
Nonconvex, Lower Semicontinuous Piecewise

Linear Optimization ⋆

Juan Pablo Vielma a,∗ Ahmet B. Keha b George L. Nemhauser a

aSchool of Industrial and Systems Engineering, Georgia Institute of Technology,

765 Ferst Drive, Atlanta, GA 30332-0205, USA

bDepartment of Industrial Engineering, Arizona State University, PO Box 875906,

Tempe AZ 85287-5906, USA

Abstract

A branch-and-cut algorithm for solving linear problems with continuous separable
piecewise linear cost functions was developed in 2005 by Keha et. al. This algo-
rithm is based on valid inequalities for an SOS2 based formulation of the problem.
In this paper we study the extension of the algorithm to the case where the cost
function is only lower semicontinuous. We extend the SOS2 based formulation to
the lower semicontinuous case and show how the inequalities introduced by Keha
et. al. can also be used for this new formulation. We also introduce a simple gen-
eralization of one of the inequalities introduced by Keha et. al. Furthermore, we
study the discontinuities caused by fixed charge jumps and introduce two new valid
inequalities by extending classical results for fixed charge linear problems. Finally,
we report computational results showing how the addition of the developed inequal-
ities can significantly improve the performance of CPLEX when solving these kinds
of problems.

Key words: Piecewise Linear Optimization, Discontinuous Piecewise Linear
Functions, Branch-and-Cut

⋆ This research has been supported by the National Science Foundation awards
DMI-0100020 and DMI-0121495.
∗ Corresponding author.

Email addresses: jvielma@isye.gatech.edu (Juan Pablo Vielma),
Ahmet.Keha@asu.edu (Ahmet B. Keha), gnemhaus@isye.gatech.edu (George L.
Nemhauser).

Preprint submitted to Elsevier Science 10 July 2007

1 Introduction

We study the nonconvex separable lower semicontinuous piecewise linear op-
timization problem given by

min
∑

j∈N

fj(xj)

s.t.
∑

j∈N

gijxj ≤ bi ∀ i ∈ {1, . . . , m}

0 ≤ xj ≤ uj ∀ j ∈ N

where N = {1, . . . , n}, gij ≥ 0 for all i, j and fj(xj) is a lower semicontinuous
nonconvex piecewise linear function.

This problem is NP-hard and has several applications [10] including net-
work flow problems with nonconvex objectives [1,2] and with fixed charges
[12,13,15,16,19].

Our goal is to extend the results obtained in [10] for the case where fj(xj) is
continuous to the semicontinuous case. These results include the development
of a branch-and-cut algorithm without binary variables for the nonconvex
separable continuous piecewise linear optimization problem by deriving valid
inequalities for an SOS2 based formulation of the problem.

In Section 2 we describe this SOS2 model and the valid inequalities developed
in [10]. We also derive a simple generalization of one of these inequalities.
In Section 3 we extend the SOS2 formulation to the semicontinuous case,
study its relationship to a binary formulation suggested in [3] and [14] and
show how to use cuts from the continuous case. Section 4 is devoted to the
study of discontinuities caused by fixed charges. In this section two new valid
inequalities are developed by extending classical results for fixed charge linear
problems. Finally computational results are presented in Section 5.

2 SOS2 model for the continuous case

In this section we present the classical SOS2 model for the continuous case and
we summarize the polyhedral results presented in [10]. We begin by reviewing
the definition of the SOS2 condition.

2

An ordered set of variables is said to satisfy SOS2 if no more than two variables
are positive and if two variables are positive, then they must be adjacent in the
order.

Now, suppose that for each j ∈ N , fj(xj) is a continuous piecewise linear
function which is linear in segments [dk

j , d
k+1
j] for all k ∈ {0, . . . , T −1}, where

d0
j = 0 and dT

j = uj. Then, using xj =
∑T

k=0 dk
jλ

k
j with λk

j ≥ 0 and
∑T

k=0 λk
j = 1

and imposing the SOS2 condition to get the correct value of fj(xj) gives the
model

min
∑

j∈N

T
∑

k=0

fj(d
k
j)λ

k
j

s.t.

∑

j∈N

T
∑

k=0

ak
ijλ

k
j ≤ bi ∀ i ∈ {1, . . . , m} (1)

T
∑

k=0

λk
j = 1 ∀ j ∈ N (2)

λk
j ≥ 0 ∀ j ∈ N ∀ k ∈ {0, . . . , T} (3)

(λk
j)

T
k=0 is SOS2 ∀j ∈ N (4)

where ak
ij = gijd

k
j .

The one row relaxation of this model where (1) is replaced by

∑

j∈N

T
∑

k=0

ak
j λ

k
j ≤ b (5)

is the basis of our polyhedral results. Let S = {λ = (λk
j)

T
k=0, j∈N ∈ R

n(T+1) :
λ satisfies (2)–(5)} be the set of feasible solutions to this model and let LS =
{λ ∈ R

n(T+1) : λ satisfies (2)–(3),(5)} be the set of feasible solutions to its LP
relaxation.

Several valid inequalities for P = conv(S) are presented in [10]. In the fol-
lowing section we review these valid inequalities and describe the separation
procedure for a given λ ∈ LS \P . We also develop a small extension of one of
these inequalities.

3

2.1 Lifted Convexity Constraints

Lifted convexity constraints are obtained by lifting a natural relaxation of
(2). For j ∈ N , let I = {i ∈ N \ {j} : b − a1

j ≤ aT
i } and for i ∈ I let

ki = min{k : b − a1
j ≤ ak

i }. Then, for i ∈ I

T
∑

k=1

λk
j +

T
∑

k=ki−1

αk
i λ

k
i ≤ 1 (6)

is a valid inequality, where

(αki−1
i , αki

i) =

(1 −
(b−a

ki−1

i
)

a1
j

, 1 −
(b−a

ki
i

)

a1
j

) if b − a1
j < aki

i

(0, 0) if b − a1
j = aki

i

(7)

αk
i = 1 −

(b − ak
i)

a1
j

k > ki. (8)

Inequality (6) gives two possibilities for separation. Let λ̃ ∈ LS \ P be such

that λ̃i violates SOS2 and let k̃i = max{k : λ̃k
i > 0}. Then, if b − a1

j ≤ ak̃i−1
i

and
∑T

k=1 λ̃k
j = 1

T
∑

k=1

λk
j +

T
∑

k=k̃i

αk
i λ

k
i ≤ 1 (9)

cuts off λ̃, where all αk
i are positive and given by (8). We denote this cut as a

Lifted Convexity Cut type I.

On the other hand, if ak̃i−1
i < b − a1

j < ak̃i

i and
∑T

k=1 λ̃k
j = 1 then

T
∑

k=1

λk
j + αk̃i−1

i λk̃i−1
i + αk̃i

i λk̃i

i ≤ 1 (10)

where αk̃i−1
i and αk̃i

i are given by (7) may cut off λ̃. In particular, it will cut

the infeasible point if, for example, λ̃k̃i−1
i = 0. We denote this cut as a Lifted

Convexity Cut type II.

2.2 Lifted Cover Constraints

Lifted cover constraints extend the concept of a cover to continuous variables
with SOS2 constraints. Consider a set C ⊆ N and kj ∈ {2, . . . , T} for j ∈ C

4

such that
∑

j∈C a
kj

j = b + ∆ for ∆ > 0. Then

∑

j∈C

(αjλ
kj−1
j +

T
∑

k=kj

λk
j) ≤ |C| − 1, (11)

is a valid inequality, where αj = min{0, (∆− a
kj

j + a
kj−1
j)/∆}. More generally,

requirement 2 ≤ kj can be relaxed to

2 ≤ kj or (1 ≤ kj ∧ ∆ ≥ a1
j).

