Nonconvex, Lower Semicontinuous Piecewise Linear Optimization *

Juan Pablo Vielma ${ }^{\text {a,* }}$ Ahmet B. Keha ${ }^{\text {b }}$ George L. Nemhauser ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Industrial and Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive, Atlanta, GA 30332-0205, USA
${ }^{\mathrm{b}}$ Department of Industrial Engineering, Arizona State University, PO Box 875906, Tempe AZ 85287-5906, USA

Abstract

A branch-and-cut algorithm for solving linear problems with continuous separable piecewise linear cost functions was developed in 2005 by Keha et. al. This algorithm is based on valid inequalities for an SOS2 based formulation of the problem. In this paper we study the extension of the algorithm to the case where the cost function is only lower semicontinuous. We extend the SOS2 based formulation to the lower semicontinuous case and show how the inequalities introduced by Keha et. al. can also be used for this new formulation. We also introduce a simple generalization of one of the inequalities introduced by Keha et. al. Furthermore, we study the discontinuities caused by fixed charge jumps and introduce two new valid inequalities by extending classical results for fixed charge linear problems. Finally, we report computational results showing how the addition of the developed inequalities can significantly improve the performance of CPLEX when solving these kinds of problems.

Key words: Piecewise Linear Optimization, Discontinuous Piecewise Linear Functions, Branch-and-Cut

[^0]
1 Introduction

We study the nonconvex separable lower semicontinuous piecewise linear optimization problem given by

$$
\begin{aligned}
& \min \sum_{j \in N} f_{j}\left(x_{j}\right) \\
& \text { s.t. } \\
& \qquad \sum_{j \in N} g_{i j} x_{j} \leq b_{i} \quad \forall i \in\{1, \ldots, m\} \\
& 0 \leq x_{j} \leq u_{j} \quad \forall j \in N
\end{aligned}
$$

where $N=\{1, \ldots, n\}, g_{i j} \geq 0$ for all i, j and $f_{j}\left(x_{j}\right)$ is a lower semicontinuous nonconvex piecewise linear function.

This problem is NP-hard and has several applications [10] including network flow problems with nonconvex objectives $[1,2]$ and with fixed charges [12,13,15,16,19].

Our goal is to extend the results obtained in [10] for the case where $f_{j}\left(x_{j}\right)$ is continuous to the semicontinuous case. These results include the development of a branch-and-cut algorithm without binary variables for the nonconvex separable continuous piecewise linear optimization problem by deriving valid inequalities for an SOS2 based formulation of the problem.

In Section 2 we describe this SOS2 model and the valid inequalities developed in [10]. We also derive a simple generalization of one of these inequalities. In Section 3 we extend the SOS2 formulation to the semicontinuous case, study its relationship to a binary formulation suggested in [3] and [14] and show how to use cuts from the continuous case. Section 4 is devoted to the study of discontinuities caused by fixed charges. In this section two new valid inequalities are developed by extending classical results for fixed charge linear problems. Finally computational results are presented in Section 5.

2 SOS2 model for the continuous case

In this section we present the classical SOS2 model for the continuous case and we summarize the polyhedral results presented in [10]. We begin by reviewing the definition of the SOS2 condition.

An ordered set of variables is said to satisfy SOS2 if no more than two variables are positive and if two variables are positive, then they must be adjacent in the order.

Now, suppose that for each $j \in N, f_{j}\left(x_{j}\right)$ is a continuous piecewise linear function which is linear in segments $\left[d_{j}^{k}, d_{j}^{k+1}\right]$ for all $k \in\{0, \ldots, T-1\}$, where $d_{j}^{0}=0$ and $d_{j}^{T}=u_{j}$. Then, using $x_{j}=\sum_{k=0}^{T} d_{j}^{k} \lambda_{j}^{k}$ with $\lambda_{j}^{k} \geq 0$ and $\sum_{k=0}^{T} \lambda_{j}^{k}=1$ and imposing the SOS2 condition to get the correct value of $f_{j}\left(x_{j}\right)$ gives the model

$$
\begin{array}{ll}
\min & \sum_{j \in N} \sum_{k=0}^{T} f_{j}\left(d_{j}^{k}\right) \lambda_{j}^{k} \\
\text { s.t. } & \forall i \in\{1, \ldots, m\} \\
\sum_{j \in N} \sum_{k=0}^{T} a_{i j}^{k} \lambda_{j}^{k} \leq b_{i} & \forall j \in N \\
\sum_{k=0}^{T} \lambda_{j}^{k}=1 & \forall j \in N \forall k \in\{0, \ldots, T\} \\
\lambda_{j}^{k} \geq 0 & \forall j \in N
\end{array}
$$

where $a_{i j}^{k}=g_{i j} d_{j}^{k}$.
The one row relaxation of this model where (1) is replaced by

$$
\begin{equation*}
\sum_{j \in N} \sum_{k=0}^{T} a_{j}^{k} \lambda_{j}^{k} \leq b \tag{5}
\end{equation*}
$$

is the basis of our polyhedral results. Let $S=\left\{\lambda=\left(\lambda_{j}^{k}\right)_{k=0, j \in N}^{T} \in \mathbb{R}^{n(T+1)}\right.$: λ satisfies (2)-(5) \} be the set of feasible solutions to this model and let $L S=$ $\left\{\lambda \in \mathbb{R}^{n(T+1)}: \lambda\right.$ satisfies (2)-(3),(5) $\}$ be the set of feasible solutions to its LP relaxation.

Several valid inequalities for $P=\operatorname{conv}(S)$ are presented in [10]. In the following section we review these valid inequalities and describe the separation procedure for a given $\lambda \in L S \backslash P$. We also develop a small extension of one of these inequalities.

2.1 Lifted Convexity Constraints

Lifted convexity constraints are obtained by lifting a natural relaxation of (2). For $j \in N$, let $I=\left\{i \in N \backslash\{j\}: b-a_{j}^{1} \leq a_{i}^{T}\right\}$ and for $i \in I$ let $k_{i}=\min \left\{k: b-a_{j}^{1} \leq a_{i}^{k}\right\}$. Then, for $i \in I$

$$
\begin{equation*}
\sum_{k=1}^{T} \lambda_{j}^{k}+\sum_{k=k_{i}-1}^{T} \alpha_{i}^{k} \lambda_{i}^{k} \leq 1 \tag{6}
\end{equation*}
$$

is a valid inequality, where

$$
\begin{align*}
\left(\alpha_{i}^{k_{i}-1}, \alpha_{i}^{k_{i}}\right) & = \begin{cases}\left(1-\frac{\left(b-a_{i}^{k_{i}-1}\right)}{a_{j}^{1}}, 1-\frac{\left(b-a_{i}^{k_{i}}\right)}{a_{j}^{1}}\right) & \text { if } b-a_{j}^{1}<a_{i}^{k_{i}} \\
(0,0) & \text { if } b-a_{j}^{1}=a_{i}^{k_{i}}\end{cases} \tag{7}\\
\alpha_{i}^{k} & =1-\frac{\left(b-a_{i}^{k}\right)}{a_{j}^{1}} \tag{8}
\end{align*}
$$

Inequality (6) gives two possibilities for separation. Let $\tilde{\lambda} \in L S \backslash P$ be such that $\tilde{\lambda}_{i}$ violates SOS2 and let $\tilde{k}_{i}=\max \left\{k: \tilde{\lambda}_{i}^{k}>0\right\}$. Then, if $b-a_{j}^{1} \leq a_{i}^{\tilde{k}_{i}-1}$ and $\sum_{k=1}^{T} \tilde{\lambda}_{j}^{k}=1$

$$
\begin{equation*}
\sum_{k=1}^{T} \lambda_{j}^{k}+\sum_{k=\tilde{k}_{i}}^{T} \alpha_{i}^{k} \lambda_{i}^{k} \leq 1 \tag{9}
\end{equation*}
$$

cuts off $\tilde{\lambda}$, where all α_{i}^{k} are positive and given by (8). We denote this cut as a Lifted Convexity Cut type I.

On the other hand, if $a_{i}^{\tilde{k}_{i}-1}<b-a_{j}^{1}<a_{i}^{\tilde{k}_{i}}$ and $\sum_{k=1}^{T} \tilde{\lambda}_{j}^{k}=1$ then

$$
\begin{equation*}
\sum_{k=1}^{T} \lambda_{j}^{k}+\alpha_{i}^{\tilde{k}_{i}-1} \lambda_{i}^{\tilde{k}_{i}-1}+\alpha_{i}^{\tilde{k}_{i}} \lambda_{i}^{\tilde{k}_{i}} \leq 1 \tag{10}
\end{equation*}
$$

where $\alpha_{i}^{\tilde{k}_{i}-1}$ and $\alpha_{i}^{\tilde{k}_{i}}$ are given by (7) may cut off $\tilde{\lambda}$. In particular, it will cut the infeasible point if, for example, $\tilde{\lambda}_{i}^{\tilde{k}_{i}-1}=0$. We denote this cut as a Lifted Convexity Cut type II.

2.2 Lifted Cover Constraints

Lifted cover constraints extend the concept of a cover to continuous variables with SOS2 constraints. Consider a set $C \subseteq N$ and $k_{j} \in\{2, \ldots, T\}$ for $j \in C$
such that $\sum_{j \in C} a_{j}^{k_{j}}=b+\Delta$ for $\Delta>0$. Then

$$
\begin{equation*}
\sum_{j \in C}\left(\alpha_{j} \lambda_{j}^{k_{j}-1}+\sum_{k=k_{j}}^{T} \lambda_{j}^{k}\right) \leq|C|-1, \tag{11}
\end{equation*}
$$

is a valid inequality, where $\alpha_{j}=\min \left\{0,\left(\Delta-a_{j}^{k_{j}}+a_{j}^{k_{j}-1}\right) / \Delta\right\}$. More generally, requirement $2 \leq k_{j}$ can be relaxed to

$$
2 \leq k_{j} \text { or }\left(1 \leq k_{j} \wedge \Delta \geq a_{j}^{1}\right)
$$

Separation can be done as follows. Let $\tilde{\lambda} \in L S \backslash P$ be such that $\tilde{\lambda}_{i}$ violates SOS2. Let $L=\left\{l>1: \tilde{\lambda}_{i}^{l}>0\right\}$ and for each $j \neq i$ let $k_{j}=\max \{k$: $\left.\sum_{l=k}^{T} \tilde{\lambda}_{j}^{l}=1\right\}$. Also let $D=\left\{j \in N \backslash\{i\}: k_{j}>0\right\}$. Then, for each $l \in L$ and for each $C^{\prime} \subseteq D$ such that $\sum_{j \in C^{\prime}} a_{j}^{k_{j}}+a_{i}^{l}>b$, we have that for $C=C^{\prime} \cup\{i\}$ and $k_{i}=l(11)$ may separate $\tilde{\lambda}$. In particular, it will cut off $\tilde{\lambda}$ if, for example, $\tilde{\lambda}_{i}^{l-1}=0$ or $\alpha_{i}=0$.

2.3 Aggregated Lifted Convexity Constraints

In this section we develop a small extension of the lifted convexity constraints that sometimes allows cutting off infeasible points that lifted convexity constraints cannot.

For any $I \subseteq N$ we can aggregate the relaxed convexity constraints to get the valid inequality

$$
\begin{equation*}
\sum_{i \in I} \sum_{k=1}^{T} \lambda_{i}^{k} \leq|I| \tag{12}
\end{equation*}
$$

which can be lifted in a manner similar to the convexity constraints if $I \neq N$.
Let $\tilde{\lambda} \in L S \backslash P$ and suppose $\tilde{\lambda}_{l}$ is SOS2 infeasible and $k_{l}=\max \left\{k: \tilde{\lambda}_{l}^{k}>0\right\}$. It may happen that $a_{i}^{1}+a_{l}^{k_{l}}<b$ for all $i \in N \backslash\{l\}$ but

$$
\begin{equation*}
\sum_{i \in I} a_{i}^{1}+a_{l}^{k_{l}-1}>b \tag{13}
\end{equation*}
$$

for some $I \subseteq N \backslash\{l\}$. In this case, neither lifted convexity cuts of type I or II will separate $\tilde{\lambda}$, but (13) suggests that we may be able to lift (12) to get a separating inequality.

