)y : 0  �  1} and (x, y) = [x, y]\{x, y}. For x 2 Rn,

we let kxkp = (
Pn

i=1 x
p
i )

1
p , p � 1, denote the standard lp norms, where we let

kxk1 = max1in |xi|. For notational simplicity, we shall write kxk to denote
the standard euclidean norm. Let Bn

p := {x 2 Rn : kxkp  1}, the standard lp
ball, and let Sn�1 := {x 2 Rn : kxk = 1}, the euclidean sphere. For A ✓ Rn,
let a↵(A) denote the smallest a�ne subspace containing A. Furthermore let
a↵I(A) := a↵(a↵(A) \ Zn), i.e. the largest integer subspace in a↵(A). Let
int(A), bd(A) denote the interior and boundary of A with respect to Rn. Let
relint(A), relbd(A) denote the interior and boundary of A with respect to
a↵(A) (under the subspace topology). For A ✓ Rn, a 2 Rn and b 2 R we
let a + bA = {a + bx : x 2 A}. For sets A,B ✓ Rn, we define d(A,B) =
inf {ky � xk : y 2 A, x 2 B} to be the distance between A and B. If B = {x} is
a singleton, we shall write d(A, x) for notational convenience. For a convex set
K and v 2 Rn, letHv(K) := {x 2 Rn : hv, xi  hK(v)} denote the supporting

4 If the convex hull of integer points in a convex set is not polyhedral, then the CG closure
cannot be expected to be polyhedral. Since we do not have a good understanding of when
this holds for unbounded convex sets, we restrict our attention here to the CG closure of
compact convex sets.
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halfspace defined by v for K, and let H=
v (K) := {x 2 Rn : hv, xi = hK(v)}

denote the supporting hyperplane. A subset F ✓ K is a face of K if for every
line segment [x, y] ✓ K, (x, y)\F 6= ; ) [x, y] ✓ F . A face F of K is proper if
F 6= K and is exposed if F = K\H=

v (K) for some v. Let Fv(K) := K\H=
v (K)

denote the face of K exposed by v. If the context is clear, then we drop the K
and simply write Hv, H=

v and Fv. Finally, a vector x 2 K is an extreme point
if {x} is a face of K (i.e. x is a zero dimensional face). We let ext(K) denote
the set of extreme points of K.

We present the outline of the proof for Theorem 1. The proof proceeds by
induction on the dimension of K. The base case (K is a single point) is trivial.
By the induction hypothesis, we can assume that (†) every proper exposed
face of K has a finitely generated CG closure. We build the CG closure of K
in stages, proceeding as follows:

1. (Section 3) For a proper exposed face Fv, where v 2 Rn, show that 9 S ✓
Zn, |S| < 1 such that CC(K,S) \ H=

v = CC(Fv) and CC(K,S) ✓ Hv

using (†) and by proving the following:
(a) (Section 3.1) A CG cut for Fv can be rotated or “lifted” to a CG cut

for K such that points in Fv \ a↵I(H=
v ) separated by the original CG

cut for Fv are separated by the new “lifted” one.
(b) (Section 3.2) A finite number of CG cuts for K separate all points in

Fv \ a↵I(H=
v ) and all points in Rn \Hv.

2. (Section 4) Create an approximation CC(K,S) of CC(K) such that (i)
|S| < 1, (ii) CC(K,S) ✓ K \ a↵I(K) (iii) CC(K,S) \ relbd(K) =
CC(K) \ relbd(K). This is done in two steps:
(a) (Section 4.1) Using the lifted CG closures of Fv from (1.) and a compact-

ness argument on the sphere, create a first approximation CC(K,S)
satisfying (i) and (ii).

(b) (Section 4.2) Noting that CC(K,S)\relbd(K) is contained in the union
of a finite number of proper exposed faces of K, add the lifted CG
closures for each such face to S to satisfy (iii).

3. (Section 5) We establish the final result by showing that there are only a
finite number of CG cuts which separate at least one vertex of the approx-
imation of the CG closure from (2).

3 CC(K,S) \ H=
v = CC(Fv) and CC(K,S) ✓ Hv

When K is a rational polyhedron, a key property of the CG closure is that
for every face F of K, we have that (⇤) CC(F ) = F \ CC(K). In this set-
ting, a relatively straightforward induction argument coupled with (⇤) allows
one to construct the approximation of the CG closure described above. In our
setting, where K is compact convex, the approach taken is similar in spirit,
though we will encounter significant di�culties. First, since K can have in-
finitely many faces, we must couple our induction with a careful compactness
argument. Second and more significantly, establishing (⇤) for compact convex
sets is substantially more involved than for rational polyhedra. As we will see
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in the following sections, the standard lifting argument to prove (⇤) for rational
polyhedra cannot be used directly and must be replaced by a more involved
two stage argument.

3.1 Lifting CG Cuts

To prove CC(F ) = F \ CC(K) one generally uses a ‘lifting approach’, i.e.,
given a CG cut CC(F, {w}) for F , w 2 Zn, we show that there exists a CG
cut CC(K, {w0}) for K, w0 2 Zn, such that

CC(K, {w0}) \ a↵(F ) ✓ CC(F, {w}) \ a↵(F ). (2)

To prove (2) when K is a rational polyhedron, one proceeds as follows. For
the face F of K, we compute v 2 Zn such that Fv(K) = F and hK(v) 2 Z.
For w 2 Zn, we return the lifting w0 = w+ lv, l 2 Z>0, where l is chosen such
that hK(w0) = hF (w0). For general convex bodies though, neither of these
steps may be achievable. When K is strictly convex however, in [7] we show
that the above procedure can be generalized. First, every proper face F of
K is an exposed vertex, hence 9 x 2 K, v 2 Rn such that F = Fv = {x}.
For w 2 Zn, we show that setting w0 = w + v0, where v0 is a fine enough
Dirichlet approximation (see Theorem 2 below) to a scaling of v is su�cient
for (2). In the proof, we critically use that F is simply a vertex. In the general
setting, when K is a compact convex set, we can still meaningfully lift CG
cuts, but not from all faces and not with exact containment. First, we only
guarantee lifting for an exposed face Fv of K. Second, when lifting a CG cut
for Fv derived from w 2 Zn, we only guarantee the containment on a↵I(H=

v ),
i.e. CC(K,w0)\ a↵I(H=

v ) ✓ CC(F,w)\ a↵I(H=
v ). This lifting, Proposition 1

below, uses the same Dirichlet approximation technique as in [7] but with a
more careful analysis. Since we only guarantee the behavior of the lifting w0 on
a↵I(H=

v ), we will have to deal with the points in a↵(F )\a↵I(H=
v ) separately,

which we discuss in the next section.
Lemmas 1–3 are technical results that are needed for proving Proposition 1.

Lemma 1 Let K be a compact convex set in Rn
. Let v 2 Rn

, and let (xi)1i=1,

xi 2 K, be a sequence such that limi!1 hv, xii = hK(v). Then

lim
i!1

d(Fv(K), xi) = 0.