Separation can be done as follows. Let λ̃ ∈ LS \ P be such that λ̃i violates
SOS2. Let L = {l > 1 : λ̃l

i > 0} and for each j 6= i let kj = max{k :
∑T

l=k λ̃l
j = 1}. Also let D = {j ∈ N \ {i} : kj > 0}. Then, for each l ∈ L and

for each C ′ ⊆ D such that
∑

j∈C′ a
kj

j + al
i > b, we have that for C = C ′ ∪ {i}

and ki = l (11) may separate λ̃. In particular, it will cut off λ̃ if, for example,
λ̃l−1

i = 0 or αi = 0.

2.3 Aggregated Lifted Convexity Constraints

In this section we develop a small extension of the lifted convexity constraints
that sometimes allows cutting off infeasible points that lifted convexity con-
straints cannot.

For any I ⊆ N we can aggregate the relaxed convexity constraints to get the
valid inequality

∑

i∈I

T
∑

k=1

λk
i ≤ |I|, (12)

which can be lifted in a manner similar to the convexity constraints if I 6= N .

Let λ̃ ∈ LS \P and suppose λ̃l is SOS2 infeasible and kl = max{k : λ̃k
l > 0}.

It may happen that a1
i + akl

l < b for all i ∈ N \ {l} but

∑

i∈I

a1
i + akl−1

l > b (13)

for some I ⊆ N \ {l}. In this case, neither lifted convexity cuts of type I or
II will separate λ̃, but (13) suggests that we may be able to lift (12) to get a
separating inequality.

5

If (13) is satisfied, inequality

∑

i∈I

T
∑

k=1

λk
i + αkl

l λkl

l ≤ |I| (14)

is valid where αkl

l = |I| − z∗ and

z∗ = max

{

∑

i∈I

λ1
i :

∑

i∈I

a1
i λ

1
i ≤ b − akl−1

l , 0 ≤ λ1
i ≤ 1 ∀ i ∈ I

}

. (15)

By condition (13), this yields αkl

l > 0. The validity proof for (14) is similar to
the one in [10] for lifted convexity constraints type I, with the difference that
for (14) the lifting of (12) with respect to λkl

l is only done approximatedly.

The separation procedure for this inequality is a simple generalization of the
procedure for the separation of Lifted Convexity cuts type I. Let λ̃ ∈ LS \ P
be such that λ̃l violates SOS2 and let k̃l = max{k : λ̃k

l > 0}. We look for a set
of indices I such that (13) is satisfied for kl = k̃l and

∑

i∈I

∑T
k=1 λk

i = |I|. We
can then solve (15) greedily to get αkl

l and add (14) to cut off the infeasible
point.

3 Extensions of the SOS2 model to the semicontinuous case

In this section we extend the SOS2 model to the semicontinuous case and
show how the cuts from the continuous case can be used in this extension.

Let fj(xj) be a piecewise linear lower semicontinuous function which is linear
in the segments (dk

j , d
k+1
j) for k ∈ {0, . . . , T − 1}. Specifically,

fj(d
0
j) = c0

j

lim
xj→d0

j

+
fj(xj) = c0

j ≥ c0
j

lim
xj→dk

j

−

fj(xj) = ck
j k ∈ {1, . . . , T − 1}

lim
xj→dk

j

+
fj(xj) = ck

j k ∈ {1, . . . , T − 1}

fj(d
k
j) = min{ck

j , c
k
j} k ∈ {1, . . . , T − 1}

fj(d
T
j) = lim

xj→dT
j

−

fj(xj) = cT
j .

An example of this type of function is shown in figure 1. When c0
j > c0

j we say
there is a fixed charge type jump at 0.

6

fj(xj)

xj
d1

j d2
j d3

jd0
j

c0
j

c0
j

c1
j

c1
j

c2
j

c2
j

c3
j

Fig. 1. A piecewise linear lower semicontinuous function.

To treat the discontinuous case we duplicate all break points except the up-
per bound of the xj variable and make a distinction between the λ variable
associated with the segment below and above dk

j . We can then write

xj =
T−1
∑

k=0

[λk
j + λ

k

j]d
k
j + λT

j dT
j (16)

where

T−1
∑

k=0

[λk
j + λ

k

j] + λT
j = 1, λT

j , λk
j , λ

k

j ≥ 0 ∀k ∈ {0, . . . , T − 1}. (17)

Our intent is that if xj ∈ (dk
j , d

k+1
j) for some k ∈ {0, . . . , T − 1} then

xj = λ
k

jd
k
j + λk+1

j dk+1
j and λ

k

j + λk+1
j = 1 (18)

and that if xj = dk
j for some k ∈ {0, . . . , T − 1} then

(λk
j , λ

k

j) =

(1, 0) if lim
xj→dk

j

− fj(xj) = fj(d
k
j)

(0, 1) if lim
xj→dk

j

+ fj(xj) = fj(d
k
j).

(19)

To assure (18) we only need to force

(λ0
j , λ

0

j , . . . , λ
T−1
j , λ

T−1

j , λT
j) is SOS2. (20)

7

Let

fj(xj) =
T−1
∑

k=0

[λk
j c

k
j + λ

k

j c
k
j] + λT

j cT
j . (21)

Then, for xj satisfying (16), (17) and (20), (21) is a correct expression for
the piecewise linear function since (19) will be satisfied automatically by the
minimization of f(x) as fj(xj) is lower semicontinuous for all j ∈ N .

Note that, if we do not have a fixed charge jump, this model is essentially the
same as the disaggregated convex-combination binary model proposed in [3]
and [14], but with the necessary combinatorial requirements enforced directly
by SOS2 constraints instead of adding binary variables. More specifically,
when no fixed charge jump at 0 is present the SOS2 model is

min
∑

j∈N

(

λ
0

jc
0
j +

T−1
∑

k=1

[λk
j c

k
j + λ

k

j c
k
j] + λT

j cT
j

)

s.t.

∑

j∈N

(

a0
ijλ

0

j +
T−1
∑

k=1

ak
ij [λ

k
j + λ

k

j] + aT
ijλ

T
j

)

≤ bi ∀ i ∈ {1, . . . , m}

λ
0

j +
T−1
∑

k=1

[λk
j + λ

k

j] + λT
j = 1 ∀ j ∈ N

λ
0

j , λ
T
j , λk

j , λ
k

j ≥ 0 ∀ j ∈ N

∀ k ∈ {1, . . . , T − 1}

(λ
0

j , λ
1
j , λ

1

j , . . . , λ
T−1
j , λ

T−1

j , λT
j) is SOS2 ∀j ∈ N. (22)

The disaggregated convex-combination binary model proposed in [3] and [14]
is the same model with extra binary variables yk

j and (22) replaced by

λ
k−1

j + λk
j = yk

j ∀ j ∈ N, k ∈ {1, . . . , T}
T
∑

k=1

yk
j ≤ 1 ∀ j ∈ N

yk
j ∈ {0, 1} ∀ j ∈ N, k ∈ {1, . . . , T}.

As a direct extension of [9], we have that both models are equivalent in the
sense that their LP relaxations have the same optimal objective value and that
the convex hulls of their feasible sets are equal in the space of the λ variables.
As it has been shown in [3] and [14] that the LP relaxation of the disaggregated
convex-combination binary model produces a bound at least as tight as any
of the other known models for piecewise linear optimization, this also holds
for our SOS2 model. On the other hand, the SOS2 model is theoretically
preferable as it has fewer variables and constraints.

8

Using the binary variable model to derive cuts could appear to be advanta-
geous at first sight, as lifting binary variables is usually simpler than lifting
continuous variables. We could lift variable yk

j and use the obtained coefficient

for variables λ
k−1

j and λk
j , but we would then always have the same lifting co-

efficients for these two λ variables. This procedure would then fail to generate
many valid inequalities. For example, we could not generate a lifted convexity
cut (6) with (αki−1

i , αki

i) 6= (0, 0).

Finally, we note that a fixed charge jump can be added to both models.