If (13) is satisfied, inequality

$$
\begin{equation*}
\sum_{i \in I} \sum_{k=1}^{T} \lambda_{i}^{k}+\alpha_{l}^{k_{l}} \lambda_{l}^{k_{l}} \leq|I| \tag{14}
\end{equation*}
$$

is valid where $\alpha_{l}^{k_{l}}=|I|-z^{*}$ and

$$
\begin{equation*}
z^{*}=\max \left\{\sum_{i \in I} \lambda_{i}^{1}: \sum_{i \in I} a_{i}^{1} \lambda_{i}^{1} \leq b-a_{l}^{k_{l}-1}, \quad 0 \leq \lambda_{i}^{1} \leq 1 \quad \forall i \in I\right\} \tag{15}
\end{equation*}
$$

By condition (13), this yields $\alpha_{l}^{k_{l}}>0$. The validity proof for (14) is similar to the one in [10] for lifted convexity constraints type I, with the difference that for (14) the lifting of (12) with respect to $\lambda_{l}^{k_{l}}$ is only done approximatedly.

The separation procedure for this inequality is a simple generalization of the procedure for the separation of Lifted Convexity cuts type I. Let $\tilde{\lambda} \in L S \backslash P$ be such that $\tilde{\lambda}_{l}$ violates SOS2 and let $\tilde{k}_{l}=\max \left\{k: \tilde{\lambda}_{l}^{k}>0\right\}$. We look for a set of indices I such that (13) is satisfied for $k_{l}=\tilde{k}_{l}$ and $\sum_{i \in I} \sum_{k=1}^{T} \lambda_{i}^{k}=|I|$. We can then solve (15) greedily to get $\alpha_{l}^{k_{l}}$ and add (14) to cut off the infeasible point.

3 Extensions of the SOS 2 model to the semicontinuous case

In this section we extend the SOS2 model to the semicontinuous case and show how the cuts from the continuous case can be used in this extension.

Let $f_{j}\left(x_{j}\right)$ be a piecewise linear lower semicontinuous function which is linear in the segments $\left(d_{j}^{k}, d_{j}^{k+1}\right)$ for $k \in\{0, \ldots, T-1\}$. Specifically,

$$
\begin{aligned}
f_{j}\left(d_{j}^{0}\right) & =\underline{c}_{j}^{0} & & \\
\lim _{x_{j} \rightarrow d_{j}^{0}} f_{j}\left(x_{j}\right) & =\bar{c}_{j}^{0} \geq \underline{c}_{j}^{0} & & \\
\lim _{x_{j} \rightarrow d_{j}^{k}} f_{j}\left(x_{j}\right) & =\underline{c}_{j}^{k} & & k \in\{1, \ldots, T-1\} \\
\lim _{x_{j} \rightarrow d_{j}^{k+}} f_{j}\left(x_{j}\right) & =\bar{c}_{j}^{k} & & k \in\{1, \ldots, T-1\} \\
f_{j}\left(d_{j}^{k}\right) & =\min \left\{\underline{c}_{j}^{k}, \bar{c}_{j}^{k}\right\} & & k \in\{1, \ldots, T-1\} \\
f_{j}\left(d_{j}^{T}\right) & =\lim _{x_{j} \rightarrow d_{j}^{T^{-}}} f_{j}\left(x_{j}\right)=c_{j}^{T} . & &
\end{aligned}
$$

An example of this type of function is shown in figure 1 . When $\bar{c}_{j}^{0}>\underline{c}_{j}^{0}$ we say there is a fixed charge type jump at 0.

Fig. 1. A piecewise linear lower semicontinuous function.
To treat the discontinuous case we duplicate all break points except the upper bound of the x_{j} variable and make a distinction between the λ variable associated with the segment below and above d_{j}^{k}. We can then write

$$
\begin{equation*}
x_{j}=\sum_{k=0}^{T-1}\left[\underline{\lambda}_{j}^{k}+\bar{\lambda}_{j}^{k}\right] d_{j}^{k}+\underline{\lambda}_{j}^{T} d_{j}^{T} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{k=0}^{T-1}\left[\underline{\lambda}_{j}^{k}+\bar{\lambda}_{j}^{k}\right]+\underline{\lambda}_{j}^{T}=1, \quad \underline{\lambda}_{j}^{T}, \underline{\lambda}_{j}^{k}, \bar{\lambda}_{j}^{k} \geq 0 \quad \forall k \in\{0, \ldots, T-1\} \tag{17}
\end{equation*}
$$

Our intent is that if $x_{j} \in\left(d_{j}^{k}, d_{j}^{k+1}\right)$ for some $k \in\{0, \ldots, T-1\}$ then

$$
\begin{equation*}
x_{j}=\bar{\lambda}_{j}^{k} d_{j}^{k}+\underline{\lambda}_{j}^{k+1} d_{j}^{k+1} \quad \text { and } \quad \bar{\lambda}_{j}^{k}+\underline{\lambda}_{j}^{k+1}=1 \tag{18}
\end{equation*}
$$

and that if $x_{j}=d_{j}^{k}$ for some $k \in\{0, \ldots, T-1\}$ then

$$
\left(\underline{\lambda}_{j}^{k}, \bar{\lambda}_{j}^{k}\right)= \begin{cases}(1,0) & \text { if } \lim _{x_{j} \rightarrow d_{j}^{k-}} f_{j}\left(x_{j}\right)=f_{j}\left(d_{j}^{k}\right) \tag{19}\\ (0,1) & \text { if } \lim _{x_{j} \rightarrow d_{j}^{k+}} f_{j}\left(x_{j}\right)=f_{j}\left(d_{j}^{k}\right)\end{cases}
$$

To assure (18) we only need to force

$$
\begin{equation*}
\left(\underline{\lambda}_{j}^{0}, \bar{\lambda}_{j}^{0}, \ldots, \underline{\lambda}_{j}^{T-1}, \bar{\lambda}_{j}^{T-1}, \underline{\lambda}_{j}^{T}\right) \text { is } S O S 2 \tag{20}
\end{equation*}
$$

Let

$$
\begin{equation*}
f_{j}\left(x_{j}\right)=\sum_{k=0}^{T-1}\left[\underline{\lambda}_{j}^{k} \underline{c}_{j}^{k}+\bar{\lambda}_{j}^{k} \bar{c}_{j}^{k}\right]+\underline{\lambda}_{j}^{T} c_{j}^{T} \tag{21}
\end{equation*}
$$

Then, for x_{j} satisfying (16), (17) and (20), (21) is a correct expression for the piecewise linear function since (19) will be satisfied automatically by the minimization of $f(x)$ as $f_{j}\left(x_{j}\right)$ is lower semicontinuous for all $j \in N$.

Note that, if we do not have a fixed charge jump, this model is essentially the same as the disaggregated convex-combination binary model proposed in [3] and [14], but with the necessary combinatorial requirements enforced directly by SOS2 constraints instead of adding binary variables. More specifically, when no fixed charge jump at 0 is present the SOS2 model is

$$
\begin{array}{ll}
\text { min } \sum_{j \in N}\left(\bar{\lambda}_{j}^{0} \bar{c}_{j}^{0}+\sum_{k=1}^{T-1}\left[\underline{\lambda}_{j}^{k} \underline{c}_{j}^{k}+\bar{\lambda}_{j}^{k} \bar{c}_{j}^{k}\right]+\underline{\lambda}_{j}^{T} c_{j}^{T}\right) & \\
\text { s.t. } & \qquad \begin{aligned}
\sum_{j \in N}\left(a_{i j}^{0} \bar{\lambda}_{j}^{0}+\sum_{k=1}^{T-1} a_{i j}^{k}\left[\underline{\lambda}_{j}^{k}+\bar{\lambda}_{j}^{k}\right]+a_{i j}^{T} \underline{\lambda}_{j}^{T}\right) \leq b_{i} & \forall i \in\{1, \ldots, m\} \\
\bar{\lambda}_{j}^{0}+\sum_{k=1}^{T-1}\left[\underline{\lambda}_{j}^{k}+\bar{\lambda}_{j}^{k}\right]+\underline{\lambda}_{j}^{T}=1 & \forall j \in N \\
\bar{\lambda}_{j}^{0}, \underline{\lambda}_{j}^{T}, \underline{\lambda}_{j}^{k}, \bar{\lambda}_{j}^{k} \geq 0 & \forall j \in N \\
& \forall k \in\{1, \ldots, T-1\} \\
\left(\bar{\lambda}_{j}^{0}, \underline{\lambda}_{j}^{1}, \bar{\lambda}_{j}^{1}, \ldots, \underline{\lambda}_{j}^{T-1}, \bar{\lambda}_{j}^{T-1}, \underline{\lambda}_{j}^{T}\right) \text { is } S O S 2 & \forall j \in N .
\end{aligned}
\end{array}
$$

The disaggregated convex-combination binary model proposed in [3] and [14] is the same model with extra binary variables y_{j}^{k} and (22) replaced by

$$
\begin{aligned}
\bar{\lambda}_{j}^{k-1}+\underline{\lambda}_{j}^{k} & =y_{j}^{k} & & \forall j \in N, k \in\{1, \ldots, T\} \\
\sum_{k=1}^{T} y_{j}^{k} & \leq 1 & & \forall j \in N \\
y_{j}^{k} & \in\{0,1\} & & \forall j \in N, k \in\{1, \ldots, T\} .
\end{aligned}
$$

As a direct extension of [9], we have that both models are equivalent in the sense that their LP relaxations have the same optimal objective value and that the convex hulls of their feasible sets are equal in the space of the λ variables. As it has been shown in [3] and [14] that the LP relaxation of the disaggregated convex-combination binary model produces a bound at least as tight as any of the other known models for piecewise linear optimization, this also holds for our SOS2 model. On the other hand, the SOS2 model is theoretically preferable as it has fewer variables and constraints.

Using the binary variable model to derive cuts could appear to be advantageous at first sight, as lifting binary variables is usually simpler than lifting continuous variables. We could lift variable y_{j}^{k} and use the obtained coefficient for variables $\bar{\lambda}_{j}^{k-1}$ and $\underline{\lambda}_{j}^{k}$, but we would then always have the same lifting coefficients for these two λ variables. This procedure would then fail to generate many valid inequalities. For example, we could not generate a lifted convexity cut (6) with $\left(\alpha_{i}^{k_{i}-1}, \alpha_{i}^{k_{i}}\right) \neq(0,0)$.

Finally, we note that a fixed charge jump can be added to both models.

3.1 Using cuts from the continuous model in the semicontinuous model

We now show how cuts derived for the continuous model can be used in the semicontinuous model by using a natural identification between the λ variables. We rename the λ variables in the discontinuous case as

$$
\left(\underline{\lambda}_{j}^{1}, \bar{\lambda}_{j}^{1}, \ldots, \underline{\lambda}_{j}^{T-1}, \bar{\lambda}_{j}^{T-1}, \underline{\lambda}_{j}^{T}\right)=\left(\lambda_{j}^{k}\right)_{k=1}^{2 T-1}
$$

If the fixed charge jump is not present, we eliminate $\underline{\lambda}_{j}^{0}$ from the formulation and rename $\bar{\lambda}_{j}^{0}$ to λ_{j}^{0}. On the other hand, if the fixed charge jump is present we keep $\underline{\lambda}_{j}^{0}$ and $\bar{\lambda}_{j}^{0}$ and add a new variable λ_{j}^{0} plus the additional constraints $\underline{\lambda}_{j}^{0}+\bar{\lambda}_{j}^{0}=\lambda_{j}^{0}$ and $\underline{\lambda}_{j}^{0} \in\{0,1\}$. Note that this binary requirement is not artificial and in fact the SOS2 requirements plus the minimization of the lower semicontinuous function $f\left(x_{j}\right)$ will automatically enforce it. With these identifications and by renaming T as $T=2 T-1$ we recover the continuous model over variables $\left(\lambda_{j}^{k}\right)_{k=0}^{T}$ given by (2)-(5). The only difference is that instead of having $a_{j}^{k}<a_{j}^{k+1}$, we now have $a_{j}^{k} \leq a_{j}^{k+1}$. Thus all cuts derived from the continuous case can be used in the semicontinuous case so long as they were not deduced assuming the strict inequality. Fortunately, the loss of the strict inequality between breakpoints only seems to require some extra care when separating.