Proof Let us assume that limi!1 d(Fv(K), xi) 6= 0. Then there exists an ✏ > 0
such that for some subsequence (x↵i)

1
i=1 of (xi)1i=1 we have that d(Fv(K), x↵i) �

✏. Since (x↵i)
1
i=1 is an infinite sequence on a compact set K, there exists a con-

vergent subsequence (x�i)
1
i=1 where limi!1 x�i = x and x 2 K. We note that

d(Fv(K), x) = limi!1 d(Fv(K), x�i) � ✏, where the first equality follows from
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the continuity of d(Fv(K), ·). Since d(Fv(K), x) > 0 we have that x /2 Fv(K).
On the other hand,

hK(v) = lim
i!1

hv, xii = lim
i!1

hv, x�ii = hv, xi

and hence x 2 Fv(K), a contradiction. ⇤

Lemma 2 Let K be a compact convex set in Rn
. Let v 2 Rn

, and let (vi)1i=1,

vi 2 Rn
, be a sequence such that limi!1 vi = v. Then for any sequence (xi)1i=1,

xi 2 Fvi(K), we have that

lim
i!1

d(Fv(K), xi) = 0.

Proof We claim that limi!1 hv, xii = hK(v). Since K is compact, there exists
R � 0 such that K ✓ RBn

2 . Hence we get that

hK(v) = lim
i!1

hK(vi) = lim
i!1

hvi, xii

= lim
i!1

hv, xii+ hvi � v, xii  lim
i!1

hv, xii+ kvi � vkR = lim
i!1

hv, xii ,

where the first equality follows by continuity of hK (hK is convex on Rn and fi-
nite valued). Since each xi 2 K, we get the opposite inequality limi!1 hv, xii 
hK(v) and hence we get equality throughout. Finaly, by Lemma 1 we get that
limi!1 d(Fv(K), xi) = 0 as needed. ⇤

The next lemma describes the central mechanics of the lifting process ex-
plained above. The sequence (wi)1i=1 will eventually denote the sequence of
Dirichlet approximates of the scaling of v added to w, where one of these will
serve as the lifting w0.

Lemma 3 Let K ✓ Rn
be a compact convex set. Take v, w 2 Rn

, v 6= 0. Let
(wi, ti)1i=1, wi 2 Rn, ti 2 R+ be a sequence such that

a. lim
i!1

ti = 1, b. lim
i!1

wi � tiv = w. (3)

Then for every ✏ > 0 there exists N✏ � 0 such that for all i � N✏

hK(wi) + ✏ � tihK(v) + hFv(K)(w) � hK(wi)� ✏. (4)

Proof By (3) we have that

lim
i!1

wi

ti
= v (5)

and that we may pick N1 � 0 such that

kwi � tivk  kwk+ 1  C for i � N1. (6)
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Let (xi)1i=1 be any sequence such that xi 2 Fwi(K) = Fwi/ti(K). For each
i � 1, let x̃i = argminy2Fv(K) kxi � yk. By (5) and Lemma 2, we may pick
N2 � 0 such that

d(Fv(K), xi) = kxi � x̃ik  ✏

2C
for i � N2. (7)

Since hFv(K) is a continuous function, we may pick N3 � 0 such that

|hFv(K)(wi � tiv)� hFv(K)(w)| 
✏

2
for i � N3. (8)

Let N✏ = max {N1, N2, N3}. Since xi 2 Fwi(K) and x̃i 2 Fv(K) we have
that

hwi, xii � hwi, x̃ii and htiv, x̃ii � htiv, xii . (9)

From (6), (7), (9) we get that for i � N✏

hwi, xii � hwi, x̃ii  hwi, xii � hwi, x̃ii+ htiv, x̃ii � htiv, xii = hwi � tiv, xi � x̃ii

 kwi � tivkkxi � x̃ik  C
⇣ ✏

2C

⌘
=

✏

2
.

(10)

From (10) we see that for i � N✏

hK(wi) � hFv(K)(wi) � hwi, x̃ii � hwi, xii �
✏

2
= hK(wi)�

✏

2
. (11)

Since hv, ·i is constant on Fv(K), we have that

hFv(K)(wi) = hFv(K)(wi � tiv + tiv) = hFv(K)(wi � tiv) + tihFv(K)(v)

= hFv(K)(wi � tiv) + tihK(v) (12)

Combining (8), (11) and (12) we get that for i � N✏,

hK(wi) + ✏ � tihK(v) + hFv(K)(w) � hK(wi)� ✏

as needed. ⇤

Theorem 2 (Dirichlet’s Approximation Theorem) Let (↵1, . . . ,↵l) 2
Rl

. Then for every positive integer N , there exists 1  n  N such that

max1il |n↵i � bn↵ie|  1/N1/l
.

Proposition 1 Let K ✓ Rn
be a compact and convex set, v 2 Rn

and w 2
Zn

. Then 9w0 2 Zn
such that CC(K,w0) \ a↵I(H=

v (K)) ✓ CC(Fv(K), w) \
a↵I(H=

v (K)).
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Proof First, by possibly multiplying v by a positive scalar we may assume that
hK(v) 2 Z. Let S = a↵I(H=

v (K)). We may assume that S 6= ;, since otherwise
the statement is trivially true.

From Theorem 2 for any v 2 Rn there exists (si, ti)1i=1, si 2 Zn, ti 2 N
such that (a.) ti ! 1 and (b.) ksi� tivk ! 0. Define the sequence (wi, ti)1i=1,
where wi = w+si, i � 1. Note that the sequence (wi, ti) satisfies (3) and hence
by Lemma 3 for any ✏ > 0, there exists N✏ such that (4) holds. Let ✏ = 1

2

�
1�

(hFv(K)(w) � bhFv(K)(w)c)
�
, and let N1 = N✏. Note that

⌅
hFv(K)(w) + ✏

⇧
=⌅

hFv(K)(w)
⇧
. Hence, since hK(v) 2 Z by assumption, for all i � N1 we have

that bhK(wi)c 
⌅
tihK(v) + hFv(K)(w) + ✏

⇧
= tihK(v) +

⌅
hFv(K)(w) + ✏

⇧
=

tihK(v) +
⌅
hFv(K)(w)

⇧
.

Pick z1, . . . , zk 2 S \ Zn such that a↵(z1, . . . , zk) = S and let R =
max {kzjk : 1  j  k}. Choose N2 such that kwi � tiv�wk  1

2R for i � N2.
Note that for i � N2, | hwi, zji � htiv + w, zji | = | hwi � tiv � w, zji | 
kwi � tiv � wkkzjk  R 1

2R = 1
2 8j 2 {1, . . . , k}.

Next note that since zj , wi 2 Zn, hwi, zji 2 Z. Furthermore, ti 2 N,
hv, zji = hK(v) 2 Z and w 2 Zn implies that htiv + w, zji 2 Z. Given this, we
must have hwi, zji = htiv + w, zji 8j 2 {1, . . . , k} , i � N2 and hence we get
hwi, xi = htiv + w, xi 8x 2 S, i � N2.

Let w0 = wi where i = max {N1, N2}. Let L = {x : hw0, xi  bhK(w0)c}\S.
Here we get that hwi, xi  tihK(v) + bhFv(K)(w)c and hv, xi = hK(v) for
all x 2 L. Hence, we see that hwi � tiv, xi  bhFv(K)(w)c for all x 2 L.
Furthermore, since hwi � tiv, xi = hw, xi for all x 2 L ✓ S, we have that
hw, xi 

⌅
hFv(K)(w)

⇧
for all x 2 L, as needed. ⇤

3.2 Separating All Points in Fv \ a↵I(H=
v )

Since the guarantees on the lifted CG cuts produced in the previous section
are restricted to a↵I(H=

v ), we must still deal with the points in Fv \a↵I(H=
v ).

In this section, we show that points in Fv \ a↵I(H=
v ) can be separated by

using a finite number of CG cuts in Proposition 2. To prove this, we will
need Kronecker’s theorem on simultaneous diophantine approximation which
is stated next. See Niven [16] or Cassels [3] for a proof.