3.1 Using cuts from the continuous model in the semicontinuous model

We now show how cuts derived for the continuous model can be used in the
semicontinuous model by using a natural identification between the λ vari-
ables. We rename the λ variables in the discontinuous case as

(λ1
j , λ

1

j , . . . , λ
T−1
j , λ

T−1

j , λT
j) = (λk

j)
2T−1
k=1 .

If the fixed charge jump is not present, we eliminate λ0
j from the formulation

and rename λ
0

j to λ0
j . On the other hand, if the fixed charge jump is present

we keep λ0
j and λ

0

j and add a new variable λ0
j plus the additional constraints

λ0
j + λ

0

j = λ0
j and λ0

j ∈ {0, 1}. Note that this binary requirement is not arti-
ficial and in fact the SOS2 requirements plus the minimization of the lower
semicontinuous function f(xj) will automatically enforce it. With these iden-
tifications and by renaming T as T = 2T −1 we recover the continuous model
over variables (λk

j)
T
k=0 given by (2)–(5). The only difference is that instead

of having ak
j < ak+1

j , we now have ak
j ≤ ak+1

j . Thus all cuts derived from the
continuous case can be used in the semicontinuous case so long as they were
not deduced assuming the strict inequality. Fortunately, the loss of the strict
inequality between breakpoints only seems to require some extra care when
separating.

For lifted convexity cuts note that because ki = min{k : b − a1
j ≤ ak

i } we

have that aki

i = aki+1
i and aki−1

i < aki

i . When the strict inequality assumption
applies, if b − a1

j = aki

i then αki

i = 0 and αki+1
i > 0. On the other hand when

the strict inequality assumption is dropped we still get αki

i = 0, but we also get
αki+1

i = 0. This changes the condition for separation with a lifted convexity

cuts type I from b − a1
j ≤ ak̃i−1

i to

b − a1
j < ak̃i−1

i or {b − a1
j ≤ ak̃i−1

i and ak̃i

i 6= ak̃i−1
i }. (23)

9

In contrast, the conditions for the lifted convexity cuts type II and the aggre-
gated lifted convexity cuts are not changed.

Finally, for lifted cover inequalities validity is preserved when the strict in-
equality assumption is dropped. The only difference is that αj = 0 whenever

a
lj−1
j = a

lj
j .

4 Inequalities Using The Fixed Charge Jump

None of the previous valid inequalities include the fixed charge binary variable
λ0

j . One approach to including these binary variables would be to lift them in
the inequalities we have already studied. Unfortunately, this approach does
not yield very good results. For the lifted convexity and aggregated lifted
convexity cuts only the binary variables associated with the original convexity
constraints may give non-zero lifted coefficients and even this rarely happens.
For lifted cover cuts the results are not good either since if the cover C is
chosen to be minimal the lifted coefficients for all λ0

j for all j ∈ C will be zero.

On the other hand, there are many cuts available for fixed charge linear prob-
lems, so we decided to study the possibility of extending these cuts to the
piecewise linear case. One of the most studied fixed charge linear problems
is the fixed charge network flow problem, see for example [11] section II.6.4,
[12],[13],[15],[16] and [19]. Because of this, we will concentrate our study on
two classical cuts for the fixed charge transportation problem: cover and flow
cover cuts. We refer the reader to [11] sections II.2.2 and II.2.4 for an in depth
treatment of these cuts and to [11] section II.6.4 for a description of their use
in fixed charge network and transportation problems.

When a fixed charge jump is included for each variable xj , our SOS2 model
is (2)–(5) and

λ0
j + λ

0

j = λ0
j ∀j ∈ N (24)

λ0
j ∈ {0, 1} ∀j ∈ N (25)

λ
0

j ≥ 0 ∀j ∈ N. (26)

As we will be extending cuts for the transportation problem we will also study
the case when inequality (5) is replaced by

∑

j∈N

T
∑

k=0

ak
j λ

k
j ≥ b. (27)

10

The feasible set for the problem with the ≤ inequality is still denoted by

S = {Λ = (λ, (λ0
j , λ

0

j)j∈N) ∈ R
n(T+1)×({0, 1}×R)n : Λ satisfies (2)–(5),(24)–(26) }

and the feasible set for the problem with the ≥ inequality is denoted by

S≥ = {Λ ∈ R
n(T+1) × ({0, 1} × R)n : Λ satisfies (2)–(4),(27),(24)–(26)}.

Similarly the feasible set for the problem with an equality constraint is denoted
by S= = S ∩ S≥.

By setting xj =
∑T

k=0 ak
j λ

k
j and yj = (1 − λ0

j) we obtain the relaxation of S=

given by

xj ≤ aT
j yj ∀j ∈ N

∑

j∈N

xj = b (28)

yj ∈ {0, 1} ∀j ∈ N

xj ≥ 0 ∀j ∈ N

which is exactly the one row relaxation of a fixed charge linear transportation
problem, from which classical cover and flow cover cuts can be derived.

Replacing (28) by
∑

j∈N xj ≤ b we obtain a variable upper bound flow model
from which we can derive flow cover inequalities. Similarly, replacing (28) by
∑

j∈N xj ≥ b we obtain the binary knapsack model

∑

j∈N

aT
j λ0

j ≤
∑

j∈N

aT
j − b

λ0
j ∈ {0, 1} ∀j ∈ N

from which we can derive, for example, cover inequalities.

This approach can be extended to take into account the structure of the
piecewise-linear problem by using the variables xj in different ways.

Theorem 1 Let C ⊆ N and kj ≥ 1 for all j ∈ C be such that
∑

j∈C a
kj

j = b+∆
with ∆ > 0 then

∑

j∈C

kj−1
∑

k=1

ak
j λ

k
j +

∑

j∈C

a
kj

j

T
∑

k=kj

λk
j +

∑

j∈C

(a
kj

j − ∆)+λ0
j ≤ b (29)

is valid for conv(S).

11

PROOF. For each j ∈ N we fix kj ≥ 1 and let

zj =
kj−1
∑

k=1

ak
j λ

k
j + a

kj

j

T
∑

k=kj

λk
j . (30)

Again using yj = (1−λ0
j) we get a variable upper bound relaxation of S given

by

zj ≤ a
kj

j yj ∀j ∈ N (31)
∑

j∈N

zj ≤ b (32)

yj ∈ {0, 1} ∀j ∈ N (33)

zj ≥ 0 ∀j ∈ N (34)

from which again we can derive flow cover cuts. For example, if C ⊆ N is such
that

∑

j∈C a
kj

j = b + ∆ with ∆ > 0 we get the flow cover inequality

∑

j∈C

zj ≤ b −
∑

j∈C

(a
kj

j − ∆)+(1 − yj) (35)

which translates in the original variables to (29).

Once kj has been chosen for each j ∈ N , the usual separation procedures for
flow cover inequalities can be applied to choose C in (29). A reasonable choice
of kj’s could be kj = max{k : λ̃k

j > 0} for a given Λ̃ ∈ LS \ P we wish to

separate, but the choice of kj will affect the coefficient of λ0
j , so including this

choice in the separation procedure might give better results.

Inequality (29) could be improved by lifting variables in N \ C. Furthermore
a possibly stronger inequality could be obtained by lifting the inequality

∑

j∈C

kj
∑

k=1

ak
j λ

k
j ≤ b (36)

which is clearly valid for conv({Λ ∈ S : λk
i = 0 λ0

i = 0 ∀ i ∈ C ∀ k ≥ ki + 1,
λk

i = 0 ∀i ∈ N \ C, ∀k ≥ 1}). In fact, inequality (36) can be lifted with re-
spect to variables λ0

i for each i ∈ C to yield

∑

j∈C

kj
∑

k=1

ak
j λ

k
j +

∑

j∈C

(a
kj

j − ∆)+λ0
j ≤ b,

which could presumably be lifted with respect to variables λk
i for i ∈ C and

k ≥ ki + 1 to get a valid inequality that dominates (29). Unfortunately, this

12

last lifting and the lifting of (29) with respect to variables in N \ C does not
seem to be easy to compute.