For lifted convexity cuts note that because $k_{i}=\min \left\{k: b-a_{j}^{1} \leq a_{i}^{k}\right\}$ we have that $a_{i}^{k_{i}}=a_{i}^{k_{i}+1}$ and $a_{i}^{k_{i}-1}<a_{i}^{k_{i}}$. When the strict inequality assumption applies, if $b-a_{j}^{1}=a_{i}^{k_{i}}$ then $\alpha_{i}^{k_{i}}=0$ and $\alpha_{i}^{k_{i}+1}>0$. On the other hand when the strict inequality assumption is dropped we still get $\alpha_{i}^{k_{i}}=0$, but we also get $\alpha_{i}^{k_{i}+1}=0$. This changes the condition for separation with a lifted convexity cuts type I from $b-a_{j}^{1} \leq a_{i}^{\tilde{k}_{i}-1}$ to

$$
\begin{equation*}
b-a_{j}^{1}<a_{i}^{\tilde{k}_{i}-1} \quad \text { or } \quad\left\{b-a_{j}^{1} \leq a_{i}^{\tilde{k}_{i}-1} \text { and } a_{i}^{\tilde{k}_{i}} \neq a_{i}^{\tilde{k}_{i}-1}\right\} \tag{23}
\end{equation*}
$$

In contrast, the conditions for the lifted convexity cuts type II and the aggregated lifted convexity cuts are not changed.

Finally, for lifted cover inequalities validity is preserved when the strict inequality assumption is dropped. The only difference is that $\alpha_{j}=0$ whenever $a_{j}^{l_{j}-1}=a_{j}^{l_{j}}$.

4 Inequalities Using The Fixed Charge Jump

None of the previous valid inequalities include the fixed charge binary variable $\underline{\lambda}_{j}^{0}$. One approach to including these binary variables would be to lift them in the inequalities we have already studied. Unfortunately, this approach does not yield very good results. For the lifted convexity and aggregated lifted convexity cuts only the binary variables associated with the original convexity constraints may give non-zero lifted coefficients and even this rarely happens. For lifted cover cuts the results are not good either since if the cover C is chosen to be minimal the lifted coefficients for all $\underline{\lambda}_{j}^{0}$ for all $j \in C$ will be zero.

On the other hand, there are many cuts available for fixed charge linear problems, so we decided to study the possibility of extending these cuts to the piecewise linear case. One of the most studied fixed charge linear problems is the fixed charge network flow problem, see for example [11] section II.6.4, [12],[13],[15],[16] and [19]. Because of this, we will concentrate our study on two classical cuts for the fixed charge transportation problem: cover and flow cover cuts. We refer the reader to [11] sections II.2.2 and II.2.4 for an in depth treatment of these cuts and to [11] section II.6.4 for a description of their use in fixed charge network and transportation problems.

When a fixed charge jump is included for each variable x_{j}, our SOS2 model is (2)-(5) and

$$
\begin{align*}
\underline{\lambda}_{j}^{0}+\bar{\lambda}_{j}^{0} & =\lambda_{j}^{0} & & \forall j \in N \tag{24}\\
\underline{\lambda}_{j}^{0} & \in\{0,1\} & & \forall j \in N \tag{25}\\
\bar{\lambda}_{j}^{0} & \geq 0 & & \forall j \in N . \tag{26}
\end{align*}
$$

As we will be extending cuts for the transportation problem we will also study the case when inequality (5) is replaced by

$$
\begin{equation*}
\sum_{j \in N} \sum_{k=0}^{T} a_{j}^{k} \lambda_{j}^{k} \geq b \tag{27}
\end{equation*}
$$

The feasible set for the problem with the \leq inequality is still denoted by
$S=\left\{\Lambda=\left(\lambda,\left(\underline{\lambda}_{j}^{0}, \bar{\lambda}_{j}^{0}\right)_{j \in N}\right) \in \mathbb{R}^{n(T+1)} \times(\{0,1\} \times \mathbb{R})^{n}: \Lambda\right.$ satisfies $\left.(2)-(5),(24)-(26)\right\}$
and the feasible set for the problem with the \geq inequality is denoted by

$$
S^{\geq}=\left\{\Lambda \in \mathbb{R}^{n(T+1)} \times(\{0,1\} \times \mathbb{R})^{n}: \Lambda \text { satisfies }(2)-(4),(27),(24)-(26)\right\}
$$

Similarly the feasible set for the problem with an equality constraint is denoted by $S^{=}=S \cap S^{\geq}$.

By setting $x_{j}=\sum_{k=0}^{T} a_{j}^{k} \lambda_{j}^{k}$ and $y_{j}=\left(1-\underline{\lambda}_{j}^{0}\right)$ we obtain the relaxation of $S^{=}$ given by

$$
\begin{align*}
x_{j} & \leq a_{j}^{T} y_{j} & & \forall j \in N \\
\sum_{j \in N} x_{j} & =b & & \tag{28}\\
y_{j} & \in\{0,1\} & & \forall j \in N \\
x_{j} & \geq 0 & & \forall j \in N
\end{align*}
$$

which is exactly the one row relaxation of a fixed charge linear transportation problem, from which classical cover and flow cover cuts can be derived.

Replacing (28) by $\sum_{j \in N} x_{j} \leq b$ we obtain a variable upper bound flow model from which we can derive flow cover inequalities. Similarly, replacing (28) by $\sum_{j \in N} x_{j} \geq b$ we obtain the binary knapsack model

$$
\begin{array}{rlr}
\sum_{j \in N} a_{j}^{T} \underline{\lambda}_{j}^{0} & \leq \sum_{j \in N} a_{j}^{T}-b \\
\underline{\lambda}_{j}^{0} & \in\{0,1\} & \forall j \in N
\end{array}
$$

from which we can derive, for example, cover inequalities.
This approach can be extended to take into account the structure of the piecewise-linear problem by using the variables x_{j} in different ways.

Theorem 1 Let $C \subseteq N$ and $k_{j} \geq 1$ for all $j \in C$ be such that $\sum_{j \in C} a_{j}^{k_{j}}=b+\Delta$ with $\Delta>0$ then

$$
\begin{equation*}
\sum_{j \in C} \sum_{k=1}^{k_{j}-1} a_{j}^{k} \lambda_{j}^{k}+\sum_{j \in C} a_{j}^{k_{j}} \sum_{k=k_{j}}^{T} \lambda_{j}^{k}+\sum_{j \in C}\left(a_{j}^{k_{j}}-\Delta\right)^{+} \underline{\lambda}_{j}^{0} \leq b \tag{29}
\end{equation*}
$$

is valid for $\operatorname{conv}(S)$.

PROOF. For each $j \in N$ we fix $k_{j} \geq 1$ and let

$$
\begin{equation*}
z_{j}=\sum_{k=1}^{k_{j}-1} a_{j}^{k} \lambda_{j}^{k}+a_{j}^{k_{j}} \sum_{k=k_{j}}^{T} \lambda_{j}^{k} . \tag{30}
\end{equation*}
$$

Again using $y_{j}=\left(1-\underline{\lambda}_{j}^{0}\right)$ we get a variable upper bound relaxation of S given by

$$
\begin{array}{rlrl}
z_{j} & \leq a_{j}^{k_{j}} y_{j} & \forall j \in N \\
\sum_{j \in N} z_{j} & \leq b & & \\
y_{j} & \in\{0,1\} & & \forall j \in N \\
z_{j} & \geq 0 & & \forall j \in N \tag{34}
\end{array}
$$

from which again we can derive flow cover cuts. For example, if $C \subseteq N$ is such that $\sum_{j \in C} a_{j}^{k_{j}}=b+\Delta$ with $\Delta>0$ we get the flow cover inequality

$$
\begin{equation*}
\sum_{j \in C} z_{j} \leq b-\sum_{j \in C}\left(a_{j}^{k_{j}}-\Delta\right)^{+}\left(1-y_{j}\right) \tag{35}
\end{equation*}
$$

which translates in the original variables to (29).

Once k_{j} has been chosen for each $j \in N$, the usual separation procedures for flow cover inequalities can be applied to choose C in (29). A reasonable choice of k_{j} 's could be $k_{j}=\max \left\{k: \tilde{\lambda}_{j}^{k}>0\right\}$ for a given $\tilde{\Lambda} \in L S \backslash P$ we wish to separate, but the choice of k_{j} will affect the coefficient of $\underline{\lambda}_{j}^{0}$, so including this choice in the separation procedure might give better results.

Inequality (29) could be improved by lifting variables in $N \backslash C$. Furthermore a possibly stronger inequality could be obtained by lifting the inequality

$$
\begin{equation*}
\sum_{j \in C} \sum_{k=1}^{k_{j}} a_{j}^{k} \lambda_{j}^{k} \leq b \tag{36}
\end{equation*}
$$

which is clearly valid for $\operatorname{conv}\left(\left\{\Lambda \in S: \lambda_{i}^{k}=0 \quad \underline{\lambda}_{i}^{0}=0 \quad \forall i \in C \quad \forall k \geq k_{i}+1\right.\right.$, $\left.\lambda_{i}^{k}=0 \quad \forall i \in N \backslash C, \forall k \geq 1\right\}$). In fact, inequality (36) can be lifted with respect to variables $\underline{\lambda}_{i}^{0}$ for each $i \in C$ to yield

$$
\sum_{j \in C} \sum_{k=1}^{k_{j}} a_{j}^{k} \lambda_{j}^{k}+\sum_{j \in C}\left(a_{j}^{k_{j}}-\Delta\right)^{+} \underline{\lambda}_{j}^{0} \leq b,
$$

which could presumably be lifted with respect to variables λ_{i}^{k} for $i \in C$ and $k \geq k_{i}+1$ to get a valid inequality that dominates (29). Unfortunately, this
last lifting and the lifting of (29) with respect to variables in $N \backslash C$ does not seem to be easy to compute.

On the other hand, the procedure used to prove validity of (29) can also be used to obtain valid inequalities similar to (29) that also include variables in $N \backslash C$. This can be done by simply replacing (35) by other valid inequalities for (31)-(34) like lifted flow cover inequalities [6]. Furthermore this procedure can be easily extended to the case where negative a_{j} 's are allowed by using extensions to flow cover inequalities that allow negative coefficients like simple and extended generalized flow cover inequalities [11] section II.2.4, [13],[17],[20] and lifted flow cover inequalities [6].

We will now do a similar extension for cover cuts for $\operatorname{conv}\left(S^{\geq}\right)$, but this time we will be forced to use lifting to obtain a valid inequality. During the lifting procedure we will use the following proposition, whose proof is analogous to the proof of Proposition 1. in [10].

Proposition 1 Let Λ be an extreme point of $\operatorname{conv}\left(S^{\geq}\right)$. Then Λ has at most two fractional components, and in case it has a fractional component it must satisfy (27) at equality. Furthermore, if $\lambda_{j_{1}}^{k_{1}}, \lambda_{j_{2}}^{k_{2}} \in(0,1)$, then $j_{1}=j_{2}, k_{2}=$ $k_{1}+1$ or $k_{2}=k_{1}-1$, and $\lambda_{j_{1}}^{k_{1}}+\lambda_{j_{2}}^{k_{2}}=1$.