Theorem 3 (Kronecker’s Approximation Theorem) Let (x1, . . . , xd) 2
Rd

be such that the numbers 1, x1, . . . , xd are linearly independent over Q. Then

the set {(fr(nx1), . . . , fr(nxn)) : n 2 N} is dense in [0, 1)d, where fr(x) = x�bxc
denotes the fractional part of x.

We give the following simple corollary.

Corollary 1 Let v = (z1, . . . , zd�r, x1, . . . , xr) 2 Rd
, where z1, . . . , zd�r 2 Z,

and 1, . . . , x1, . . . , xr are linearly independent over Q. Then for any m,N0 2 N,
and k 2 [m], the set

�
w + nv : w 2 Zd, n ⌘ k (mod m), n � N0

 
is dense in

Zd�r ⇥ Rr
.

Proof Let ⇠ = (x1, . . . , xr) 2 Rr, and let S = Zr + {mn⇠ : n � N0}.
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Claim 1: S is dense in Rr
: Take y 2 Rr, and note that y = byc+ fr(y) (here

b·c and fr(·) are applied coordinate wise) where byc 2 Zn and fr(y) 2 [0, 1)r.
For any 0 < ✏ < 1/2 and i 2 [r], let I✏i = (fr(yi), fr(yi) + ✏) if fr(yi) < 1

2
and I✏i = (fr(yi) � ✏, fr(yi)) if fr(yi) � 1

2 . Letting I✏ = I✏1 ⇥ · · · ⇥ I✏r , we
have that by construction I✏ is an open subset of [0, 1)r. Since m 2 N, note
that 1,mx1, . . . ,mxr are linearly independent over Q. By Theorem 3, we have
that the set {fr(nm⇠) : n � 1} is dense in [0, 1)r. Since {fr(nm⇠) : n � N0}
contains all but finitely many of the elements in {fr(nm⇠) : n � 1}, we must
have that {fr(nm⇠) : n � N0} is also dense in [0, 1)r. Therefore there exists
n0 � N0 such that n0m⇠ � bn0m⇠c 2 I✏. Let ȳ = n0(m⇠) � bn0m⇠c + byc.
Since byc � bn0m⇠c 2 Zr, we see that ȳ 2 S. Next note that

kȳ � yk1 =
r

max
i=1

|fr(n0m⇠i)� fr(yi)|  ✏

Since ✏ can be made arbitrarily small, we have that S is dense in Rr, as needed.
Since (z1, . . . , zd�r) 2 Zd�r note that for any n 2 N, Zd + nv = Zd�r ⇥

(Zr + n⇠). Take k 2 [m]. From the previous remark we see that
�
w + nv : w 2 Zd, n ⌘ k (mod m), n � N0

 
◆ Zd�r ⇥ (Zr + S + k⇠)

Since S is dense in Rr, we clearly also get that S + k⇠ is dense in Rr (indeed
this holds for any translation of S). Therefore the set Zd�r ⇥ (S+k⇠) is dense
in Zd�r ⇥ Rr as needed. ⇤

The following lemmas will allow us to normalize the vector v defining Fv

and H=
v and simplify the analysis that follows.

Lemma 4 Let K ✓ Rn
be a closed convex set, and let T : Rn ! Rn

be an

invertible linear transformation. Then hK(v) = hTK(T�tv) and TFv(K) =
(FT�tv(TK)) for all v 2 Rn

. If T is a unimodular transformation, then for

S ✓ Zn
, TCC(K,S) = (CC(TK, T�tS)). Furthemore, TCC(K) = CC(TK)

and T a↵I(K) = a↵I(TK).

Proof Observe that

hTK(T�tv) = sup
x2TK

⌦
T�tv, x

↵
= sup

x2K

⌦
T�tv, Tx

↵
= sup

x2K
hv, xi = hK(v).

Note that

T�1(FT�tv(TK)) = T�1
� �

x : x 2 TK, hTK(T�tv) =
⌦
T�tv, x

↵ �

=
�
x : Tx 2 TK, hTK(T�tv) =

⌦
T�tv, Tx

↵ 

= {x : x 2 K, hK(v) = hv, xi} = Fv(K).

Next for S ✓ Zn, note that since T is unimodular, we have that T�tS ✓ Zn.
Therefore

T�1(CC(TK, T�tS)) = T�1
��

x : x 2 TK, hv, xi  bhTK(v)c 8 v 2 T�tS
 �

= T�1
�
x : x 2 TK,

⌦
T�tv, x

↵

⌅
hTK(T�tv)

⇧
8 v 2 S

 

= {x : Tx 2 TK, hv, xi  bhK(v)c 8 v 2 S}
= {x : x 2 K, hv, xi  bhK(v)c 8v 2 S} = CC(K,S).
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Furthermore, by unimodularity of T , we have that T�tZn = Zn and hence
CC(K) = T�1CC(TK, T�tZn) = T�1CC(TK), as needed. Lastly, note that
T (a↵(K)\Zn) = a↵(TK)\Zn, and hence T (a↵I(K)) = a↵I(TK) as needed.
⇤

An a�ne subspace A ✓ Rn is rational if A = {x 2 Rn : Cx = d}, where C, d
define a rational linear system (i.e. the entries of C, d are in Q). Equivalently,
A is rational if A = span(x1, . . . , xk)+xk+1, where xi 2 Qn for i 2 [k+1]. We
will need the following standard theorem.

Theorem 4 Let V ✓ Rn
denote a rational linear subspace of dimension r � 1.

Then there exists vectors b1, . . . , bn 2 Zn
such that

1.

Pr
i=1 Zbi = V \ Zn

.

2.

Pn
i=1 Zbi = Zn

.

Lemma 5 For v 2 Rn
, let

rdim(v) = min {dim(A) : v 2 A,A ✓ Rn
a rational a�ne subspace} .

Then there exists a unimodular transformation T 2 Zn⇥n
, such that

Tv = (0, . . . , 0,�,↵1, . . . ,↵r) , (13)

where � 2 Q�0, r = rdim(v), and the numbers 1,↵1, . . . ,↵r � 0 are linearly

independent over Q.

Proof Let A = {x 2 Rn : Cx = d} denote the smallest rational a�ne subspace
containing v, and let r = dim(A). Clearly, we may assume that the rows of
C are linearly independent, and hence that C 2 Qn�r⇥n and d 2 Qn�r. Let
c1, . . . , cn�r denote the rows of C. Since v 2 A, note that di = hci, vi for all
i 2 [n � r]. Let H = span(c1, . . . , cn�r). Since H is a rational linear space,
note that span(H \ Zn) = span(H). Therefore, by Theorem 4, there exists
b1, . . . , bn 2 Zn such that

n�rX

i=1

Zbi = span(H) \ Zn and
nX

i=1

Zbi = Zn. (14)

Let f 2 Rn denote the n-dimensional vector satisfying fi = hbi, vi for i 2 [n].
Note that by possibly negating the vectors in b1, . . . , bn, we may assume that
f � 0. Since for each i 2 [n � r], the vector bi can be obtained as a rational
combination of c1, . . . , cn�r, we also have that hbi, vi = fi 2 Q. Further-
more, since span(b1, . . . , bn�r) = H, we see that A = {x 2 Rn : Cx = d} =
{x 2 Rn : hbi, xi = fi, i 2 [n� r]}.