On the other hand, the procedure used to prove validity of (29) can also be
used to obtain valid inequalities similar to (29) that also include variables in
N \ C. This can be done by simply replacing (35) by other valid inequalities
for (31)–(34) like lifted flow cover inequalities [6]. Furthermore this procedure
can be easily extended to the case where negative aj ’s are allowed by using
extensions to flow cover inequalities that allow negative coefficients like simple
and extended generalized flow cover inequalities [11] section II.2.4, [13],[17],[20]
and lifted flow cover inequalities [6].

We will now do a similar extension for cover cuts for conv(S≥), but this time
we will be forced to use lifting to obtain a valid inequality. During the lifting
procedure we will use the following proposition, whose proof is analogous to
the proof of Proposition 1. in [10].

Proposition 1 Let Λ be an extreme point of conv(S≥). Then Λ has at most
two fractional components, and in case it has a fractional component it must
satisfy (27) at equality. Furthermore, if λk1

j1
, λk2

j2
∈ (0, 1), then j1 = j2, k2 =

k1 + 1 or k2 = k1 − 1, and λk1

j1
+ λk2

j2
= 1.

Theorem 2 Let C ⊆ N and kj ≥ 1 for all j ∈ N \ C be such that

ρ = b −
∑

i∈N\C

aki

i > 0 (37)

∑

i∈N\C

aki

i + aT
j ≥ b ∀j ∈ C (38)

∑

i∈N\(C∪{j})

aki

i + a
kj+1
j ≥ b ∀j ∈ N \ C (39)

then

∑

j∈C

λ0
j +

∑

i∈N\C

(

aki

i − aki+1
i

ρ

)

λki+1
i −

T
∑

k=ki+2

λk
i

 ≤ |C| − 1 (40)

is valid for conv(S≥).

PROOF. Let S≥
C = {Λ ∈ S≥ : λk

i = 0 ∀ i ∈ N \ C ∀ k ≥ ki + 1}. By
letting

zj =

∑kj

k=1 ak
j λ

k
j j ∈ N \ C

∑T
k=1 ak

j λ
k
j j ∈ C

13

we get the knapsack relaxation of S≥
C given by

∑

j∈N\C

a
kj

j λ0
j +

∑

j∈C

aT
j λ0

j ≤
∑

j∈N\C

a
kj

j +
∑

j∈C

aT
j − b

λ0
j ∈ {0, 1} ∀j ∈ N

from which we can deduce that the cover inequality given by

∑

j∈C

λ0
j ≤ |C| − 1 (41)

is valid for conv S≥
C . Inequality (40) will be obtained by lifting this cover

inequality.

For a fixed i ∈ N \C we lift (41) with respect to λk
i for k ≥ ki +1 in increasing

order. Let

PS≥
C (i, l) = conv({Λ ∈ S≥ : λk

j = 0 ∀ j ∈ N \ (C ∪ {i}) ∀ k ≥ kj + 1,

λk
i = 0 ∀ k ≥ l + 1}).

Suppose that for l ≥ ki + 1

∑

j∈C

λ0
j +

l−1
∑

k=ki+1

αk
i λ

k
i ≤ |C| − 1 (42)

has already been proven valid for PS≥
C (i, l−1) and was obtained by maximum

lifting. Then the maximum lifting coefficient for (42) with respect to λl
i is

αl
i = min

|C| − 1 −
∑

j∈C λ0
j −

∑l−1
k=ki+1 αk

i λ
k
i

λl
i

s.t. Λ ∈ V (PS≥
C (i, l)), λl

i > 0

where V (P) is the set of extreme points of P [18]. To simplify this minimization
problem we will study the cases λl

i = 1 and 0 < λl
i < 1 separately. Then if we

let

βl
i = min |C| − 1 −

∑

j∈C

λ0
j −

l−1
∑

k=ki+1

αk
i λ

k
i

s.t. Λ ∈ V (PS≥
C (i, l)), λl

i = 1

and

γl
i =min

|C| − 1 −
∑

j∈C

λ0
j −

l−1
∑

k=ki+1
αk

i λ
k
i

λl
i

s.t. Λ ∈ V (PS≥
C (i, l)), 0 < λl

i < 1

14

we have αl
i = min{βl

i, γ
l
i}. Note that by minimality condition (38) we have

βl
i, γ

l
i ≤ 0. It is easy to see that

βl
i = min|C| − 1 −

∑

j∈C

λ0
j

s.t.
∑

j∈C

(1 − λ0
j)a

T
j ≥ b − al

i −
∑

j∈N\(C∪{i})

a
kj

j

λ0
j ∈ {0, 1}

and as l ≥ ki + 1 minimality condition (39) implies that βl
i = −1 and hence

αl
i ≤ −1. Similarly and by using Proposition 1 and βl

i, γ
l
i ≤ 0, it is easy to see

that

γl
i = min

|C| − 1 −
∑

j∈C λ0
j − αl−1

i (1 − λl
i)

λl
i

s.t.
∑

j∈C

(1 − λ0
j)a

T
j = b − (1 − λl

i)a
l−1
i − λl

ia
l
i −

∑

j∈N\(C∪{i})

a
kj

j

λ0
j ∈ {0, 1}

0 < λl
i < 1.

(43)

In particular for l = ki + 1 we have

γki+1
i = min

|C| − 1 −
∑

j∈C λ0
j

λki+1
i

s.t.
∑

j∈C

(1 − λ0
j)a

T
j = b − (1 − λki+1

i)aki

i

− λki+1
i aki+1

i −
∑

j∈N\(C∪{i})

a
kj

j

λ0
j ∈ {0, 1}

0 < λki+1
i < 1.

Any Λ feasible for this problem, such that
∑

j∈C λ0
j ≤ |C| − 1 has nonnegative

objective value. On the other hand, the only feasible Λ with
∑

j∈C λ0
j = |C| is

such that

λki+1
i =

b −
∑

j∈N\C a
kj

j

aki+1
i − aki

i

=
ρ

aki+1
i − aki

i

.

The value of γki+1
i given by this solution is (aki

i − aki+1
i)/ρ which is less than

or equal to −1 because of (39). Hence

γki+1
i =

aki

i − aki+1
i

ρ
.

15

Together with αki+1
i = min{βki+1

i , γki+1
i } and βki+1

i = −1 this yields

αki+1
i =

aki

i − aki+1
i

ρ
.

Similarly for l ≥ ki + 2 we have that the minimum in (43) is again attained
by the unique Λ with

∑

j∈C λ0
j = |C|, but now

γl
i =

−(1 + αl−1
i (1 − λl

i))

λl
i

≥ −1,

where the last inequality comes from αl
i ≤ −1. So for l ≥ ki + 2 we have

αl
i = βl

i = −1. Now we see how the lifting can be done independently for each
i ∈ N \ C. For H ⊂ N \ C let

PS≥
C (i, l, H) = conv({Λ ∈ S≥ : λk

j = 0 ∀ j ∈ N \ (C ∪ H ∪ {i})

∀ k ≥ kj + 1, λk
i = 0 ∀ k ≥ l + 1}).

Suppose that we have already maximally lifted with respect to λj for all j ∈ H
and after that with respect to λk

i for all k ∈ {ki + 1, . . . , l − 1}. Let α̂l
i be the

maximum lifting coefficient for λl
i. We will prove by induction on |H| that α̂l

i

is equal to the coefficient αl
i already calculated. The base case |H| = 0 follows

from the definition of αl
i. Now, for |H| ≥ 1 by the induction hypothesis we

have that

α̂l
i =min

|C| − 1 −
∑

j∈C

λ0
j +

∑

j∈H

∑

k≥kj+1
(−αk

j)λ
k
j −

l−1
∑

k=ki+1
αk

i λ
k
i

λl
i

s.t. Λ ∈ V (PS≥
C (i, l, H)), λl

i > 0.

As in the previous argument we can define β̂l
i and γ̂l

i such that α̂l
i = min{β̂l

i, γ̂
l
i}.