Theorem 2 Let $C \subseteq N$ and $k_{j} \geq 1$ for all $j \in N \backslash C$ be such that

$$
\begin{align*}
& \rho=b-\sum_{i \in N \backslash C} a_{i}^{k_{i}}>0 \tag{37}\\
& \sum_{i \in N \backslash C} a_{i}^{k_{i}}+a_{j}^{T} \geq b \quad \forall j \in C \tag{38}\\
& \quad \sum_{i \in N \backslash(C \cup\{j\})} a_{i}^{k_{i}}+a_{j}^{k_{j}+1} \geq b \quad \forall j \in N \backslash C \tag{39}
\end{align*}
$$

then

$$
\begin{equation*}
\sum_{j \in C} \underline{\lambda}_{j}^{0}+\sum_{i \in N \backslash C}\left[\left(\frac{a_{i}^{k_{i}}-a_{i}^{k_{i}+1}}{\rho}\right) \lambda_{i}^{k_{i}+1}-\sum_{k=k_{i}+2}^{T} \lambda_{i}^{k}\right] \leq|C|-1 \tag{40}
\end{equation*}
$$

is valid for $\operatorname{conv}\left(S^{\geq}\right)$.

PROOF. Let $S_{\bar{C}}^{\geq}=\left\{\Lambda \in S^{\geq}: \lambda_{i}^{k}=0 \quad \forall i \in N \backslash C \quad \forall k \geq k_{i}+1\right\}$. By letting

$$
z_{j}= \begin{cases}\sum_{k=1}^{k_{j}} a_{j}^{k} \lambda_{j}^{k} & j \in N \backslash C \\ \sum_{k=1}^{T} a_{j}^{k} \lambda_{j}^{k} & j \in C\end{cases}
$$

we get the knapsack relaxation of $S_{\bar{C}}^{\geq}$given by

$$
\begin{aligned}
\sum_{j \in N \backslash C} a_{j}^{k_{j}} \underline{\lambda}_{j}^{0}+\sum_{j \in C} a_{j}^{T} \underline{\lambda}_{j}^{0} & \leq \sum_{j \in N \backslash C} a_{j}^{k_{j}}+\sum_{j \in C} a_{j}^{T}-b \\
\underline{\lambda}_{j}^{0} & \in\{0,1\}
\end{aligned} \quad \forall j \in N
$$

from which we can deduce that the cover inequality given by

$$
\begin{equation*}
\sum_{j \in C} \underline{\underline{x}}_{j}^{0} \leq|C|-1 \tag{41}
\end{equation*}
$$

is valid for conv $S_{\bar{C}}^{\geq}$. Inequality (40) will be obtained by lifting this cover inequality.

For a fixed $i \in N \backslash C$ we lift (41) with respect to λ_{i}^{k} for $k \geq k_{i}+1$ in increasing order. Let

$$
\begin{array}{r}
P S_{\bar{C}}^{\geq}(i, l)=\operatorname{conv}\left(\left\{\Lambda \in S^{\geq}: \lambda_{j}^{k}=0 \quad \forall j \in N \backslash(C \cup\{i\}) \quad \forall k \geq k_{j}+1,\right.\right. \\
\left.\left.\lambda_{i}^{k}=0 \quad \forall k \geq l+1\right\}\right) .
\end{array}
$$

Suppose that for $l \geq k_{i}+1$

$$
\begin{equation*}
\sum_{j \in C} \underline{\lambda}_{j}^{0}+\sum_{k=k_{i}+1}^{l-1} \alpha_{i}^{k} \lambda_{i}^{k} \leq|C|-1 \tag{42}
\end{equation*}
$$

has already been proven valid for $P S_{\bar{C}}^{\geq}(i, l-1)$ and was obtained by maximum lifting. Then the maximum lifting coefficient for (42) with respect to λ_{i}^{l} is

$$
\begin{aligned}
& \alpha_{i}^{l}= \min \\
& \quad \text { s.t. } \quad \Lambda \in V\left(P S_{\bar{C}}^{\geq}(i, l)\right), \quad \lambda_{i}^{l}>0
\end{aligned}
$$

where $V(P)$ is the set of extreme points of $P[18]$. To simplify this minimization problem we will study the cases $\lambda_{i}^{l}=1$ and $0<\lambda_{i}^{l}<1$ separately. Then if we let

$$
\begin{gathered}
\beta_{i}^{l}=\min |C|-1-\sum_{j \in C} \underline{\lambda}_{j}^{0}-\sum_{k=k_{i}+1}^{l-1} \alpha_{i}^{k} \lambda_{i}^{k} \\
\text { s.t. } \quad \Lambda \in V\left(P S_{\bar{C}}^{\geq}(i, l)\right), \quad \lambda_{i}^{l}=1
\end{gathered}
$$

and

$$
\gamma_{i}^{l}=\min \frac{|C|-1-\sum_{j \in C} \underline{\lambda}_{j}^{0}-\sum_{k=k_{i}+1}^{l-1} \alpha_{i}^{k} \lambda_{i}^{k}}{\lambda_{i}^{l}}
$$

we have $\alpha_{i}^{l}=\min \left\{\beta_{i}^{l}, \gamma_{i}^{l}\right\}$. Note that by minimality condition (38) we have $\beta_{i}^{l}, \gamma_{i}^{l} \leq 0$. It is easy to see that

$$
\begin{aligned}
& \beta_{i}^{l}=\quad \min |C|-1-\sum_{j \in C} \underline{\lambda}_{j}^{0} \\
& \text { s.t. } \\
& \sum_{j \in C}\left(1-\underline{\lambda}_{j}^{0}\right) a_{j}^{T} \geq b-a_{i}^{l}-\sum_{j \in N \backslash(C \cup\{i\})} a_{j}^{k_{j}} \\
& \quad \underline{\lambda}_{j}^{0} \in\{0,1\}
\end{aligned}
$$

and as $l \geq k_{i}+1$ minimality condition (39) implies that $\beta_{i}^{l}=-1$ and hence $\alpha_{i}^{l} \leq-1$. Similarly and by using Proposition 1 and $\beta_{i}^{l}, \gamma_{i}^{l} \leq 0$, it is easy to see that

$$
\begin{align*}
& \gamma_{i}^{l}= \min \\
& \quad \text { s.t. }|C|-1-\sum_{j \in C} \underline{\lambda}_{j}^{0}-\alpha_{i}^{l-1}\left(1-\lambda_{i}^{l}\right) \\
& \lambda_{i}^{l} \tag{43}\\
& \sum_{j \in C}\left(1-\underline{\lambda}_{j}^{0}\right) a_{j}^{T}=b-\left(1-\lambda_{i}^{l}\right) a_{i}^{l-1}-\lambda_{i}^{l} a_{i}^{l}-\sum_{j \in N \backslash(C \cup\{i\})} a_{j}^{k_{j}} \\
& \quad \underline{\lambda}_{j}^{0} \in\{0,1\} \\
& 0<\lambda_{i}^{l}<1 .
\end{align*}
$$

In particular for $l=k_{i}+1$ we have

$$
\begin{aligned}
& \gamma_{i}^{k_{i}+1}=\quad \min \frac{|C|-1-\sum_{j \in C} \underline{\lambda}_{j}^{0}}{\lambda_{i}^{k_{i}+1}} \\
& \qquad \begin{array}{ll}
& \sum_{j \in C}\left(1-\underline{\lambda}_{j}^{0}\right) a_{j}^{T}=b-\left(1-\lambda_{i}^{k_{i}+1}\right) a_{i}^{k_{i}} \\
& -\lambda_{i}^{k_{i}+1} a_{i}^{k_{i}+1}-\sum_{j \in N \backslash(C \cup\{i\})} a_{j}^{k_{j}} \\
& \underline{\lambda}_{j}^{0} \in\{0,1\} \\
& 0<\lambda_{i}^{k_{i}+1}<1 .
\end{array}
\end{aligned}
$$

Any Λ feasible for this problem, such that $\sum_{j \in C} \underline{\lambda}_{j}^{0} \leq|C|-1$ has nonnegative objective value. On the other hand, the only feasible Λ with $\sum_{j \in C} \underline{\lambda}_{j}^{0}=|C|$ is such that

$$
\lambda_{i}^{k_{i}+1}=\frac{b-\sum_{j \in N \backslash C} a_{j}^{k_{j}}}{a_{i}^{k_{i}+1}-a_{i}^{k_{i}}}=\frac{\rho}{a_{i}^{k_{i}+1}-a_{i}^{k_{i}}} .
$$

The value of $\gamma_{i}^{k_{i}+1}$ given by this solution is $\left(a_{i}^{k_{i}}-a_{i}^{k_{i}+1}\right) / \rho$ which is less than or equal to -1 because of (39). Hence

$$
\gamma_{i}^{k_{i}+1}=\frac{a_{i}^{k_{i}}-a_{i}^{k_{i}+1}}{\rho}
$$

Together with $\alpha_{i}^{k_{i}+1}=\min \left\{\beta_{i}^{k_{i}+1}, \gamma_{i}^{k_{i}+1}\right\}$ and $\beta_{i}^{k_{i}+1}=-1$ this yields

$$
\alpha_{i}^{k_{i}+1}=\frac{a_{i}^{k_{i}}-a_{i}^{k_{i}+1}}{\rho}
$$

Similarly for $l \geq k_{i}+2$ we have that the minimum in (43) is again attained by the unique Λ with $\sum_{j \in C} \underline{\lambda}_{j}^{0}=|C|$, but now

$$
\gamma_{i}^{l}=\frac{-\left(1+\alpha_{i}^{l-1}\left(1-\lambda_{i}^{l}\right)\right)}{\lambda_{i}^{l}} \geq-1
$$

where the last inequality comes from $\alpha_{i}^{l} \leq-1$. So for $l \geq k_{i}+2$ we have $\alpha_{i}^{l}=\beta_{i}^{l}=-1$. Now we see how the lifting can be done independently for each $i \in N \backslash C$. For $H \subset N \backslash C$ let

$$
\begin{array}{r}
P S_{\bar{C}}^{\geq}(i, l, H)=\operatorname{conv}\left(\left\{\Lambda \in S^{\geq}: \lambda_{j}^{k}=0 \quad \forall j \in N \backslash(C \cup H \cup\{i\})\right.\right. \\
\left.\left.\forall k \geq k_{j}+1, \quad \lambda_{i}^{k}=0 \quad \forall k \geq l+1\right\}\right) .
\end{array}
$$

Suppose that we have already maximally lifted with respect to λ_{j} for all $j \in H$ and after that with respect to λ_{i}^{k} for all $k \in\left\{k_{i}+1, \ldots, l-1\right\}$. Let $\hat{\alpha}_{i}^{l}$ be the maximum lifting coefficient for λ_{i}^{l}. We will prove by induction on $|H|$ that $\hat{\alpha}_{i}^{l}$ is equal to the coefficient α_{i}^{l} already calculated. The base case $|H|=0$ follows from the definition of α_{i}^{l}. Now, for $|H| \geq 1$ by the induction hypothesis we have that

$$
\begin{aligned}
& \hat{\alpha}_{i}^{l}=\min \frac{|C|-1-\sum_{j \in C} \underline{\lambda}_{j}^{0}+\sum_{j \in H} \sum_{k \geq k_{j}+1}\left(-\alpha_{j}^{k}\right) \lambda_{j}^{k}-\sum_{k=k_{i}+1}^{l-1} \alpha_{i}^{k} \lambda_{i}^{k}}{\lambda_{i}^{l}} \\
& \quad \text { s.t. } \Lambda \in V\left(P S_{\bar{C}}^{\geq}(i, l, H)\right), \quad \lambda_{i}^{l}>0 .
\end{aligned}
$$

As in the previous argument we can define $\hat{\beta}_{i}^{l}$ and $\hat{\gamma}_{i}^{l}$ such that $\hat{\alpha}_{i}^{l}=\min \left\{\hat{\beta}_{i}^{l}, \hat{\gamma}_{i}^{l}\right\}$.