If f1 = · · · = fn�r = 0, let � = 1. Otherwise, there exists � 2 Q>0,
such that �f1, . . . ,�fn�r 2 Z�0 and that gcd(�f1, . . . ,�fn�r) = 1. Here we
note that �fi = hbi,�vi. Since � 2 Q, we also have that rdim(v) = rdim(�v)
(just replace the system Cx = d by Cx = �d). Since it su�ces to prove the
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statement for �v, we shall assume that � = 1 satisfies the requirements for
both cases.

Let us assume that we are still in the latter case, i.e. that f1, . . . , fn�r 2
Z�0 and that gcd(f1, . . . , fn�r) = 1. Then from the euclidean algorithm,
we may construct a unimodular matrix U 2 Zn�r⇥n�r (corresponding to
the performed sequence of elementary integral column operations) such that
(f1, . . . , fn�r)U = (0, . . . , 0, 1). Let (b̄1, . . . , b̄n�r) = (b1, b2, . . . , bn�r)U . Since
U is unimodular we have that

Pn�r
i=1 Zb̄i =

Pn�r
i=1 Zbi = H \ Zn, and hence

the basis b̄1, . . . , b̄n�r, bn�r+1, . . . , bn satisfies (14). Lastly, by construction of
b̄1, . . . , b̄n�r the following holds

vt(b̄1, . . . , b̄n�r) = vt(b1, . . . , bn�r)U = (f1, . . . , fn�r)U = (0, . . . , 0, 1).

From the above, we may assume that we have an integral basis b1, . . . , bn
satisfying (14), such that (f1, . . . , fn�r) equals either (0, . . . , 0, 1) or (0, . . . , 0).

Let ↵i = fn�r+i for i 2 [r]. Note that ↵1, . . . ,↵r � 0 since f � 0. We claim
that 1,↵1, . . . ,↵r are linearly independent over Q. Assume not, then there
exists a non-trivial combination a1, . . . , ar 2 Q such that

Pr
i=1 ai↵i 2 Q.

Note that w =
Pr

i=1 aibn�r+i 2 Qn and that hw, vi =
Pr

i ai hbn�r+i, vi =Pr
i ai↵i 2 Q. Furthermore, w is linearly independent from b1, . . . , bn�r, and

hence the subspace A0 = {x 2 Rn : hw, xi = hw, vi , hbi, xi = fi, i 2 [n� r]} ✓
A is rational, contains v, and dim(A0) < dim(A). However, this contradicts
our assumption on A, and therefore such a combination cannot exist.

Let T 2 Zn⇥n denote the matrix with rows b1, . . . , bn, and note that Tv =
f . Since the rows of T generate Zn, we note that T is unimodular. Lastly, by
the previous arguments, we have that f satisfies (13) as needed. ⇤

We show that the points in Fv \ a↵I(H=
v ) can be separated using a finite

number of CG cuts. We first give a rough sketch of the proof. We restrict
to the case where a↵I(H=

v ) 6= ;. From here one can verify that any rational
a�ne subspace contained in a↵(H=

v ) must also lie in a↵I(H=
v ). Next we use

Kronecker’s theorem to build a finite set C ✓ Zn, where each vector in C is at
distance at most ✏ from some scaling of v, and where v can be expressed as a
non-negative combination of the vectors in C. By choosing ✏ and the scalings of
v appropriately, we can ensure that the CG cuts derived from C dominate the
inequality hv, xi  hK(v), i.e. CC(K,C) ✓ Hv. If CC(K,C) lies in the interior
of Hv(K), we have separated all of H=

v (including Fv \ a↵I(H=
v )) and hence

are done. Otherwise, T := CC(K,C) \H=
v is a face of a rational polyhedron,

and therefore a↵(T ) is a rational a�ne subspace. Since a↵(T ) ✓ a↵(H=
v ), as

discussed above we obtain T ✓ a↵(T ) ✓ a↵I(H=
v ) as required.

The following lemma will be needed in the proof of Proposition 2.

Lemma 6 Let e1, . . . , en 2 Rn
denote the standard unit vectors. For s > 0,

let v1, . . . , vn+1 2 Rn
, be vectors such that

kvi � seik1  s

2(2n+ 1)
, i 2 [n],

�����vn+1 � s

nX

i=1

ei

�����
1

 s

2(2n+ 1)
.

Then 0 2 int(conv(v1, . . . , vn+1)) and span(v1, . . . , vn+1) = Rn
.
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Proof Since the statement is invariant under positive scalings of v1, . . . , vn+1,
we may assume that s = 1. Let S0 = conv(e1, . . . , en,�

Pn
i=1 ei) and S =

conv(v1, . . . , vn+1). We first show that for any w 2 Rn, such that kwk1 = 1,
we have that

hS0(w) = max

(
max
1in

wi,�
nX

i=1

wi

)
� 1

2n+ 1

Assume that �
Pn

i=1 wi <
1

2n+1 (†). Let I�, I+ ✓ [n] denote the indices where
wi  0 and wi > 0 respectively. Then note that

kwk1 =
rX

i=1

|wi| =
X

i2I+

wi �
X

i2I�

wi = 1

Combining the above with the (†) yields

2
X

i2I+

wi > 1� 1

2n+ 1
) 2n max

1in
wi > 1� 1

2n+ 1
) max

1in
wi >

1

2n+ 1

as needed.
From here, we see that

hS(w) = max

⇢
max
1in

hw, vii , hw, vn+1i
�

= max

(
max
1in

wi + hw, vi � eii ,�
nX

i=1

wi +

*
w, vn+1 +

nX

i=1

ei

+)

� max

(
max
1in

wi � kwk1kvi � eik1,�
nX

i=1

wi � kwk1

�����vn+1 +
nX

i=1

ei

�����
1

)

� max

(
max
1in

wi,�
nX

i=1

wi

)
� 1

2(2n+ 1)
� 1

2(2n+ 1)
.

(15)

We claim that 1
2(2n+1)B

n
1 ✓ S. Take x 2 Rn, kxk1  1

2(2n+1) . Assume that

x /2 S, then by the separator theorem, there exists w 2 Rn, kwk1 = 1, such
that

hS(w) < hw, xi  kxk1kwk1 =
1

2(2n+ 1)
,

a clear contradiction to (15). Since 0 2 int
⇣

1
2(2n+1)B1

⌘
, we clearly have that

0 2 int(S). Assume that span(v1, . . . , vn+1) 6= Rn. Then there exists w 2 Rn,
kwk1, such that hv1, wi = · · · = hvn+1, wi = 0. Again, this contradicts (15),
and hence span(v1, . . . , vn+1) = Rn as needed. ⇤

Lemma 7 Let P ✓ Rn
be a polytope with extreme points ext(P ) = {w1, . . . , wk}.

If x 2 relint(P ), then there exists a convex combination �1, . . . ,�k > 0,Pk
i=1 �i = 1, such that

Pk
i=1 �iwi = x.
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Proof Let w̄ =
Pk

i=1
1
kwi. By convexity w̄ 2 P . Since x 2 relint(P ) and

w̄ 2 P , there exists ✏ > 0 such that x✏ = (1 + ✏)x � ✏w̄ 2 P . Since x✏ 2 P ,

we may write x✏ =
Pk

i=1 ↵iwi for a convex combination ↵1, . . . ,↵k � 0. Let
�i =

1
1+✏↵i+

✏
k(1+✏) for i 2 [k]. Note that the �is are strictly positive and form

a convex combination. Lastly, we have that

kX

i=1

�iwi =
1

1 + ✏

 
kX

i=1

↵iwi

!
+

✏

1 + ✏

 
kX

i=1

1

k
wi

!