Noting that (−αk
j) > 0 for all j ∈ H and k ≥ kj + 1, it is easy to see that

16

β̂l
i = βl

i. Also, by arguments similar to the previous part we have

γ̂l
i = min

|C| − 1 −
∑

j∈C

λ0
j +

∑

j∈H

∑

k≥kj+1
(−αk

j)λ
k
j − αl−1

i (1 − λl
i)

λl
i

(44)

s.t.
∑

j∈H

∑

k≥kj

ak
j λ

k
j +

∑

j∈C

(1 − λ0
j)a

T
j = b − (1 − λl

i)a
l−1
i − λl

ia
l
i

−
∑

j∈N\(C∪H∪{i})

a
kj

j

∑

k≥kj

λk
j = 1 ∀ j ∈ H

0 ≤ λk
j ≤ 1 ∀ j ∈ H

λ0
j ∈ {0, 1} ∀ j ∈ C

0 < λl
i < 1.

Noting that (−αk
j) ≥ 1 for all j ∈ H and k ≥ ki + 1, it is easy to see

that the minimum of (44) is attained at a Λ such that
∑

j∈C λ0
j = |C| and

∑

j∈H

∑

k≥kj+1
λk

j = 0. Under these conditions the problem reverts to the one defin-

ing γl
i so we have γ̂l

i = γl
i and hence α̂l

i = αl
i.

Because of ρ, an exact separation problem for (40) will not have a linear
objective function, but there is a simple heuristic way of separating a given

Λ̃ ∈ LS \P by starting with C = {i ∈ N : λ̃
0

i = 1} and ki = max{k : λ̃k
i > 0}

for i ∈ N \C. If necessary we can then add to C indexes i ∈ N \C with large

λ̃
0

i to comply with the cover condition (37). Finally, if needed, we can easily
correct our choices of C and ki’s to comply with the minimality conditions
(38) and (39).

Unfortunately, inequality (40) cannot be directly extended to other inequal-
ities for the knapsack problem. If we start the lifting with other inequalities
instead of (41), such as lifted cover inequalities, the lifting problem with re-
spect to continuous variables becomes much harder. The lifting of (40) with
respect to binary variables λ0

j for j ∈ N \ C seems like a better alternative,
but it is still not clear how to give a closed form expression for the lifting
coefficients.

17

5 Computational Experience

In [10] it was shown that adding cuts could significantly improve the per-
formance of an SOS2 based branch and bound procedure for solving linear
problems with piecewise linear separable objective functions. It was also shown
that using an SOS2 model was faster than using a binary model with or with-
out the use of SOS2 cuts. Advocates of the binary model could argue that
this last statement is no longer valid for practical applications as commercial
solvers are now so efficient at solving mixed integer problems that the benefit
of being able to use their features outweighs the drawbacks of adding extra
binary variables. For this reason we decided to use a state of the art commer-
cial solver to evaluate the current practical applicability of the SOS2 branch
and cut procedure. We chose CPLEX 9.0 [8] as a MIP solver using Concert
2.0 [8] as the modeling language because it has built in SOS2 support.

We modeled the problem using Concert’s built in SOS2 support and for the
binary model we chose the disaggregated convex combination model intro-
duced in [3] and [14]. Initial testing showed that the benefit of using SOS2
sets were not significant when using CPLEX and in fact many times the bi-
nary model solved faster. CPLEX’s does not generate any cuts in solving a
model without binary or integer variables, so we also compared the results of
solving the SOS2 model with CPLEX against solving the binary model with
CPLEX’s cuts turned off. In this case the advantage of the binary model was
diminished but it was still faster to solve than the SOS2 model. One reason
for this behavior is that CPLEX 9.0’s branching, preprocessing and primal
heuristics for binary variables are much more advanced than those for SOS2
sets [7]. In theory, most of these binary preprocessing and variable branching
schemes translate to SOS2 preprocessing and branching schemes that could
be implemented without binary variables giving even better performance, but
it remains to be seen if they are actually worth the programming effort.

The disaggregated convex combination model is a way to implement SOS2
requirements for the piecewise linear model. The advantages and disadvantages
of this approach and the direct implementation of SOS2 requirements are
summarized in table 1.

From our preliminary computational results it seems that currently the best
practical implementation of SOS2 requirements is the disaggregated convex
combination model. For this reason we decided to implement SOS2 sets using
this approach to test our cuts. Our aim was to study the change in performance
when using our SOS2 based cuts by themselves and also in conjunction with
CPLEX’s cuts.

18

Table 1
Qualitative Comparison of Binary and SOS2 models.

Attribute Disaggregated convex

combination binary

model

Concert SOS2 direct im-

plementation

of Variables More variables, slower LP
solve.

Fewer variables, faster LP
solve.

of
Constraints

More constraints, slower LP
solve.

Fewer constraints, faster LP
solve.

Advanced
Preprocessing

Currently available. Theoretically it can be im-
plemented. No current imple-
mentation.

Advanced
Branching and
node selection

Currently available.
Constraint branching can
also be used

Theoretically it can be
implemented. No current
implementation. Constraint
branching can be used.

Advanced
heuristics and
RINS [4]

Currently available. Theoretically it can be im-
plemented. No current imple-
mentation.

5.1 Test Instances

Our test instances were based on the same randomly generated transportation
problems used in [10], but we modified the objective functions to make the
problems harder to solve. We also included a relaxation of the transportation
problems in our tests.

The transportation problems consist of the minimization of a nonconvex sep-
arable piecewise linear function. As shown in figure 2, functions fij(xij), for
each arc xij in the underlying transportation graph, were randomly gener-
ated by first generating a strictly increasing concave piecewise linear func-
tion with f(0) = 0. Discontinuities for each break point were then generated
by randomly decreasing lim

xij→dk
ij

− fij(xij) for each k ≥ 1 and fixed charges

were generated by randomly increasing limxij→0+ fij(xij). Finally the value of
fij(d

k
ij) was defined so that fij(xij) would end up being lower semicontinuous.

We refer to these instances as the continuous/discontinuous transportation
problems with/without fixed charge.

The relaxation of the transportation problem only includes the constraints at
the supply nodes which were further relaxed to inequality constraints. These
problems involve the maximization of a nonconcave separable piecewise linear
function. Functions fij(xij) for these problems were generated in a way anal-
ogous to the transportation problem. We refer to these instances as the con-

19

f(xij)

xijd1
ij d2

ij d3
ij

f(xij)

xijd1
ij d2

ij d3
ij

f(xij)

xijd1
ij d2

ij d3
ij

Continuous No Fixed Charge

Continuous Fixed Charge

f(xij)

xijd1
ij d2

ij d3
ij

Discontinuous No Fixed Charge

Discontinuous Fixed Charge

Fig. 2. Construction of piecewise linear function for transportation problem

tinuous/discontinuous maximization problems with/without fixed charge. We
included these instances as they only have less than or equal to constraints
with positive coefficients and most of the valid inequalities considered in this
paper are based on a one row relaxation that has a constraint of this kind.
Thus these instances allow us to test the performance of our valid inequalities
independently of the effects of other one row relaxations for which we can not
generate valid inequalities.

For both types of problems we considered instances with different numbers of
supply and demand nodes. We use 4 and 5 segments for the piecewise linear
functions as was done in [10].

5.2 Computational Results

To perform computational tests we used a PC with dual 2.40GHz Xeon CPU’s
and 2 GB of RAM running Linux with kernel 2.4.20.

Tables 2 to 9 summarize results for all problem types. Each problem type is
identified as xxx-yyy-zzz, where xxx is max if it is a maximization problem or
transp if it is a transportation problem, yyy is FC if the problem’s objective
function includes a fixed charge or noFC if it does not and zzz is cont if the
problem’s objective function is continuous besides a possible fixed charge or
disc if it is not.

20

In each table a particular instance is identified as a× b× c.d where a,b,c and d
correspond to the number of supply nodes, number of demand nodes, number
of segments of the objective function and the particular seed used for the
generation of the problem respectively.