Noting that $\left(-\alpha_{j}^{k}\right)>0$ for all $j \in H$ and $k \geq k_{j}+1$, it is easy to see that
$\hat{\beta}_{i}^{l}=\beta_{i}^{l}$. Also, by arguments similar to the previous part we have

$$
\begin{align*}
& \hat{\gamma}_{i}^{l}=\quad \min \frac{|C|-1-\sum_{j \in C} \underline{\lambda}_{j}^{0}+\sum_{j \in H} \sum_{k \geq k_{j}+1}\left(-\alpha_{j}^{k}\right) \lambda_{j}^{k}-\alpha_{i}^{l-1}\left(1-\lambda_{i}^{l}\right)}{\lambda_{i}^{l}} \tag{44}\\
& \text { s.t. } \\
& \sum_{j \in H} \sum_{k \geq k_{j}} a_{j}^{k} \lambda_{j}^{k}+\sum_{j \in C}\left(1-\underline{\lambda}_{j}^{0}\right) a_{j}^{T}=b-\left(1-\lambda_{i}^{l}\right) a_{i}^{l-1}-\lambda_{i}^{l} a_{i}^{l} \\
& -\sum_{j \in N \backslash(C \cup H \cup\{i\})} a_{j}^{k_{j}} \\
& \sum_{k \geq k_{j}} \lambda_{j}^{k}=1 \quad \forall j \in H \\
& 0 \leq \lambda_{j}^{k} \leq 1 \quad \forall j \in H \\
& \begin{array}{ll}
0 \leq \lambda_{j}^{k} \leq 1 & \forall j \in H \\
\underline{\lambda}_{j}^{0} \in\{0,1\} & \forall j \in C
\end{array} \\
& 0<\lambda_{i}^{l}<1 \text {. } \\
& \text { s.t. }
\end{align*}
$$

Noting that $\left(-\alpha_{j}^{k}\right) \geq 1$ for all $j \in H$ and $k \geq k_{i}+1$, it is easy to see that the minimum of (44) is attained at a Λ such that $\sum_{j \in C} \underline{\lambda}_{j}^{0}=|C|$ and $\sum_{j \in H} \sum_{k \geq k_{j}+1} \lambda_{j}^{k}=0$. Under these conditions the problem reverts to the one defining γ_{i}^{l} so we have $\hat{\gamma}_{i}^{l}=\gamma_{i}^{l}$ and hence $\hat{\alpha}_{i}^{l}=\alpha_{i}^{l}$.

Because of ρ, an exact separation problem for (40) will not have a linear objective function, but there is a simple heuristic way of separating a given $\tilde{\Lambda} \in L S \backslash P$ by starting with $C=\left\{i \in N: \tilde{\lambda}_{i}^{0}=1\right\}$ and $k_{i}=\max \left\{k: \tilde{\lambda}_{i}^{k}>0\right\}$ for $i \in N \backslash C$. If necessary we can then add to C indexes $i \in N \backslash C$ with large $\underline{\tilde{\lambda}}_{i}^{0}$ to comply with the cover condition (37). Finally, if needed, we can easily correct our choices of C and k_{i} 's to comply with the minimality conditions (38) and (39).

Unfortunately, inequality (40) cannot be directly extended to other inequalities for the knapsack problem. If we start the lifting with other inequalities instead of (41), such as lifted cover inequalities, the lifting problem with respect to continuous variables becomes much harder. The lifting of (40) with respect to binary variables $\underline{\lambda}_{j}^{0}$ for $j \in N \backslash C$ seems like a better alternative, but it is still not clear how to give a closed form expression for the lifting coefficients.

5 Computational Experience

In [10] it was shown that adding cuts could significantly improve the performance of an SOS2 based branch and bound procedure for solving linear problems with piecewise linear separable objective functions. It was also shown that using an SOS2 model was faster than using a binary model with or without the use of SOS2 cuts. Advocates of the binary model could argue that this last statement is no longer valid for practical applications as commercial solvers are now so efficient at solving mixed integer problems that the benefit of being able to use their features outweighs the drawbacks of adding extra binary variables. For this reason we decided to use a state of the art commercial solver to evaluate the current practical applicability of the SOS2 branch and cut procedure. We chose CPLEX 9.0 [8] as a MIP solver using Concert 2.0 [8] as the modeling language because it has built in SOS2 support.

We modeled the problem using Concert's built in SOS2 support and for the binary model we chose the disaggregated convex combination model introduced in [3] and [14]. Initial testing showed that the benefit of using SOS2 sets were not significant when using CPLEX and in fact many times the binary model solved faster. CPLEX's does not generate any cuts in solving a model without binary or integer variables, so we also compared the results of solving the SOS2 model with CPLEX against solving the binary model with CPLEX's cuts turned off. In this case the advantage of the binary model was diminished but it was still faster to solve than the SOS2 model. One reason for this behavior is that CPLEX 9.0's branching, preprocessing and primal heuristics for binary variables are much more advanced than those for SOS2 sets [7]. In theory, most of these binary preprocessing and variable branching schemes translate to SOS2 preprocessing and branching schemes that could be implemented without binary variables giving even better performance, but it remains to be seen if they are actually worth the programming effort.

The disaggregated convex combination model is a way to implement SOS2 requirements for the piecewise linear model. The advantages and disadvantages of this approach and the direct implementation of SOS2 requirements are summarized in table 1.

From our preliminary computational results it seems that currently the best practical implementation of SOS2 requirements is the disaggregated convex combination model. For this reason we decided to implement SOS2 sets using this approach to test our cuts. Our aim was to study the change in performance when using our SOS2 based cuts by themselves and also in conjunction with CPLEX's cuts.

Table 1
Qualitative Comparison of Binary and SOS2 models.

Attribute	Disaggregated convex combination binary model	Concert SOS2 direct im- plementation
\# of Variables	More variables, slower LP solve.	Fewer variables, faster LP solve.
\# of	More constraints, slower LP	
Constraints	Fewer constraints, faster LP solve.	
Advanced	Currently available.	Theoretically it can be im- plemented. No current imple- mentation.
Preprocessing		Theoretically it can be implemented. No current
Advanced	Currently available.	
Branching and	Constraint branching can node selection also be used	implementation. Constraint branching can be used.
Advanced	Currently available.	Theoretically it can be im- plemented. No current imple- mentation.
RINS [4]		

5.1 Test Instances

Our test instances were based on the same randomly generated transportation problems used in [10], but we modified the objective functions to make the problems harder to solve. We also included a relaxation of the transportation problems in our tests.

The transportation problems consist of the minimization of a nonconvex separable piecewise linear function. As shown in figure 2, functions $f_{i j}\left(x_{i j}\right)$, for each arc $x_{i j}$ in the underlying transportation graph, were randomly generated by first generating a strictly increasing concave piecewise linear function with $f(0)=0$. Discontinuities for each break point were then generated by randomly decreasing $\lim _{x_{i j} \rightarrow d_{i j}^{k-}} f_{i j}\left(x_{i j}\right)$ for each $k \geq 1$ and fixed charges were generated by randomly increasing $\lim _{x_{i j} \rightarrow 0^{+}} f_{i j}\left(x_{i j}\right)$. Finally the value of $f_{i j}\left(d_{i j}^{k}\right)$ was defined so that $f_{i j}\left(x_{i j}\right)$ would end up being lower semicontinuous. We refer to these instances as the continuous/discontinuous transportation problems with/without fixed charge.

The relaxation of the transportation problem only includes the constraints at the supply nodes which were further relaxed to inequality constraints. These problems involve the maximization of a nonconcave separable piecewise linear function. Functions $f_{i j}\left(x_{i j}\right)$ for these problems were generated in a way analogous to the transportation problem. We refer to these instances as the con-

Fig. 2. Construction of piecewise linear function for transportation problem
tinuous/discontinuous maximization problems with/without fixed charge. We included these instances as they only have less than or equal to constraints with positive coefficients and most of the valid inequalities considered in this paper are based on a one row relaxation that has a constraint of this kind. Thus these instances allow us to test the performance of our valid inequalities independently of the effects of other one row relaxations for which we can not generate valid inequalities.

For both types of problems we considered instances with different numbers of supply and demand nodes. We use 4 and 5 segments for the piecewise linear functions as was done in [10].

5.2 Computational Results

To perform computational tests we used a PC with dual 2.40 GHz Xeon CPU's and 2 GB of RAM running Linux with kernel 2.4.20.

Tables 2 to 9 summarize results for all problem types. Each problem type is identified as $x x x-y y y-z z z$, where $x x x$ is max if it is a maximization problem or transp if it is a transportation problem, yyy is $F C$ if the problem's objective function includes a fixed charge or $n o F C$ if it does not and $z z z$ is cont if the problem's objective function is continuous besides a possible fixed charge or disc if it is not.

In each table a particular instance is identified as $a \times b \times c$. d where a, b, c and d correspond to the number of supply nodes, number of demand nodes, number of segments of the objective function and the particular seed used for the generation of the problem respectively.

For each instance we present results when solving it using CPLEX 9.0 with its default settings, with CPLEX's cuts turned off and our SOS2 based cuts and with CPLEX's cuts turned on and our SOS2 based cuts. In the case where we use our SOS2 based cuts, we aggressively generated cuts at the root node and we then kept generating cuts every 1000 nodes in a more conservative manner. The exception for this are fixed charge cover cuts which we generated every 5000 nodes. For all cases we present the number of nodes required to solve the instance and the CPU time in seconds. Each run was terminated after at most $10,000 \mathrm{CPU}$ seconds. Instances which were not solved to optimality in this time frame are marked with $\mathrm{a} *$ in the CPU time column followed by the optimality gap at the time of termination. For each problem type we also include the total number of nodes processed and the total CPU time for each method. We also include the number of times each method obtained the best gap, by either solving to optimality when one of the other methods could not or by obtaining the smallest gap when none of the methods reached optimality. Finally, for each instance we use bold font to denote the method that obtained the best number of nodes, CPU time or gap.

We also give in table 10 the total number of SOS2 based cuts that were generated for each problem type. We consider separately the number of cuts generated when only SOS2 based cuts were generated and when they were generated in conjunction with CPLEX's default cuts. Columns labeled (A) correspond to lifted convexity cuts (6), columns (B) correspond to lifted cover cuts (11), columns (C) correspond to aggregated lifted convexity cuts (14), columns (D) corresponds to fixed charge flow cover cuts (29) and columns (E) correspond to fixed charge cover cuts (40).

For the maximization problem we can see that using only SOS2 based cuts instead of CPLEX's default cuts gives significantly better results when the number of nodes processed is considered. CPLEX took almost 13 and 16 times more nodes to solve both the continuous and discontinuous instances with no fixed charges and over 23 and 8 times more nodes to solve the fixed charge ones. Furthermore, two instances which could not be solved to optimality by CPLEX were solved by using only SOS2 based cuts. When CPU time is considered instead, SOS2 based cuts still give better results, but the difference is not so significant as CPLEX only takes over 8 and almost 10 times more CPU time to solve instances with no fixed charges and almost 10 and 4 times more CPU time to solve the fixed charge ones. When the SOS2 based cuts are used in conjunction with CPLEX's default cuts the results are even better. In this case the speed up is $19,16,38$ and 18 times with respect to number of
nodes and $12,14,14$ and almost 6 times with respect to CPU time.
For the transportation problems SOS2 based cuts still improve performance with respect to number of nodes, but the speed up is smaller. Using SOS2 based cuts in conjunction with CPLEX's default cuts is still the fastest approach, but compared with only using SOS2 cuts the difference is small. When using only SOS2 based cuts the speed up is 10 , almost 8 , almost 14 and 15 times with respect to number of nodes and when using SOS2 based cuts in conjunction with CPLEX's default cuts the speed up is $10,8,17$ and 17 times. There is very little difference between the approaches with respect to CPU time although the approaches that use SOS2 based cuts are slightly faster. Using only SOS2 based cuts does allow us to get better gaps in 30 instances and using SOS2 in conjunction with CPLEX's default cuts allows us to get better gaps in 37 instances. Using only CPLEX's default cuts got better gaps in just 4 instances. We believe that the reason for the lack of significant speed up in CPU time for these instances is that the current implementation of the separation procedures for fixed charge flow cover cuts and fixed charge cover cuts are too slow. The significant speed up in number of nodes and the number of cuts generated suggest that these cuts are useful though.