=
1

1 + ✏
((1 + ✏)x� ✏w̄) +

✏

1 + ✏
w̄ = x,

as needed. ⇤

Proposition 2 Let K ✓ Rn
be a compact convex set and v 2 Rn

. Then there

exists C ✓ Zn
, |C| = rdim(v) + 1, such that

CC(K,C) ✓ Hv(K) and CC(K,C) \H=
v (K) ✓ a↵I(H

=
v (K)).

Proof By scaling v by a positive scalar if necessary, we may assume that
hK(v) 2 {0, 1,�1}. Let T 2 Zn⇥n be the unimodular transformation pro-
vided by Lemma 5 for v. By Lemma 4, since T is unimodular, it su�ces to
prove the statement for the convex body T�tK and the vector Tv, and hence
we may assume that T is the identity.

From Lemma 5, the vector v is of the form v = (0, . . . , 0,�,↵1, . . . ,↵r),
where � 2 Q�0, r = rdim(v), and 1,↵1, . . . ,↵r � 0 are linearly independent
over Q. Since hK(v) 2 {0, 1,�1} and � 2 Q�0, we may scale v by a positive
rational number to achieve hK(v) = �, � 2 Q, such that v is of the form
(0, . . . , 0, b,↵1, . . . ,↵r) for b 2 {0, 1}.

We shall distinguish two cases, either a↵I(H=
v ) 6= ; or a↵I(H=

v ) = ;. In
the the former case, we will define CG cuts that yield a subset of a↵I(H=

v )
when restricted to H=

v . In the latter case, we will define CG cuts that imply
the inequality hv, xi < hK(v), separating the CG closure from H=

v entirely.
Since K is compact, we may choose a radius R � 0 such that K ✓ RBn

1 . Let
wi = en�r+i, i 2 [r], and wr+1 = �

Pr
i=1 en�r+i, where the ei’s denote the

standard unit vectors. Here we note that kwik1 = 1 for all i 2 [r + 1].

Case 1: a↵I(H=
v ) 6= ;. We first claim that � 2 Z and that a↵I(H=

v ) = H=
v \

{x 2 Rn : xn�r+i = 0, i 2 [r]}. Pick z 2 Zn \H=
v . Then by definition, hv, zi =

bzn�r+
Pr

i=1 ↵izn�r+i = hK(v) = �. Since bzn�r 2 Z and � 2 Q, we must have
that

Pr
i=1 ↵izn�r+1 2 Q. However, since 1,↵1, . . . ,↵r are linearly independent

over Q, we must have that zn�r+1 = · · · = zn = 0. Therefore we must have
that bzn�r = �. Therefore � 2 Z as needed. If b = 1, we have that zn�r = �,
and therefore H=

v \Zn = Zn�r�1⇥�⇥0r. Hence, a↵I(H=
v ) = Rn�r�1⇥�⇥0r

as required. Otherwise, if b = 0, then � = 0 and H=
v \ Zn = Zn�r ⇥ 0r.

Therefore a↵I(H=
v ) = Rn�r ⇥ 0r as required.

From the above remarks, note that we need only find CG cuts that imply
that xn�r+i = 0, 8 i 2 [r], when restricted to H=

v . Let ✏ = 1
4(R+1) . From
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Corollary 1, we know that the set Zn + {nv : n � N0} is dense in Zn�r ⇥ Rr

for any N0 2 N. Therefore, for each i 2 [r+1], there exists an infinite sequence
xj = njv�yj 2 0n�r ⇥Rr, yj 2 Zn, such that nj ! 1 and limj!1 xj ! ✏wi.
By Lemma 3, there exists j0 � 1 such hK(yj0)  nj0hK(v)+hFv(K)(�✏wi)+ ✏,
and where kxj0 � ✏wik1  ✏

2(2R+1) (since limi!1 xj = ✏wi). Let us denote
w̄i = xj0 , z̄i = yj0 , and n̄i = nj0 , noting that z̄i = n̄iv � w̄i.

Let C = {z̄1, . . . , z̄r+1} ✓ Zn. We will show that CC(K,C) satisfies the
requirements of the theorem. For each i 2 [r + 1], by construction of z̄i we
have that

bhK(z̄i)c 
⌅
n̄ihK(v) + hFv(K)(�✏wi) + ✏

⇧


⌅
n̄ihK(v) + ✏(hRBn

1
(wi) + 1))

⇧

= n̄ihK(v) + b✏(Rkwik1 + 1)c  n̄ihK(v) +

�
1

4

⌫
= n̄ihK(v).

(16)

Here note that the last two inequalities follow since n̄ihK(v) = n̄i� 2 Z (we
proved earlier that � 2 Z). From (16), we see that

CC(K,C) ✓ {x 2 Rn : hz̄i, xi  n̄ihK(v) 8i 2 [r + 1]} . (17)

Again by construction, for each i 2 [r + 1], the first n � r coordinates
of w̄i are zero and kw̄i � ✏wik1 < ✏

2(2R+1) . Therefore w̄1, . . . , w̄r+1 satisfy

the conditions of Lemma 6 (restricting to the last r coordinates), and hence
0 2 relint(conv(w̄1, . . . , w̄r+1)) and span(w̄1, . . . , w̄r+1) = 0n�r ⇥ Rr (since
the first n � r coordinates are all 0). By Lemma 7, there exists a convex
combination �1, . . . ,�r+1 > 0,

Pr+1
i=1 �i = 1, satisfying

Pr+1
i=1 �iw̄i = 0. From

here, note that

r+1X

i=1

�iz̄i =
r+1X

i=1

�i(n̄iv � w̄i) =
r+1X

i=1

�in̄iv (18)

Given the above, and that �1, . . . ,�r+1 form a convex combination, we get
that any x 2 CC(K,C) satisfies the inequality

r+1X

i=1

�i hz̄i, xi 
r+1X

i=1

�in̄ihK(v) )

 
r+1X

i=1

�in̄i

!
hv, xi 

 
r+1X

i=1

�in̄i

!
hK(v) ) hv, xi  hK(v).

(19)

Therefore CC(K,C) ✓ Hv(K) as needed. Assume that x 2 CC(K,C) \H=
v .

Since hv, xi = hK(v), combining with (16) we get that

hw̄i, xi = n̄i hv, xi � hz̄i, xi � n̄ihK(v)� n̄ihK(v) = 0 8i 2 [r + 1]. (20)

Furthermore, by construction of the w̄is

r+1X

i=1

�i hw̄i, xi =
*

r+1X

i=1

�iw̄i, x

+
= h0, xi = 0. (21)
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Since the �1, . . . ,�r+1 > 0, (21) implies that all the inequalities in (20) must
hold at equality, i.e. that hw̄i, xi = 0 for all i 2 [r+1]. Since span(w̄1, . . . , w̄r+1) =
0n�r ⇥ Rr, the previous statment immediately implies that xn�r+1 = · · · =
xn = 0. Therefore x 2 H=

v \ {z 2 Rn : zn�r+i = 0 8 i 2 [r]} = a↵I(H=
v ), as

needed.

Case 2: a↵I(H) = ;. As the analysis here closely mirrors that of case 1, we will
refer to arguments in the previous case whenever appropriate. In the previous
case, we saw that hv, xi = hK(v) has an integer solution (i.e. where x 2 Zn) if
and only if bxn�r = hK(v) admits an integer solution. Since a↵I(H) = ;, we
can assume that either b = 1 and � 2 Q \ Z, or that b = 0 and � 2 Q \ {0}.