For each instance we present results when solving it using CPLEX 9.0 with its
default settings, with CPLEX’s cuts turned off and our SOS2 based cuts and
with CPLEX’s cuts turned on and our SOS2 based cuts. In the case where we
use our SOS2 based cuts, we aggressively generated cuts at the root node and
we then kept generating cuts every 1000 nodes in a more conservative manner.
The exception for this are fixed charge cover cuts which we generated every
5000 nodes. For all cases we present the number of nodes required to solve
the instance and the CPU time in seconds. Each run was terminated after
at most 10, 000 CPU seconds. Instances which were not solved to optimality
in this time frame are marked with a ∗ in the CPU time column followed by
the optimality gap at the time of termination. For each problem type we also
include the total number of nodes processed and the total CPU time for each
method. We also include the number of times each method obtained the best
gap, by either solving to optimality when one of the other methods could not
or by obtaining the smallest gap when none of the methods reached optimality.
Finally, for each instance we use bold font to denote the method that obtained
the best number of nodes, CPU time or gap.

We also give in table 10 the total number of SOS2 based cuts that were
generated for each problem type. We consider separately the number of cuts
generated when only SOS2 based cuts were generated and when they were
generated in conjunction with CPLEX’s default cuts. Columns labeled (A)
correspond to lifted convexity cuts (6), columns (B) correspond to lifted cover
cuts (11), columns (C) correspond to aggregated lifted convexity cuts (14),
columns (D) corresponds to fixed charge flow cover cuts (29) and columns (E)
correspond to fixed charge cover cuts (40).

For the maximization problem we can see that using only SOS2 based cuts
instead of CPLEX’s default cuts gives significantly better results when the
number of nodes processed is considered. CPLEX took almost 13 and 16 times
more nodes to solve both the continuous and discontinuous instances with no
fixed charges and over 23 and 8 times more nodes to solve the fixed charge
ones. Furthermore, two instances which could not be solved to optimality
by CPLEX were solved by using only SOS2 based cuts. When CPU time is
considered instead, SOS2 based cuts still give better results, but the difference
is not so significant as CPLEX only takes over 8 and almost 10 times more
CPU time to solve instances with no fixed charges and almost 10 and 4 times
more CPU time to solve the fixed charge ones. When the SOS2 based cuts are
used in conjunction with CPLEX’s default cuts the results are even better. In
this case the speed up is 19, 16, 38 and 18 times with respect to number of

21

nodes and 12, 14, 14 and almost 6 times with respect to CPU time.

For the transportation problems SOS2 based cuts still improve performance
with respect to number of nodes, but the speed up is smaller. Using SOS2
based cuts in conjunction with CPLEX’s default cuts is still the fastest ap-
proach, but compared with only using SOS2 cuts the difference is small. When
using only SOS2 based cuts the speed up is 10, almost 8, almost 14 and 15
times with respect to number of nodes and when using SOS2 based cuts in con-
junction with CPLEX’s default cuts the speed up is 10, 8, 17 and 17 times.
There is very little difference between the approaches with respect to CPU
time although the approaches that use SOS2 based cuts are slightly faster.
Using only SOS2 based cuts does allow us to get better gaps in 30 instances
and using SOS2 in conjunction with CPLEX’s default cuts allows us to get
better gaps in 37 instances. Using only CPLEX’s default cuts got better gaps
in just 4 instances. We believe that the reason for the lack of significant speed
up in CPU time for these instances is that the current implementation of the
separation procedures for fixed charge flow cover cuts and fixed charge cover
cuts are too slow. The significant speed up in number of nodes and the number
of cuts generated suggest that these cuts are useful though.

6 Conclusions

This paper extends the branch-and-cut algorithm for linear programs with
piecewise linear continuous costs developed in [10] to the lower semicontinu-
ous case. We extend the classical SOS2 formulation for linear programs with
piecewise linear continuous costs to the lower semicontinuous case in the same
way the classical binary model was extended in [3] and [14]. We note that
additional work in this direction has been developed in [5] where the SOS2
formulation has been extended to the non-lower semicontinuous case by in-
troducing a specialized branching scheme for this case. We then bring valid
inequalities developed in [10] to the new model and make a simple generaliza-
tion of one of these inequalities. Finally we study in detail the discontinuity
caused by a fixed charge at 0 and we develop two new valid inequalities by
extending classical cuts for fixed charge linear models.

Computationally, we compare the branch-and-cut algorithm without binary
variables to solving the binary model with a commercial solver. Computational
results show that, although the binary model works better with commercial
solvers, adding SOS2 based cuts can significantly increase performance of
the branch and cut procedure for one class of problems. For the other class
of problems, adding SOS2 based cuts can significantly increase performance
regarding the number of nodes and best gaps obtained and can provide a small
increment in performance regarding CPU time.

22

References

[1] E. H. Aghezzaf, L. A. Wolsey, Modeling piecewise linear concave costs in a tree
partitioning problem, Discrete Appl. Math. 50(1994) 101–109.

[2] A. Balakrishnan, S. Graves, A composite algorithm for a concave-cost network
flow problem, Networks 19(1989) 175–202.

[3] K. L. Croxton, B. Gendron, T. L. Magnanti, A Comparison of mixed-integer
programming models for nonconvex piecewise linear cost minimization problems,
Manage. Sci. 49 (2003) 1268–1273.

[4] E. Danna, E. Rothberg, C. Le Pape, Exploring relaxation induced neighborhoods
to improve MIP solutions, Math. Program. 102(2005) 71–90.

[5] I. R. de Farias Jr. M. Zhao, H. Zhao, A special ordered set approach to
discontinuous piecewise linear optimization, To appear Oper. Res. Lett.

[6] Z. Gu, G. L. Nemhauser, W. P. Savelsbergh, Lifted flow cover inequalities for
mixed 0-1 integer programs, Math. Program. 85(1999) 439–467.

[7] Z. Gu, Personal Comunications.

[8] ILOG Cplex 9.0: user’s manual and reference manual, ILOG, S.A.,
http://www.ilog.com/, 2003.

[9] A. B. Keha, I. R. de Farias Jr., G. L. Nemhauser, Models for representing
piecewise linear cost functions, Oper. Res. Lett. 32(2004) 44–48.

[10] A. B. Keha, I. R. de Farias Jr., G. L. Nemhauser, A branch-and-cut algorithm
without binary variables for nonconvex piecewise linear optimization, Oper. Res.
54(2006) 847–858.

[11] G. L. Nemhauser, L. A. Wolsey, Integer and combinatorial optimization, Wiley-
Interscience, New York, 1988

[12] F. Ortega, L. A. Wolsey, A branch-and-cut algorithm for the single-commodity,
uncapacitated, fixed-charge network problem, Networks 41(2003) 143–158.

[13] M. W. Padberg, T. J. Van Roy, L. A. Wolsey, Valid inequalities for fixed charge
problems, Oper. Res 33(1985) 842–861.

[14] H. D. Sherali, On mixed-integer zero-one representations for separable lower-
semicontinuous piecewise linear functions, Oper. Res. Lett. 28(2001) 155–160.

[15] J. Stallaert, Valid inequalities and separation for capacitated fixed charge flow
problems, Discrete Appl. Math. 98(2000) 265–274.

[16] T. J. Van Roy, L. A. Wolsey, Valid inequalities and separation for uncapacitated
fixed charge networks, Oper. Res. Lett. 4(1985) 105–112.

[17] T. J. Van Roy, L. A. Wolsey, Valid inequalities for mixed 0-1 programs, Discrete
Appl. Math. 14(1986) 199–213.

23

[18] L. A. Wolsey, Facets and strong valid inequalities for integer programs, Oper.
Res 24(1976) 367–372.

[19] L. A. Wolsey, Submodularity and valid inequalities in capacitated fixed charge
networks, Oper. Res. Lett. 8(1989) 119–124.