6 Conclusions

This paper extends the branch-and-cut algorithm for linear programs with piecewise linear continuous costs developed in [10] to the lower semicontinuous case. We extend the classical SOS2 formulation for linear programs with piecewise linear continuous costs to the lower semicontinuous case in the same way the classical binary model was extended in [3] and [14]. We note that additional work in this direction has been developed in [5] where the SOS2 formulation has been extended to the non-lower semicontinuous case by introducing a specialized branching scheme for this case. We then bring valid inequalities developed in [10] to the new model and make a simple generalization of one of these inequalities. Finally we study in detail the discontinuity caused by a fixed charge at 0 and we develop two new valid inequalities by extending classical cuts for fixed charge linear models.

Computationally, we compare the branch-and-cut algorithm without binary variables to solving the binary model with a commercial solver. Computational results show that, although the binary model works better with commercial solvers, adding SOS2 based cuts can significantly increase performance of the branch and cut procedure for one class of problems. For the other class of problems, adding SOS2 based cuts can significantly increase performance regarding the number of nodes and best gaps obtained and can provide a small increment in performance regarding CPU time.

References

[1] E. H. Aghezzaf, L. A. Wolsey, Modeling piecewise linear concave costs in a tree partitioning problem, Discrete Appl. Math. 50(1994) 101-109.
[2] A. Balakrishnan, S. Graves, A composite algorithm for a concave-cost network flow problem, Networks 19(1989) 175-202.
[3] K. L. Croxton, B. Gendron, T. L. Magnanti, A Comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems, Manage. Sci. 49 (2003) 1268-1273.
[4] E. Danna, E. Rothberg, C. Le Pape, Exploring relaxation induced neighborhoods to improve MIP solutions, Math. Program. 102(2005) 71-90.
[5] I. R. de Farias Jr. M. Zhao, H. Zhao, A special ordered set approach to discontinuous piecewise linear optimization, To appear Oper. Res. Lett.
[6] Z. Gu, G. L. Nemhauser, W. P. Savelsbergh, Lifted flow cover inequalities for mixed 0-1 integer programs, Math. Program. 85(1999) 439-467.
[7] Z. Gu, Personal Comunications.
[8] ILOG Cplex 9.0: user's manual and reference manual, ILOG, S.A., http://www.ilog.com/, 2003.
[9] A. B. Keha, I. R. de Farias Jr., G. L. Nemhauser, Models for representing piecewise linear cost functions, Oper. Res. Lett. 32(2004) 44-48.
[10] A. B. Keha, I. R. de Farias Jr., G. L. Nemhauser, A branch-and-cut algorithm without binary variables for nonconvex piecewise linear optimization, Oper. Res. 54(2006) 847-858.
[11] G. L. Nemhauser, L. A. Wolsey, Integer and combinatorial optimization, WileyInterscience, New York, 1988
[12] F. Ortega, L. A. Wolsey, A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-charge network problem, Networks 41(2003) 143-158.
[13] M. W. Padberg, T. J. Van Roy, L. A. Wolsey, Valid inequalities for fixed charge problems, Oper. Res 33(1985) 842-861.
[14] H. D. Sherali, On mixed-integer zero-one representations for separable lowersemicontinuous piecewise linear functions, Oper. Res. Lett. 28(2001) 155-160.
[15] J. Stallaert, Valid inequalities and separation for capacitated fixed charge flow problems, Discrete Appl. Math. 98(2000) 265-274.
[16] T. J. Van Roy, L. A. Wolsey, Valid inequalities and separation for uncapacitated fixed charge networks, Oper. Res. Lett. 4(1985) 105-112.
[17] T. J. Van Roy, L. A. Wolsey, Valid inequalities for mixed 0-1 programs, Discrete Appl. Math. 14(1986) 199-213.
[18] L. A. Wolsey, Facets and strong valid inequalities for integer programs, Oper. Res 24(1976) 367-372.
[19] L. A. Wolsey, Submodularity and valid inequalities in capacitated fixed charge networks, Oper. Res. Lett. 8(1989) 119-124.
[20] L. A. Wolsey, Strong formulations for mixed integer programming: a survey, Math. Program. 45(1989), 173-191.

	CPLEX cuts		SOS2 based cuts		Both cuts	
Instance	Nodes	Time	Nodes	Time	Nodes	Time
$10 \times 10 \times 4.1$	77	0.27	109	0.29	47	0.37
$10 \times 10 \times 4.2$	736	0.92	149	0.41	221	0.72
$10 \times 10 \times 4.3$	72	0.33	121	0.52	40	0.69
$10 \times 10 \times 4.4$	238	0.43	136	0.34	79	0.41
$10 \times 10 \times 4.5$	47	0.19	25	0.14	11	0.21
$10 \times 10 \times 5.1$	56	0.24	19	0.25	2	0.39
$10 \times 10 \times 5.2$	587	1.10	605	1.55	150	1.39
$10 \times 10 \times 5.3$	44	0.28	32	0.37	34	0.66
$10 \times 10 \times 5.4$	63	0.32	48	0.36	37	0.40
$10 \times 10 \times 5.5$	482	0.89	430	1.16	242	1.31
$12 \times 18 \times 4.1$	12241	20	12448	23	2683	6.20
$12 \times 18 \times 4.3$	72458	112	16064	29	7912	20
$12 \times 18 \times 4.4$	5290	8.97	1088	3.33	1466	4.40
$12 \times 18 \times 4.5$	17024	27	10448	21	5190	12
$12 \times 18 \times 5.1$	307534	581	22939	74	25579	79
$12 \times 18 \times 5.2$	57570	110	18786	57	24738	65
$12 \times 18 \times 5.3$	320535	633	43491	133	33642	110
$12 \times 18 \times 5.4$	2544223	5154	83020	219	48628	143
$12 \times 18 \times 5.5$	16728	32	6118	20	3171	12
$15 \times 15 \times 4.1$	335	1.18	470	1.77	273	2.06
$15 \times 15 \times 4.2$	1526	3.40	1418	3.23	791	3.48
$15 \times 15 \times 4.3$	55721	89	11036	23	6820	16
$15 \times 15 \times 4.4$	11001	19	3598	7.80	2886	7.00
$15 \times 15 \times 4.5$	91	0.63	85	0.78	38	1.18
$15 \times 15 \times 5.1$	2858	7.30	2674	7.81	1223	5.41
$15 \times 15 \times 5.2$	154	1.08	199	2.18	12	3.78
$15 \times 15 \times 5.3$	7413	16	5897	21	2574	11
$15 \times 15 \times 5.4$	2167	5.64	1225	4.49	500	4.03
$15 \times 15 \times 5.5$	3498	7.66	1701	5.64	1133	4.89
$20 \times 20 \times 4.1$	185414	518	47240	160	16240	64
$20 \times 20 \times 4.2$	1362	4.97	868	5.19	218	4.84
$20 \times 20 \times 4.3$	33735	87	14676	52	5718	25
$20 \times 20 \times 4.4$	19648	55	8530	37	5695	27
$20 \times 20 \times 4.5$	35850	98	6536	25	3425	14
$20 \times 20 \times 5.1$	88827	293	12996	130	10426	80
$20 \times 20 \times 5.2$	5811	21	7128	68	3990	20
$20 \times 20 \times 5.3$	100451	315	18349	121	10123	66
$20 \times 20 \times 5.4$	1373919	4731	34247	208	38790	193
$20 \times 20 \times 5.5$	71607	246	19248	100	10694	58
Total	5357393	13203.43	414197	1568.97	275441	1070.01

Table 2
Cplex cuts v/s SOS2 based cuts v/s both cuts for max-noFC-cont.

	CPLEX cuts		SOS2 based cuts		Both cuts	
Instance	Nodes	Time	Nodes	Time	Nodes	Time
$10 \times 10 \times 4.1$	77	0.22	111	0.29	53	0.35
$10 \times 10 \times 4.2$	1538	1.74	150	0.43	465	0.97
$10 \times 10 \times 4.3$	68	0.31	95	0.47	34	0.64
$10 \times 10 \times 4.4$	161	0.35	121	0.36	76	0.38
$10 \times 10 \times 4.5$	32	0.15	25	0.13	11	0.24
$10 \times 10 \times 5.1$	59	0.25	19	0.24	2	0.34
$10 \times 10 \times 5.2$	471	0.97	575	1.57	120	1.37
$10 \times 10 \times 5.3$	54	0.30	34	0.38	32	0.61
$10 \times 10 \times 5.4$	56	0.29	46	0.36	47	0.39
$10 \times 10 \times 5.5$	525	0.91	349	1.08	236	1.34
$12 \times 18 \times 4.1$	8541	15	7016	14	4468	8.56
$12 \times 18 \times 4.3$	69581	107	20290	38	11677	26
$12 \times 18 \times 4.4$	7723	12	1590	4.25	1837	5.26
$12 \times 18 \times 4.5$	14333	25	10311	21	3380	9.49
$12 \times 18 \times 5.1$	468604	940	24666	85	30656	88
$12 \times 18 \times 5.2$	94469	182	35956	90	16019	47
$12 \times 18 \times 5.3$	1255000	2701	33187	102	23762	84
$12 \times 18 \times 5.4$	3870138	8294	61176	171	37196	110
$12 \times 18 \times 5.5$	12339	25	6300	17	3071	12
$15 \times 15 \times 4.1$	321	1.17	448	1.73	262	1.66
$15 \times 15 \times 4.2$	1607	3.68	1379	2.08	859	3.71
$15 \times 15 \times 4.3$	28540	48	13223	25	8398	22
$15 \times 15 \times 4.4$	15222	28	3549	6.93	2415	6.85
$15 \times 15 \times 4.5$	96	0.71	87	0.78	40	1.22
$15 \times 15 \times 5.1$	2618	6.83	3134	9.77	1467	5.68
$15 \times 15 \times 5.2$	146	1.01	187	2.22	12	3.59
$15 \times 15 \times 5.3$	6814	16	4980	23	2229	12
$15 \times 15 \times 5.4$	2195	6.06	1251	4.48	542	4.19
$15 \times 15 \times 5.5$	3426	7.69	1641	5.31	1472	5.95
$20 \times 20 \times 4.1$	246788	709	79214	254	38084	146
$20 \times 20 \times 4.2$	1070	4.61	650	4.92	283	5.44
$20 \times 20 \times 4.3$	30860	82	16605	62	7309	34
$20 \times 20 \times 4.4$	22151	61	7779	37	6889	28
$20 \times 20 \times 4.5$	34841	100	6198	22	3635	17
$20 \times 20 \times 5.1$	100078	331	14407	109	9064	72
$20 \times 20 \times 5.2$	8182	30	8245	49	4469	26
$20 \times 20 \times 5.3$	76203	245	19558	154	8174	65
$20 \times 20 \times 5.4$	325904	1102	32243	173	22207	132
$20 \times 20 \times 5.5$	106206	350	16260	91	10350	55
Total	6817037	15440.6	433055	1582.33	261302	1041.13

Table 3
Cplex cuts v/s SOS2 based cuts v/s both cuts for max-noFC-disc.