We claim that there exists a scaling ⌘ 2 Q such that ⌘b 2 Z and 1
3 

fr(⌘�)  2
3 . If we are in the case where b = 0 and � 2 Q \ {0}, we may

set ⌘ = 1
2� . This satisfies the requirements since b⌘ = 0 2 Z and ⌘� = 1

2 .

Otherwise, if b = 1 and � 2 Q \ Z, we may write � = p
q , where p 2 Z,

q � 2, and p, q are relatively prime. Therefore, we may choose ⌘ 2 N, such
that ⌘p ⌘

⌅
q
2

⇧
(mod q). Since ⌘ 2 N, b⌘ 2 Z, and fr(⌘�) =

b q
2c
q 2 [ 13 ,

2
3 ] (since

q � 2).
After scaling v by ⌘, we may assume that v = (0, . . . , 0, b̄,↵1, . . . ,↵r),

where b̄ 2 N, hK(v) 2 Q, and fr(hK(v)) = fr(�) 2 [ 13 ,
2
3 ]. Let q 2 N denote

the least integer such that q� 2 Z. By Corollary 1, we know that the set
Zn + {nv : n � N0, n ⌘ 1 (mod q)}, for any N0 2 N, is dense in Zn�r ⇥ Rr.
Using the identical construction as case 1, for ✏ = 1

4(R+1) and i 2 [r + 1], we

can find z̄i = n̄iv � w̄i satisfying n̄i ⌘ 1 (mod q), z̄i 2 Zn, w̄i 2 0n�r ⇥ Rr

and kw̄i � ✏wik1  ✏
2(2r+1) , and hK(z̄i)  n̄ihK(v) + hFv(K)(�✏wi) + ✏. Let

C = {z̄1, . . . , z̄r+1}.
Since n̄i ⌘ 1 (mod q), note that fr(n̄ihK(v)) = fr(n̄i�) = fr(�) 2 [ 13 ,

2
3 ].

As before, we have that hFv(K)(�✏wi) + ✏  ✏(R + 1) = 1
4 for all i 2 [r + 1].

Therefore

bhK(z̄i)c 
�
n̄ihK(v) +

1

4

⌫
= bn̄ihK(v)c+

�
fr(hK(v)) +

1

4

⌫

 bn̄ihK(v)c+
�
2

3
+

1

4

⌫
= bn̄ihK(v)c < n̄ihK(v).

(22)

As before, by construction of w̄i, i 2 [r + 1], there exists �1, . . . ,�r+1 > 0,Pr+1
i=1 �i = 1, satisfying

Pr+1
i=1 �iw̄i = 0. Therefore by (22), any x 2 CC(K,C)

satisfies the inequality
 

r+1X

i=1

�in̄i

!
hv, xi =

r+1X

i=1

�i hz̄i, xi <
 

r+1X

i=1

�in̄i

!
hK(v) )

hv, xi < hK(v).

Therefore the CG cuts CC(K,C) separate the CG closure from H=
v (and in

particular a↵I(H=
v )) as needed. ⇤
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3.3 Lifting the CG Closure of an Exposed Face of K

Proposition 3 Let K ✓ Rn
be a compact convex set. Take v 2 Rn

. Assume

that CC(Fv(K)) is finitely generated. Then 9 S ✓ Zn
, |S| < 1, such that

CC(K,S) is a polytope and

CC(K,S) \H=
v (K) = CC(Fv(K)) (23)

CC(K,S) ✓ Hv. (24)

Proof The right to left containment in (23) is direct from CC(Fv(K)) ✓
CC(K,S) as every CG cut for K is a CG cut for Fv(K). For the reverse
containment and for (24) we proceed as follows.

Using Proposition 2 there exists S1 ✓ Zn such that CC(K,S1)\H=
v (K) ✓

a↵I(H=
v (K)) and CC(K,S1) ✓ {x 2 Rn : hv, xi  hK(v)}. Next let G ✓ Zn

be such that CC(Fv(K), G) = CC(Fv(K)). For each w 2 G, by Proposition 1
there exists w0 2 Zn such that CC(K,w0) \ a↵I(H=

v (K)) ✓ CC(Fv(K), w) \
a↵I(H=

v (K)). For each w 2 G, add w0 above to S2. Note that

CC(K,S1 [ S2) \H=
v (K) = CC(K,S1) \ CC(K,S2) \H=

v (K)

✓ CC(K,S2) \ a↵I(H
=
v (K))

✓ CC(Fv(K), G) \ a↵(H=
v (K)) ✓ CC(Fv(K)).

Let S3 = {±ei : 1  i  n}. Note that since K is compact CC(K,S3) is a
cuboid with bounded side lengths, and hence is a polytope. Letting S = S1 [
S2 [ S3, yields the desired result. ⇤

Before we proceed further, we remark here that Proposition 3 taken to-
gether with the main result of the paper, i.e. Theorem 1, implies a generaliza-
tion of another classcial result about CG closures of rational polytopes that
is presented as Corollary 2 below. (As clarification, we note that Corollary 2
below is not used in the proof ofTheorem 1.)

Corollary 2 Let K be a compact convex set and let F be an exposed face of

K, then we have that CC(F ) = CC(K) \ F .

4 Approximation of the CG Closure

4.1 Approximation 1 of the CG Closure

In this section, we construct a first approximation of the CG closure of K.
Under the assumption that the CG closure of every proper exposed face is
finitely generated, we use a compactness argument to construct a finite set of
CG cuts S ✓ Zn such that CC(K,S) ✓ K \ a↵I(K). We use the following
lemma to simplify the analysis of integral a�ne subspaces.

Lemma 8 Take A 2 Rm⇥n
and b 2 Rm

. Then there exists � 2 Rm
such that

for a0 = �A, b0 = �b, we have that {x 2 Zn : Ax = b} = {x 2 Zn : a0x = b0}.
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Proof If {x 2 Rn : Ax = b} = ;, then by Farkas’ Lemma there exists � 2 Rm

such that �A = 0 and �b = 1. Hence {x 2 Rn : Ax = b} = {x 2 Rn : 0x = 1} =
; as needed. We may therefore assume that {x 2 Rn : Ax = b} 6= ;. Therefore
we may also assume that the rows of the augmented matrix [A | b] are linearly
independent.

Let T = span(a1, . . . , am), where a1, . . . , am are the rows of A. Define
r : T ! R as r(w) = �b where � 2 Rm such that �A = w. Since the
rows of A are linearly independent we obtain that r is well defined and is
a linear operator. Let S = {x 2 Zn : Ax = b}. For z 2 Zn, examine Tz =
{w 2 T : hw, zi = r(w)}. By linearity of r, we see that Tz is a linear subspace
of T . Note that for z 2 Zn, Tz = T i↵ z 2 S. Therefore 8 z 2 Zn \ S, we
must have that Tz 6= T , and hence dim(Tz)  dim(T )� 1. Let mT denote the
Lebesgue measure on T . Since dim(Tz) < dim(T ), we see thatmT (Tz) = 0. Let
T 0 =

S
z2Zn\S Tz. Since Zn \ S is countable, by the countable subadditivity

of mT we have that mT (T 0) 
P

z2Zn\S mT (Tz) = 0. Since mT (T ) = 1,
we must have that T \ T 0 6= ;. Hence we may pick a0 2 T \ T 0. Letting
b0 = r(a0), we note that by construction there 9 � 2 Rm such that �A = a0

and �b = b0. Hence for all z 2 S, �Az = �b ) a0z = b0. Take z 2 Zn \ S.
Since a0 2 T \ T 0, we have that a0 /2 Tz. Hence a0z 6= b0. Therefore we see that
{x 2 Zn : a0x = b0} = {x 2 Zn : Ax = b} as needed. ⇤

Proposition 4 Let ; 6= K ✓ Rn
be a compact convex set. If CC(Fv(K)) is

finitely generated for any proper exposed face Fv(K) then 9 S ✓ Zn
, |S| < 1,

such that CC(K,S) ✓ K \ a↵I(K) and CC(K,S) is a polytope.