[20] L. A. Wolsey, Strong formulations for mixed integer programming: a survey,
Math. Program. 45(1989), 173–191.

24

CPLEX cuts SOS2 based cuts Both cuts

Instance Nodes Time Nodes Time Nodes Time

10×10×4.1 77 0.27 109 0.29 47 0.37

10×10×4.2 736 0.92 149 0.41 221 0.72

10×10×4.3 72 0.33 121 0.52 40 0.69

10×10×4.4 238 0.43 136 0.34 79 0.41

10×10×4.5 47 0.19 25 0.14 11 0.21

10×10×5.1 56 0.24 19 0.25 2 0.39

10×10×5.2 587 1.10 605 1.55 150 1.39

10×10×5.3 44 0.28 32 0.37 34 0.66

10×10×5.4 63 0.32 48 0.36 37 0.40

10×10×5.5 482 0.89 430 1.16 242 1.31

12×18×4.1 12241 20 12448 23 2683 6.20

12×18×4.3 72458 112 16064 29 7912 20

12×18×4.4 5290 8.97 1088 3.33 1466 4.40

12×18×4.5 17024 27 10448 21 5190 12

12×18×5.1 307534 581 22939 74 25579 79

12×18×5.2 57570 110 18786 57 24738 65

12×18×5.3 320535 633 43491 133 33642 110

12×18×5.4 2544223 5154 83020 219 48628 143

12×18×5.5 16728 32 6118 20 3171 12

15×15×4.1 335 1.18 470 1.77 273 2.06

15×15×4.2 1526 3.40 1418 3.23 791 3.48

15×15×4.3 55721 89 11036 23 6820 16

15×15×4.4 11001 19 3598 7.80 2886 7.00

15×15×4.5 91 0.63 85 0.78 38 1.18

15×15×5.1 2858 7.30 2674 7.81 1223 5.41

15×15×5.2 154 1.08 199 2.18 12 3.78

15×15×5.3 7413 16 5897 21 2574 11

15×15×5.4 2167 5.64 1225 4.49 500 4.03

15×15×5.5 3498 7.66 1701 5.64 1133 4.89

20×20×4.1 185414 518 47240 160 16240 64

20×20×4.2 1362 4.97 868 5.19 218 4.84

20×20×4.3 33735 87 14676 52 5718 25

20×20×4.4 19648 55 8530 37 5695 27

20×20×4.5 35850 98 6536 25 3425 14

20×20×5.1 88827 293 12996 130 10426 80

20×20×5.2 5811 21 7128 68 3990 20

20×20×5.3 100451 315 18349 121 10123 66

20×20×5.4 1373919 4731 34247 208 38790 193

20×20×5.5 71607 246 19248 100 10694 58

Total 5357393 13203.43 414197 1568.97 275441 1070.01

Table 2
Cplex cuts v/s SOS2 based cuts v/s both cuts for max-noFC-cont.

25

CPLEX cuts SOS2 based cuts Both cuts

Instance Nodes Time Nodes Time Nodes Time

10×10×4.1 77 0.22 111 0.29 53 0.35

10×10×4.2 1538 1.74 150 0.43 465 0.97

10×10×4.3 68 0.31 95 0.47 34 0.64

10×10×4.4 161 0.35 121 0.36 76 0.38

10×10×4.5 32 0.15 25 0.13 11 0.24

10×10×5.1 59 0.25 19 0.24 2 0.34

10×10×5.2 471 0.97 575 1.57 120 1.37

10×10×5.3 54 0.30 34 0.38 32 0.61

10×10×5.4 56 0.29 46 0.36 47 0.39

10×10×5.5 525 0.91 349 1.08 236 1.34

12×18×4.1 8541 15 7016 14 4468 8.56

12×18×4.3 69581 107 20290 38 11677 26

12×18×4.4 7723 12 1590 4.25 1837 5.26

12×18×4.5 14333 25 10311 21 3380 9.49

12×18×5.1 468604 940 24666 85 30656 88

12×18×5.2 94469 182 35956 90 16019 47

12×18×5.3 1255000 2701 33187 102 23762 84

12×18×5.4 3870138 8294 61176 171 37196 110

12×18×5.5 12339 25 6300 17 3071 12

15×15×4.1 321 1.17 448 1.73 262 1.66

15×15×4.2 1607 3.68 1379 2.08 859 3.71

15×15×4.3 28540 48 13223 25 8398 22

15×15×4.4 15222 28 3549 6.93 2415 6.85

15×15×4.5 96 0.71 87 0.78 40 1.22

15×15×5.1 2618 6.83 3134 9.77 1467 5.68

15×15×5.2 146 1.01 187 2.22 12 3.59

15×15×5.3 6814 16 4980 23 2229 12

15×15×5.4 2195 6.06 1251 4.48 542 4.19

15×15×5.5 3426 7.69 1641 5.31 1472 5.95

20×20×4.1 246788 709 79214 254 38084 146

20×20×4.2 1070 4.61 650 4.92 283 5.44

20×20×4.3 30860 82 16605 62 7309 34

20×20×4.4 22151 61 7779 37 6889 28

20×20×4.5 34841 100 6198 22 3635 17

20×20×5.1 100078 331 14407 109 9064 72

20×20×5.2 8182 30 8245 49 4469 26

20×20×5.3 76203 245 19558 154 8174 65

20×20×5.4 325904 1102 32243 173 22207 132

20×20×5.5 106206 350 16260 91 10350 55

Total 6817037 15440.6 433055 1582.33 261302 1041.13

Table 3
Cplex cuts v/s SOS2 based cuts v/s both cuts for max-noFC-disc.

26

CPLEX cuts SOS2 based cuts Both cuts

Instance Nodes Time Nodes Time Nodes Time

10×10×4.1 42 0.19 97 0.41 6 0.53

10×10×4.2 573 0.85 485 0.94 197 0.91

10×10×4.3 188 0.43 114 0.58 33 0.82

10×10×4.4 491 0.78 463 1.22 313 0.97

10×10×4.5 9 0.12 16 0.18 10 0.25

10×10×5.1 250 0.72 302 1.01 249 1.00

10×10×5.2 196 0.63 721 2.16 92 2.81

10×10×5.3 61 0.33 85 0.52 0 0.86

10×10×5.4 50 0.28 48 0.36 48 0.53

10×10×5.5 779 1.17 662 2.10 275 3.62

12×18×4.1 9305 16 4459 15 4604 16

12×18×4.3 4381 8.25 4612 10 2641 6.81

12×18×4.4 19336 29 11098 40 7073 24

12×18×4.5 17494 29 8471 27 2935 12

12×18×5.1 2173353 4016 27143 142 16918 100

12×18×5.2 225370 419 33537 184 27581 148

12×18×5.3 865506 1676 25447 149 20282 123

12×18×5.4 916513 1776 59030 316 64791 303

12×18×5.5 49118 96 13513 54 11301 36

15×15×4.1 223 1.20 417 2.59 166 3.17

15×15×4.2 295000 470 32534 86 29169 92

15×15×4.3 37056 58 6159 21 9051 26

15×15×4.4 2923 5.58 2799 14 1906 9.83

15×15×4.5 2764 5.67 3047 7.69 2210 7.32

15×15×5.1 23138 45 5498 18 7960 27

15×15×5.2 52 0.83 459 2.90 19 11

15×15×5.3 26542 49 2833 19 4870 29

15×15×5.4 18252 39 4034 20 1174 10

15×15×5.5 1570 4.82 1954 6.10 781 6.35

20×20×4.1 3672027 *(0.14) 207834 1074 49010 278

20×20×4.2 5340 17 2267 21 1033 20

20×20×4.3 8213 25 3944 36 1774 20

20×20×4.4 59 1.05 67 2.75 31 8.30

20×20×4.5 2732 11 4413 34 1542 34

20×20×5.1 1262240 3937 67869 730 50544 615

20×20×5.2 9308 32 2735 38 3613 34

20×20×5.3 11505 39 2167 39 3923 95

20×20×5.4 155238 515 11927 149 13287 123

20×20×5.5 3541079 *(0.35) 17126 129 5341 97

Total 13358276 33324.61 570386 3395.9 346753 2329.16

Best Gap 0 2 2

Table 4
Cplex cuts v/s SOS2 based cuts v/s both cuts for max-FC-cont.