	CPLEX cuts		SOS2 based cuts		Both cuts	
Instance	Nodes	Time	Nodes	Time	Nodes	Time
$10 \times 10 \times 4.1$	42	0.19	97	0.41	6	0.53
$10 \times 10 \times 4.2$	573	0.85	485	0.94	197	0.91
$10 \times 10 \times 4.3$	188	0.43	114	0.58	33	0.82
$10 \times 10 \times 4.4$	491	0.78	463	1.22	313	0.97
$10 \times 10 \times 4.5$	9	0.12	16	0.18	10	0.25
$10 \times 10 \times 5.1$	250	0.72	302	1.01	249	1.00
$10 \times 10 \times 5.2$	196	0.63	721	2.16	92	2.81
$10 \times 10 \times 5.3$	61	0.33	85	0.52	0	0.86
$10 \times 10 \times 5.4$	50	0.28	48	0.36	48	0.53
$10 \times 10 \times 5.5$	779	1.17	662	2.10	275	3.62
$12 \times 18 \times 4.1$	9305	16	4459	15	4604	16
$12 \times 18 \times 4.3$	4381	8.25	4612	10	2641	6.81
$12 \times 18 \times 4.4$	19336	29	11098	40	7073	24
$12 \times 18 \times 4.5$	17494	29	8471	27	2935	12
$12 \times 18 \times 5.1$	2173353	4016	27143	142	16918	100
$12 \times 18 \times 5.2$	225370	419	33537	184	27581	148
$12 \times 18 \times 5.3$	865506	1676	25447	149	20282	123
$12 \times 18 \times 5.4$	916513	1776	59030	316	64791	303
$12 \times 18 \times 5.5$	49118	96	13513	54	11301	36
$15 \times 15 \times 4.1$	223	1.20	417	2.59	166	3.17
$15 \times 15 \times 4.2$	295000	470	32534	86	29169	92
$15 \times 15 \times 4.3$	37056	58	6159	21	9051	26
$15 \times 15 \times 4.4$	2923	5.58	2799	14	1906	9.83
$15 \times 15 \times 4.5$	2764	5.67	3047	7.69	2210	7.32
$15 \times 15 \times 5.1$	23138	45	5498	18	7960	27
$15 \times 15 \times 5.2$	52	0.83	459	2.90	19	11
$15 \times 15 \times 5.3$	26542	49	2833	19	4870	29
$15 \times 15 \times 5.4$	18252	39	4034	20	1174	10
$15 \times 15 \times 5.5$	1570	4.82	1954	6.10	781	6.35
$20 \times 20 \times 4.1$	3672027	*(0.14)	207834	1074	49010	278
$20 \times 20 \times 4.2$	5340	17	2267	21	1033	20
$20 \times 20 \times 4.3$	8213	25	3944	36	1774	20
$20 \times 20 \times 4.4$	59	1.05	67	2.75	31	8.30
$20 \times 20 \times 4.5$	2732	11	4413	34	1542	34
$20 \times 20 \times 5.1$	1262240	3937	67869	730	50544	615
$20 \times 20 \times 5.2$	9308	32	2735	38	3613	34
$20 \times 20 \times 5.3$	11505	39	2167	39	3923	95
$20 \times 20 \times 5.4$	155238	515	11927	149	13287	123
$20 \times 20 \times 5.5$	3541079	*(0.35)	17126	129	5341	97
Total	13358276	33324.61	570386	3395.9	346753	2329.16
Best Gap		0		2		2

Table 4
Cplex cuts v/s SOS2 based cuts v/s both cuts for max-FC-cont.

	CPLEX cuts		SOS2 based cuts		Both cuts	
Instance	Nodes	Time	Nodes	Time	Nodes	Time
$10 \times 10 \times 4.1$	45	0.21	100	0.38	6	0.51
$10 \times 10 \times 4.2$	488	0.74	480	0.94	166	0.87
$10 \times 10 \times 4.3$	189	0.45	94	0.62	35	0.84
$10 \times 10 \times 4.4$	525	0.84	363	1.06	98	0.93
$10 \times 10 \times 4.5$	9	0.14	15	0.18	10	0.24
$10 \times 10 \times 5.1$	234	0.57	280	0.91	224	0.92
$10 \times 10 \times 5.2$	235	0.72	395	1.83	55	2.73
$10 \times 10 \times 5.3$	60	0.33	88	0.53	0	0.84
$10 \times 10 \times 5.4$	50	0.25	45	0.38	48	0.47
$10 \times 10 \times 5.5$	950	1.44	701	2.16	200	3.58
$12 \times 18 \times 4.1$	17409	28	5043	16	4550	13
$12 \times 18 \times 4.3$	4131	7.09	3092	7.80	2557	7.78
$12 \times 18 \times 4.4$	23563	34	11015	43	5448	25
$12 \times 18 \times 4.5$	15206	25	8399	28	3914	14
$12 \times 18 \times 5.1$	568511	982	22334	87	17437	86
$12 \times 18 \times 5.2$	204526	358	47268	219	27691	176
$12 \times 18 \times 5.3$	445306	796	25835	146	23952	160
$12 \times 18 \times 5.4$	1409775	2565	65173	318	42589	235
$12 \times 18 \times 5.5$	54105	103	16001	58	10218	42
$15 \times 15 \times 4.1$	313	1.39	402	2.60	161	3.10
$15 \times 15 \times 4.2$	346717	545	35543	92	24298	83
$15 \times 15 \times 4.3$	26959	42	6330	20	7351	28
$15 \times 15 \times 4.4$	3053	6.32	4121	15	2484	20
$15 \times 15 \times 4.5$	2218	4.63	1944	6.04	3783	9.09
$15 \times 15 \times 5.1$	24379	45	6778	33	4286	20
$15 \times 15 \times 5.2$	52	0.84	462	2.95	19	10
$15 \times 15 \times 5.3$	61355	111	2798	14	14025	43
$15 \times 15 \times 5.4$	2123	6.03	3527	16	1089	9.65
$15 \times 15 \times 5.5$	1167	3.88	1394	5.73	391	6.29
$20 \times 20 \times 4.1$	955399	2849	299101	1512	47948	252
$20 \times 20 \times 4.2$	4526	14	3236	24	2074	25
$20 \times 20 \times 4.3$	6460	20	4600	22	1583	21
$20 \times 20 \times 4.4$	58	1.04	67	2.85	31	7.60
$20 \times 20 \times 4.5$	3364	12	3169	24	2654	24
$20 \times 20 \times 5.1$	1207054	3685	64900	565	49739	645
$20 \times 20 \times 5.2$	11246	39	2754	60	3454	48
$20 \times 20 \times 5.3$	6295	23	2782	53	1158	79
$20 \times 20 \times 5.4$	79722	257	20332	168	14045	126
$20 \times 20 \times 5.5$	455790	1412	14721	201	4617	130
Total	5943567	13984.33	685682	3771.44	324388	2363.1

Table 5
Cplex cuts v/s SOS2 based cuts v/s both cuts for max-FC-disc.

	CPLEX cuts		SOS2 based cuts		Both cuts	
Instance	Nodes	Time	Nodes	Time	Nodes	Time
$10 \times 10 \times 4.1$	9718	13	5897	8.60	5326	11
$10 \times 10 \times 4.2$	1570	2.59	1398	2.40	1045	2.59
$10 \times 10 \times 4.3$	1086	2.21	712	1.70	815	2.26
$10 \times 10 \times 4.4$	59	0.40	117	0.60	51	0.77
$10 \times 10 \times 4.5$	3763	5.69	1922	4.00	1845	3.93
$10 \times 10 \times 5.1$	2246	4.43	1241	3.23	1387	5.29
$10 \times 10 \times 5.2$	7395	14	5061	11	5290	13
$10 \times 10 \times 5.3$	323	1.38	200	1.59	212	2.34
$10 \times 10 \times 5.4$	2072	4.64	923	3.66	723	3.03
$10 \times 10 \times 5.5$	8518	15	7184	13	4924	14
$12 \times 18 \times 4.1$	3309701	*(1.15)	280990	2608	388385	4611
$12 \times 18 \times 4.3$	26969	70	13370	66	14044	63
$12 \times 18 \times 4.4$	93024	244	18902	78	14027	76
$12 \times 18 \times 4.5$	517778	1567	89530	590	88825	650
$12 \times 18 \times 5.1$	250111	874	42788	539	38267	372
$12 \times 18 \times 5.2$	3529422	*(4.20)	212101	*(3.00)	218993	*(3.80)
$12 \times 18 \times 5.3$	3247218	*(0.65)	136464	2344	152239	3302
$12 \times 18 \times 5.4$	330796	1090	34202	325	36994	405
$12 \times 18 \times 5.5$	1908704	6306	234541	4150	130504	2661
$15 \times 15 \times 4.1$	594858	1829	109770	914	110440	1132
$15 \times 15 \times 4.2$	370651	1022	108095	603	104843	659
$15 \times 15 \times 4.3$	1505726	5173	189003	1837	152827	1723
$15 \times 15 \times 4.4$	227764	611	37393	247	33745	208
$15 \times 15 \times 4.5$	389622	1161	52278	275	59051	423
$15 \times 15 \times 5.1$	1281506	4327	170249	3724	129501	2625
$15 \times 15 \times 5.2$	3013948	* (2.43)	192888	5036	236674	6635
$15 \times 15 \times 5.3$	3072531	*(2.26)	238454	5252	251917	6609
$15 \times 15 \times 5.4$	181290	696	49924	944	44525	596
$15 \times 15 \times 5.5$	3519275	*(6.09)	254810	*(5.98)	208531	*(4.32)
$20 \times 20 \times 4.1$	1983385	*(7.46)	247584	*(7.15)	223191	*(5.73)
$20 \times 20 \times 4.2$	1861493	*(1.39)	306312	5960	238358	5248
$20 \times 20 \times 4.3$	1954141	* 2.93)	280082	* (1.51)	268616	*(1.71)
$20 \times 20 \times 4.4$	1973907	*(6.21)	238830	* (5.37)	190281	* (7.20)
$20 \times 20 \times 4.5$	1009948	4767	184346	3283	159676	3539
$20 \times 20 \times 5.1$	1901715	*(8.91)	144321	* (8.82)	155457	* (8.48)
$20 \times 20 \times 5.2$	1709657	* (6.61)	138422	*(8.12)	155049	*(8.90)
$20 \times 20 \times 5.3$	1482120	*(7.54)	133100	*(7.00)	119236	*(6.76)
$20 \times 20 \times 5.4$	1921427	*(9.74)	145027	*(10.84)	126086	*(9.14)
$20 \times 20 \times 5.5$	1364321	*(7.97)	134001	* (6.08)	120274	*(7.61)
Total	44569758	179799.3	4442432	138824.36	4192174	141595.61
Best Gap		1		9		10

Table 6
Cplex cuts v/s SOS2 based cuts v/s both cuts for transp-noFC-cont.