Proof Let us express a↵(K) as {x 2 Rn : Ax = b}. Note that a↵(K) 6= ; since
K 6= ;. By Lemma 8 there exists �, c = �A and d = �b, and such that
a↵(K)\Zn = {x 2 Zn : hc, xi = b}. Since hK(c) = b and hK(�c) = �b, using
Proposition 2 on c and �c, we can find SA ✓ Zn such that CC(K,SA) ✓
a↵({x 2 Zn : hc, xi = b}) = a↵I(K).

Express a↵(K) as W + a, where W ✓ Rn is a linear subspace and a 2 Rn.
Take v 2 W \ Sn�1. Note that Fv(K) is a proper exposed face and hence, by
assumption, CC(Fv(K)) is finitely generated. Hence by Proposition 3 there
exists Sv ✓ Zn such that CC(K,Sv) is a polytope, CC(K,Sv) \ H=

v (K) =
CC(Fv(K)) and CC(K,Sv) ✓ Hv. Let Kv = CC(K,Sv), then we have the
following claim.
Claim: There exists an open neighborhood Nv of v in W \ Sn�1 such that
v0 2 Nv ) hKv (v

0)  hK(v0).

SinceKv is a polytope, there exists Z ✓ Rn, |Z| < 1, such thatKv = conv(Z).
Then note that hKv (w) = supz2Z hz, wi. Let H = {z : hK(v) = hv, zi , z 2 Z}.
By construction, we have that conv(H) = CC(Fv(K)).

First assume that CC(Fv(K)) = ;. Then H = ;, and hence hKv (v) <
hK(v). Since Kv,K are compact convex sets, we have that hKv , hK are both
continuous functions on Rn and hence hK�hKv is continuous. Therefore there
exists ✏ > 0 such that hKv (v

0) < hK(v0) for kv � v0k  ✏ as needed.
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Assume that CC(Fv(K)) 6= ;. Let R = maxz2Z kzk, and let

� = hK(v)� sup {hv, zi : z 2 Z \H} .

Let ✏ = �
2R and take any v0 such that kv0 � vk < ✏. Then for all z 2 H, we

have that

hz, v0i = hz, vi+ hz, v0 � vi = hK(v) + hz, v0 � vi � hK(v)� kzkkv0 � vk

> hK(v)�R
�

2R
= hK(v)� �

2
,

and that for all z 2 Z \H, we have that

hz, v0i = hz, vi+hz, v0 � vi  hK(v)��+hz, v0 � vi  hK(v)��+kzkkv0�vk

< hK(v)� � +
�

2
= hK(v)� �

2
.

Therefore we have that hz, v0i > hz0, v0i for all z 2 H, z0 2 Z \H and hence

hKv (v
0) = sup

z2Z
hz, v0i = sup

z2H
hz, v0i = hCC(Fv(K))(v

0)  hK(v0), (25)

since CC(Fv(K)) ✓ Fv(K) ✓ K. The statement thus holds by letting Nv =
{v0 2 W \ Sn�1 : kv0 � vk  ✏}.

Note that
�
Nv : v 2 W \ Sn�1

 
forms an open cover ofW\Sn�1, and since

W \ Sn�1 is compact, there exists a finite subcover Nv1 , . . . , Nvk such thatSk
i=1 Nvi = W \ Sn�1. Let S = SA [

Sk
i=1 Svi . We claim that CC(K,S) ✓

K. Assume not, then there exists x 2 CC(K,S) \ K. Since CC(K,S) ✓
CC(K,SA) ✓ W + a and K ✓ W + a, by the separator theorem there exists
w 2 W \ Sn�1 such that hK(w) = supy2K hw, yi < hw, xi  hCC(K,S)(w).
Since w 2 W \ Sn�1, there exists i, 1  i  k, such that w 2 Nvi . Note then
we obtain that hCC(K,S)(w)  hCC(K,Svi )

(w) = hKvi
(w)  hK(w), a contra-

diction. Hence CC(K,S) ✓ K as claimed. CC(K,S) is a polytope because it
is the intersection of polyhedra of which at least one is a polytope. ⇤

4.2 Approximation 2 of the CG Closure

In this section, we augment the first approximation of the CC(K) with a finite
number of extra CG cuts so that this second approximation matches CC(K)
on the relative boundary of K.

To achieve this, we observe that our first approximation of CC(K) is poly-
hedral and contained in K, and hence its intersection with the relative bound-
ary of K is contained in the union of a finite number of proper exposed faces
of K. Therefore, by applying Proposition 3 to each such face (i.e. adding their
lifted CG closure), we can match CC(K) on the relative boundary as required.
The following lemma makes precise the previous statements.
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Lemma 9 Let K ✓ Rn
be a convex set and P ✓ K be a polytope. Then

there exists Fv1 , . . . , Fvk ✓ K, proper exposed faces of K, such that P \
relbd(K) ✓

Sk
i=1 Fvi

Proof Let F = {F : F ✓ P, F a face of P, relint(F ) \ relbd(K) 6= ;}. Since P
is polytope, note that the total number of faces of P is finite, and hence
|F| < 1. We claim that

P \ relbd(K) ✓
[

F2F
F. (26)

Take x 2 P\relbd(K). Let Fx denote the minimal face of P containing x (note
that P is a face of itself). By minimality of Fx, we have that x 2 relint(Fx).
Since x 2 relbd(K), we have that Fx 2 F , as needed.

Take F 2 F . We claim that there exists EF ✓ K, EF a proper exposed
face of K, such that F ✓ EF . Take x 2 relint(F ) \ relbd(K). Let a↵(K) =
W + a, where W is a linear subspace and a 2 Rn. Since x /2 relint(K), by
the separator theorem, there exists v 2 W \ Sn�1 such that hK(v) = hv, xi.
Let EF = Fv(K). Note that since v 2 W \ Sn�1, Fv(K) is a proper exposed
face of K. We claim that F ✓ EF . Since F is a polytope, we have that
F = conv(ext(F )). Write ext(F ) = {c1, . . . , ck}. Since x 2 relint(F ), there

exists �1, . . . ,�k > 0,
Pk

i=1 �i = 1, such that
Pk

i=1 �ici = x. Since ci 2 K, we
have that hci, vi  hK(v). Therefore, we note that

hv, xi =
*

kX

i=1

�ici, v

+
=

kX

i=1

�i hci, vi 
kX

i=1

�ihK(v) = hK(v) (27)

Since hv, xi = hK(v), we must have equality throughout. To maintain equality,
since �i > 0 for all 1  i  k, we must have that hci, vi = hK(v) for all 1  i 
k. Therefore ci 2 EF for all 1  i  k, and hence F = conv(c1, . . . , ck) ✓ EF ,
as needed.