	CPLEX cuts		SOS2 based cuts		Both cuts	
Instance	Nodes	Time	Nodes	Time	Nodes	Time
$10 \times 10 \times 4.1$	2829	5.20	1858	3.45	1234	3.01
$10 \times 10 \times 4.2$	651	1.49	501	1.55	511	1.93
$10 \times 10 \times 4.3$	573	1.30	291	1.13	249	1.12
$10 \times 10 \times 4.4$	197	0.73	32	0.48	6	0.91
$10 \times 10 \times 4.5$	1591	3.12	1810	2.32	1204	2.84
$10 \times 10 \times 5.1$	738	2.16	567	2.17	690	3.77
$10 \times 10 \times 5.2$	3074	6.68	2643	4.73	1926	6.27
$10 \times 10 \times 5.3$	239	1.05	190	1.49	64	1.89
$10 \times 10 \times 5.4$	487	1.60	283	1.96	200	3.03
$10 \times 10 \times 5.5$	2574	5.74	2215	4.60	1488	4.49
$12 \times 18 \times 4.1$	722168	2199	137598	888	127110	872
$12 \times 18 \times 4.3$	5215	16	4879	16	4372	16
$12 \times 18 \times 4.4$	32108	91	12920	60	8317	39
$12 \times 18 \times 4.5$	213770	656	43215	199	48744	297
$12 \times 18 \times 5.1$	72896	259	19684	175	18137	193
$12 \times 18 \times 5.2$	2976909	* 2.75)	316346	* (0.46)	256354	*(1.15)
$12 \times 18 \times 5.3$	442140	1391	35537	312	52966	735
$12 \times 18 \times 5.4$	94945	341	23977	182	23488	180
$12 \times 18 \times 5.5$	176702	592	47353	522	36284	334
$15 \times 15 \times 4.1$	189553	601	36859	241	58174	490
$15 \times 15 \times 4.2$	108020	305	37947	175	29863	144
$15 \times 15 \times 4.3$	131285	428	28234	168	27064	179
$15 \times 15 \times 4.4$	32022	88	13298	62	13725	82
$15 \times 15 \times 4.5$	62386	190	15985	68	16838	83
$15 \times 15 \times 5.1$	490236	1692	48396	551	62272	708
$15 \times 15 \times 5.2$	446102	1643	56869	658	88086	1514
$15 \times 15 \times 5.3$	1597445	8915	62303	676	87221	1365
$15 \times 15 \times 5.4$	69915	414	24458	316	21531	183
$15 \times 15 \times 5.5$	2446533	*(5.31)	267827	*(3.12)	252785	*(2.76)
$20 \times 20 \times 4.1$	1467191	*(5.47)	276398	*(4.76)	266335	*(4.61)
$20 \times 20 \times 4.2$	443557	3516	119486	1608	82886	1405
$20 \times 20 \times 4.3$	1138180	*(0.91)	193803	4542	274232	6018
$20 \times 20 \times 4.4$	1326488	*(5.16)	242747	*(3.71)	234069	*(3.16)
$20 \times 20 \times 4.5$	565157	4017	96044	1527	55810	797
$20 \times 20 \times 5.1$	1270320	*(7.27)	157087	* 6.64)	140360	*(7.17)
$20 \times 20 \times 5.2$	1578741	*(6.08)	191001	*(6.05)	157241	*(6.94)
$20 \times 20 \times 5.3$	1592919	*(5.17)	146261	*(3.93)	134323	*(3.34)
$20 \times 20 \times 5.4$	1848134	*(7.44)	158929	*(6.65)	155001	*(5.37)
$20 \times 20 \times 5.5$	1652678	*(5.95)	140109	*(4.51)	138528	*(4.93)
Total	23206668	127383.38	2965940	102970.78	2879688	105663.29
Best Gap		0		5		6

Table
Cplex cuts v/s SOS2 based cuts v/s both cuts for transp-noFC-disc.

	CPLEX cuts		SOS2 based cuts		Both cuts	
Instance	Nodes	Time	Nodes	Time	Nodes	Time
$10 \times 10 \times 4.1$	11822	18	5028	12	4799	15
$10 \times 10 \times 4.2$	6989	11	5617	10	1941	4.75
$10 \times 10 \times 4.3$	1872	3.40	2146	4.04	1284	3.82
$10 \times 10 \times 4.4$	110	0.60	155	1.23	71	1.70
$10 \times 10 \times 4.5$	10912	17	6526	9.94	4705	13
$10 \times 10 \times 5.1$	8679	15	8710	20	4229	14
$10 \times 10 \times 5.2$	91207	160	15913	80	20229	71
$10 \times 10 \times 5.3$	1082	2.75	1116	5.82	1394	5.97
$10 \times 10 \times 5.4$	3021	6.50	3035	12	2116	13
$10 \times 10 \times 5.5$	40217	59	14625	52	18711	56
$12 \times 18 \times 4.1$	2968910	*(1.36)	355825	7291	171793	3491
$12 \times 18 \times 4.3$	103737	316	25067	287	26627	303
$12 \times 18 \times 4.4$	222660	552	19261	256	17985	279
$12 \times 18 \times 4.5$	1307114	5112	121665	1759	118996	1620
$12 \times 18 \times 5.1$	3200785	*(0.49)	85760	2345	68108	2180
$12 \times 18 \times 5.2$	2980359	*(6.24)	152001	*(4.08)	147556	* (4.07)
$12 \times 18 \times 5.3$	2875942	*(3.54)	180347	*(3.05)	21001	*(8.20)
$12 \times 18 \times 5.4$	1132544	3521	88118	2467	63931	1569
$12 \times 18 \times 5.5$	2394031	* (2.97)	237784	8835	170530	*(2.65)
$15 \times 15 \times 4.1$	1072654	3833	100128	1691	105382	2304
$15 \times 15 \times 4.2$	687775	2550	77712	697	101242	1191
$15 \times 15 \times 4.3$	2620258	* (2.26)	290555	*(1.21)	188654	4057
$15 \times 15 \times 4.4$	417251	1089	69255	742	45153	409
$15 \times 15 \times 4.5$	870461	3483	57178	676	69903	888
$15 \times 15 \times 5.1$	2884161	*(2.42)	185097	7912	184183	*(0.92)
$15 \times 15 \times 5.2$	2835407	*(7.32)	156001	*(4.81)	154000	*(4.74)
$15 \times 15 \times 5.3$	2670548	*(4.38)	160973	*(1.54)	181507	*(1.67)
$15 \times 15 \times 5.4$	2658701	8909	157852	6979	117267	4685
$15 \times 15 \times 5.5$	2908891	*(8.42)	157001	*(6.73)	132518	*(5.50)
$20 \times 20 \times 4.1$	1610144	*(8.27)	114001	*(7.17)	107001	*(7.33)
$20 \times 20 \times 4.2$	149246	*(1.82)	166001	*(1.51)	156065	*(1.22)
$20 \times 20 \times 4.3$	1898997	*(2.26)	145001	*(1.93)	126103	*(2.04)
$20 \times 20 \times 4.4$	1566417	*(6.14)	125148	*(6.33)	100482	*(6.02)
$20 \times 20 \times 4.5$	1618928	*(0.51)	204777	*(0.32)	132625	6069
$20 \times 20 \times 5.1$	1650041	* (11.16)	51748	*(11.06)	49908	*(9.49)
$20 \times 20 \times 5.2$	1642505	*(8.01)	60436	*(8.32)	60506	*(6.79)
$20 \times 20 \times 5.3$	1497741	*(10.66)	44000	*(8.82)	48903	*(8.53)
$20 \times 20 \times 5.4$	1667211	* 14.41)	45001	*(12.59)	43900	*(12.42)
$20 \times 20 \times 5.5$	1644338	*(9.37)	46659	*(10.34)	45000	*(10.00)
Total	51933668	229661.21	3743223	202145.61	3016308	189241.55
Best Gap		1		8		13

Table 8
Cplex cuts v/s SOS2 based cuts v/s both cuts for transp-FC-cont.

	CPLEX cuts		SOS2 based cuts		Both cuts	
Instance	Nodes	Time	Nodes	Time	Nodes	Time
$10 \times 10 \times 4.1$	4579	7.71	1485	4.41	1985	7.32
$10 \times 10 \times 4.2$	3238	5.77	3472	6.23	1948	5.20
$10 \times 10 \times 4.3$	1322	2.75	990	3.09	1339	4.93
$10 \times 10 \times 4.4$	87	0.49	80	1.06	32	1.71
$10 \times 10 \times 4.5$	4514	7.17	4034	7.32	4508	13
$10 \times 10 \times 5.1$	3653	7.32	3217	7.97	3577	16
$10 \times 10 \times 5.2$	24649	46	6085	28	8721	24
$10 \times 10 \times 5.3$	945	2.50	1072	4.07	692	6.26
$10 \times 10 \times 5.4$	489	1.87	1097	6.34	901	7.66
$10 \times 10 \times 5.5$	10778	18	6378	17	9874	24
$12 \times 18 \times 4.1$	2173838	7834	285594	5214	155958	2342
$12 \times 18 \times 4.3$	6660	22	6017	45	7164	78
$12 \times 18 \times 4.4$	36257	89	11965	163	12378	139
$12 \times 18 \times 4.5$	378608	1333	67287	739	84762	776
$12 \times 18 \times 5.1$	848909	2736	58861	1396	31660	746
$12 \times 18 \times 5.2$	3469023	*(5.85)	201061	* (2.88)	178376	*(2.70)
$12 \times 18 \times 5.3$	2453048	7335	91420	2577	131197	5124
$12 \times 18 \times 5.4$	524181	1570	47099	591	23337	543
$12 \times 18 \times 5.5$	2002878	7724	113926	2717	79638	2195
$15 \times 15 \times 4.1$	633556	2200	29001	*(3.15)	50286	865
$15 \times 15 \times 4.2$	161670	440	40076	235	45452	406
$15 \times 15 \times 4.3$	552886	2036	67317	1067	57676	1078
$15 \times 15 \times 4.4$	62013	147	26041	207	21032	171
$15 \times 15 \times 4.5$	118514	361	27982	278	32389	298
$15 \times 15 \times 5.1$	1685290	6617	103147	3480	90598	2909
$15 \times 15 \times 5.2$	2849164	* (4.74)	171082	* (2.05)	182884	*(2.98)
$15 \times 15 \times 5.3$	2495035	* 2.59)	167754	6653	174064	7327
$15 \times 15 \times 5.4$	848063	2875	61125	1776	50907	1382
$15 \times 15 \times 5.5$	2922026	*(5.98)	164891	*(4.48)	146382	*(4.36)
$20 \times 20 \times 4.1$	1618321	*(6.98)	111001	* (6.06)	105622	*(6.52)
$20 \times 20 \times 4.2$	354148	2122	38797	1785	15000	*(2.14)
$20 \times 20 \times 4.3$	1896239	*(1.20)	150570	6730	137917	6247
$20 \times 20 \times 4.4$	1500046	*(5.89)	127391	* (4.79)	70000	*(5.48)
$20 \times 20 \times 4.5$	1203688	7713	91196	2515	79513	2624
$20 \times 20 \times 5.1$	1791917	* 9.29)	59001	* (8.36)	57397	*(9.20)
$20 \times 20 \times 5.2$	1711543	*(8.21)	75001	*(8.22)	70001	*(7.72)
$20 \times 20 \times 5.3$	1455162	*(6.71)	64000	*(6.42)	46969	*(7.37)
$20 \times 20 \times 5.4$	1603970	*(10.40)	56058	*(9.01)	59540	*(8.71)
$20 \times 20 \times 5.5$	1756480	*(9.13)	51329	*(6.22)	59628	*(6.09)
Total	39167387	173253.2	2593900	148255.17	2291304	145358.82
Best Gap		2		8		8

Table 9
Cplex cuts v/s SOS2 based cuts v/s both cuts for transp-FC-disc.

	SOS2 based cuts				Both cuts					
Problem Type	(A)	(B)	(C)	(D)	(E)	(A)	(B)	(C)	(D)	(E)
max-noFC-cont	763	4003	44	0	0	610	3077	48	0	0
max-noFC-disc	759	3836	40	0	0	642	3104	41	0	0
max-FC-cont	821	4614	36	245	0	765	4528	53	228	0
max-FC-disc	813	4608	34	284	0	807	4682	51	265	0
transp-noFC-cont	8328	44276	564	0	0	8470	44843	584	0	0
transp-noFC-disc	5821	29938	390	0	0	5732	29449	388	0	0
transp-FC-cont	6504	46884	724	3207	18243	6124	43800	739	35843	17228
transp-FC-disc	4870	49555	520	2636	17138	47222	33395	560	2600	14890

Table 10
Total number of SOS2 based cuts generated.

[^0]: * This research has been supported by the National Science Foundation awards DMI-0100020 and DMI-0121495.
 * Corresponding author. Email addresses: jvielma@isye.gatech.edu (Juan Pablo Vielma), Ahmet.Keha@asu.edu (Ahmet B. Keha), gnemhaus@isye.gatech.edu (George L. Nemhauser).