To conclude the proof, we note that the set {EF : F 2 F} satisfies the
conditions of the lemma. ⇤
Proposition 5 Let K ✓ Rn

be a compact convex set. If CC(Fv) is finitely

generated for any proper exposed face Fv then 9 S ✓ Zn
, |S| < 1, such that

CC(K,S) ✓ K \ a↵I(K) (28)

CC(K,S) \ relbd(K) = CC(K) \ relbd(K) (29)

Proof By Proposition 4, there exists SI ✓ Zn, |SI | < 1, such that CC(K,SI) ✓
K \ a↵I(K) and CC(K,SI) is a polytope. Since CC(K,SI) ✓ K is a poly-
tope, let Fv1 , . . . , Fvk be the proper exposed faces of K given by Lemma 9. By
Proposition 3, there exists Si ✓ Zn, |Si| < 1, such that CC(K,Si) \Hvi =

CC(Fvi). Let S = SI [
Sk

i=1 Si. We claim that CC(K,S) \ relbd(K) ✓
CC(K) \ relbd(K). For this note that x 2 CC(K,S) \ relbd(K) implies x 2
CC(K,SI)\ relbd(K), and hence there exists i, 1  i  k, such that x 2 Fvi .
Then x 2 CC(K,S)\Hvi ✓ CC(K,Si)\Hvi = CC(Fvi) ✓ CC(K)\relbd(K).
The reverse inclusion is direct. ⇤
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5 Proof of Theorem

Finally, we have all the ingredients to prove the main result of this paper. The
proof is by induction on the dimension of K. Trivially, the result holds for zero
dimensional convex bodies. Using the induction hypothesis, we can construct
the second approximation of CC(K) using Proposition 5 (since it assumes that
the CG closure of every exposed face is finitely generated). Lastly, we observe
that any CG cut for K not dominated by those already considered in the
second approximation of CC(K) must separate a vertex of this approximation
lying in the relative interior of K. From here, it is not di�cult to show that
only a finite number of such cuts exists, thereby proving the polyhedrality of
CC(K). The proof here is similar to the one used for strictly convex sets, with
the additional technicality that here a↵(K) may be irrational.

Theorem 5 Let K ✓ Rn
be a non-empty compact convex set. Then CC(K)

is finitely generated.

Proof We proceed by induction on the a�ne dimension of K. For the base
case, dim(a↵(K)) = 0, i.e. K = {x} is a single point. Here it is easy to see
that setting S = {±ei : i 2 {1, . . . , n}}, we get that CC(K,S) = CC(K). The
base case thus holds.

For the inductive step let 0  k < n. Let K be a compact convex set where
dim(a↵(K)) = k+1 and assume the result holds for sets of lower dimension. By
the induction hypothesis, we know that CC(Fv) is finitely generated for every
proper exposed face Fv of K, since dim(Fv)  k. By Proposition 5, there exists
a set S ✓ Zn, |S| < 1, such that (28) and (29) hold. If CC(K,S) = ;, then we
are done. So assume that CC(K,S) 6= ;. Let A = a↵I(K). Since CC(K,S) 6=
;, we have that A 6= ; (by (28)), and so we may pick t 2 A \ Zn. Note that
A� t = W , where W is a linear subspace of Rn satisfying W = span(W \Zn).
Let L = W \Zn. Since t 2 Zn, we easily see that CC(K�t, T ) = CC(K,T )�t
for all T ✓ Zn. Therefore CC(K) is finitely generated i↵ CC(K � t) is. Hence
replacing K by K � t, we may assume that a↵I(K) = W .

Let ⇡W denote the orthogonal projection onto W . Note that for all x 2 W ,
and z 2 Zn, we have that hz, xi = h⇡W (z), xi. Since CC(K,S) ✓ K \W , we
see that for all z 2 Zn, CC(K,S[{z}) = CC(K,S)\{x : hz, xi  bhK(z)c} =
CC(K,S) \ {x : h⇡W (z), xi  bhK(z)c}. Let L⇤ = ⇡W (Zn). Since W is a ra-
tional subspace, we have that L⇤ is full dimensional lattice in W . Fix an
element of w 2 L⇤ and examine Vw := {bhK(z)c : ⇡W (z) = w, z 2 Zn}. Note
that Vw ✓ Z. We claim that inf(Vw) > �1. To see this, note that

inf {bhK(z)c : ⇡W (z) = w, z 2 Zn} � inf {bhK\W (z)c : ⇡W (z) = w, z 2 Zn}
= inf {bhK\W (⇡W (z))c : ⇡W (z) = w, z 2 Zn}
= bhK\W (w)c > �1.

Since Vw is a lower bounded set of integers, there exists zw 2 ⇡�1
W (w) \

Zn such that inf(Vw) = bhK(zw)c. From the above reasoning, we see that
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CC
�
K,S [

�
⇡�1
W (z) \ Zn

��
= CC(K,S [ {zw}). Let

C = {w : w 2 L⇤, CC(K,S [ {zw}) ( CC(K,S)} .

Here we get that

CC(K) = CC(K,S[Zn) = CC(K,S[{zw : w 2 L⇤}) = CC(K,S[{zw : w 2 C}).

From the above equation, if we show that |C| < 1, then CC(K) is finitely
generated. To do this, we will show that there exists R > 0, such that C ✓
RBn

2 , and hence C ✓ L⇤\RBn
2 . Since L

⇤ is a lattice, |L⇤\RBn
2 | < 1 for any

fixed R, and so we are done.
Let P = CC(K,S). Since P is a polytope, we have that P = conv(ext(P )).

Let I = ext(P ) \ relint(K), and let B = ext(P ) \ relbd(K). Hence ext(P ) =
I [B. By assumption on CC(K,S), we know that for all v 2 B, we have that
v 2 CC(K). Hence for all z 2 Zn, we must have that hz, vi  bhK(z)c for
all v 2 B. Assume that for some z 2 Zn, CC(K,S [ {z}) ( CC(K,S) = P .
We claim that hz, vi > bhK(z)c for some v 2 I. If not, then hv, zi  bhK(z)c
for all v 2 ext(P ), and hence CC(K,S [ {z}) = CC(K,S), a contradiction.
Hence such a v 2 I must exist.

For z 2 Zn, note that hK(z) � hK\W (z) = hK\W (⇡W (z)). Hence hz, vi >
bhK(z)c for v 2 I only if h⇡W (z), vi = hz, vi > bhK\W (⇡W (z))c. Let C 0 :=
{w 2 L⇤ : 9v 2 I, hv, wi > bhK\W c (w)}. From the previous discussion, we see
that C ✓ C 0.

Since I ✓ relint(K) \W = relint(K \W ) we have

�v = sup {r � 0 : rBn
2 \W + v ✓ K \W} > 0

for all v 2 I. Let � = infv2I �v. Since |I| < 1, we see that � > 0. Let R = 1
� .

Take w 2 L⇤, kwk � R. Note that 8v 2 I,

bhK\W (w)c � hK\W (w)�1 � h(v+�Bn
2 )\W (w)�1 = hv, wi+�kwk�1 � hv, wi .

Hence w /2 C 0. Therefore C ✓ C 0 ✓ RBn
2 and CC(K) is finitely generated. ⇤
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5. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
Mathematics 4, 305–337 (1973)

6. Dadush, D., Dey, S.S., Vielma, J.P.: On the Chvátal-Gomory Closure of a Compact
Convex Set. In: O. Günlük, G.J. Woeginger (eds.) IPCO XV, Lecture Notes in Computer

Science, vol. 6655, pp. 130–142. Springer (2011)
7. Dadush, D., Dey, S.S., Vielma, J.P.: The Chvátal-Gomory Closure of Strictly Convex
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