27

CPLEX cuts SOS2 based cuts Both cuts

Instance Nodes Time Nodes Time Nodes Time

10×10×4.1 45 0.21 100 0.38 6 0.51

10×10×4.2 488 0.74 480 0.94 166 0.87

10×10×4.3 189 0.45 94 0.62 35 0.84

10×10×4.4 525 0.84 363 1.06 98 0.93

10×10×4.5 9 0.14 15 0.18 10 0.24

10×10×5.1 234 0.57 280 0.91 224 0.92

10×10×5.2 235 0.72 395 1.83 55 2.73

10×10×5.3 60 0.33 88 0.53 0 0.84

10×10×5.4 50 0.25 45 0.38 48 0.47

10×10×5.5 950 1.44 701 2.16 200 3.58

12×18×4.1 17409 28 5043 16 4550 13

12×18×4.3 4131 7.09 3092 7.80 2557 7.78

12×18×4.4 23563 34 11015 43 5448 25

12×18×4.5 15206 25 8399 28 3914 14

12×18×5.1 568511 982 22334 87 17437 86

12×18×5.2 204526 358 47268 219 27691 176

12×18×5.3 445306 796 25835 146 23952 160

12×18×5.4 1409775 2565 65173 318 42589 235

12×18×5.5 54105 103 16001 58 10218 42

15×15×4.1 313 1.39 402 2.60 161 3.10

15×15×4.2 346717 545 35543 92 24298 83

15×15×4.3 26959 42 6330 20 7351 28

15×15×4.4 3053 6.32 4121 15 2484 20

15×15×4.5 2218 4.63 1944 6.04 3783 9.09

15×15×5.1 24379 45 6778 33 4286 20

15×15×5.2 52 0.84 462 2.95 19 10

15×15×5.3 61355 111 2798 14 14025 43

15×15×5.4 2123 6.03 3527 16 1089 9.65

15×15×5.5 1167 3.88 1394 5.73 391 6.29

20×20×4.1 955399 2849 299101 1512 47948 252

20×20×4.2 4526 14 3236 24 2074 25

20×20×4.3 6460 20 4600 22 1583 21

20×20×4.4 58 1.04 67 2.85 31 7.60

20×20×4.5 3364 12 3169 24 2654 24

20×20×5.1 1207054 3685 64900 565 49739 645

20×20×5.2 11246 39 2754 60 3454 48

20×20×5.3 6295 23 2782 53 1158 79

20×20×5.4 79722 257 20332 168 14045 126

20×20×5.5 455790 1412 14721 201 4617 130

Total 5943567 13984.33 685682 3771.44 324388 2363.1

Table 5
Cplex cuts v/s SOS2 based cuts v/s both cuts for max-FC-disc.

28

CPLEX cuts SOS2 based cuts Both cuts

Instance Nodes Time Nodes Time Nodes Time

10×10×4.1 9718 13 5897 8.60 5326 11

10×10×4.2 1570 2.59 1398 2.40 1045 2.59

10×10×4.3 1086 2.21 712 1.70 815 2.26

10×10×4.4 59 0.40 117 0.60 51 0.77

10×10×4.5 3763 5.69 1922 4.00 1845 3.93

10×10×5.1 2246 4.43 1241 3.23 1387 5.29

10×10×5.2 7395 14 5061 11 5290 13

10×10×5.3 323 1.38 200 1.59 212 2.34

10×10×5.4 2072 4.64 923 3.66 723 3.03

10×10×5.5 8518 15 7184 13 4924 14

12×18×4.1 3309701 *(1.15) 280990 2608 388385 4611

12×18×4.3 26969 70 13370 66 14044 63

12×18×4.4 93024 244 18902 78 14027 76

12×18×4.5 517778 1567 89530 590 88825 650

12×18×5.1 250111 874 42788 539 38267 372

12×18×5.2 3529422 *(4.20) 212101 *(3.00) 218993 *(3.80)

12×18×5.3 3247218 *(0.65) 136464 2344 152239 3302

12×18×5.4 330796 1090 34202 325 36994 405

12×18×5.5 1908704 6306 234541 4150 130504 2661

15×15×4.1 594858 1829 109770 914 110440 1132

15×15×4.2 370651 1022 108095 603 104843 659

15×15×4.3 1505726 5173 189003 1837 152827 1723

15×15×4.4 227764 611 37393 247 33745 208

15×15×4.5 389622 1161 52278 275 59051 423

15×15×5.1 1281506 4327 170249 3724 129501 2625

15×15×5.2 3013948 *(2.43) 192888 5036 236674 6635

15×15×5.3 3072531 *(2.26) 238454 5252 251917 6609

15×15×5.4 181290 696 49924 944 44525 596

15×15×5.5 3519275 *(6.09) 254810 *(5.98) 208531 *(4.32)

20×20×4.1 1983385 *(7.46) 247584 *(7.15) 223191 *(5.73)

20×20×4.2 1861493 *(1.39) 306312 5960 238358 5248

20×20×4.3 1954141 *(2.93) 280082 *(1.51) 268616 *(1.71)

20×20×4.4 1973907 *(6.21) 238830 *(5.37) 190281 *(7.20)

20×20×4.5 1009948 4767 184346 3283 159676 3539

20×20×5.1 1901715 *(8.91) 144321 *(8.82) 155457 *(8.48)

20×20×5.2 1709657 *(6.61) 138422 *(8.12) 155049 *(8.90)

20×20×5.3 1482120 *(7.54) 133100 *(7.00) 119236 *(6.76)

20×20×5.4 1921427 *(9.74) 145027 *(10.84) 126086 *(9.14)

20×20×5.5 1364321 *(7.97) 134001 *(6.08) 120274 *(7.61)

Total 44569758 179799.3 4442432 138824.36 4192174 141595.61

Best Gap 1 9 10

Table 6
Cplex cuts v/s SOS2 based cuts v/s both cuts for transp-noFC-cont.

29

CPLEX cuts SOS2 based cuts Both cuts

Instance Nodes Time Nodes Time Nodes Time

10×10×4.1 2829 5.20 1858 3.45 1234 3.01

10×10×4.2 651 1.49 501 1.55 511 1.93

10×10×4.3 573 1.30 291 1.13 249 1.12

10×10×4.4 197 0.73 32 0.48 6 0.91

10×10×4.5 1591 3.12 1810 2.32 1204 2.84

10×10×5.1 738 2.16 567 2.17 690 3.77

10×10×5.2 3074 6.68 2643 4.73 1926 6.27

10×10×5.3 239 1.05 190 1.49 64 1.89

10×10×5.4 487 1.60 283 1.96 200 3.03

10×10×5.5 2574 5.74 2215 4.60 1488 4.49

12×18×4.1 722168 2199 137598 888 127110 872

12×18×4.3 5215 16 4879 16 4372 16

12×18×4.4 32108 91 12920 60 8317 39

12×18×4.5 213770 656 43215 199 48744 297

12×18×5.1 72896 259 19684 175 18137 193

12×18×5.2 2976909 *(2.75) 316346 *(0.46) 256354 *(1.15)

12×18×5.3 442140 1391 35537 312 52966 735

12×18×5.4 94945 341 23977 182 23488 180

12×18×5.5 176702 592 47353 522 36284 334

15×15×4.1 189553 601 36859 241 58174 490

15×15×4.2 108020 305 37947 175 29863 144

15×15×4.3 131285 428 28234 168 27064 179

15×15×4.4 32022 88 13298 62 13725 82

15×15×4.5 62386 190 15985 68 16838 83

15×15×5.1 490236 1692 48396 551 62272 708

15×15×5.2 446102 1643 56869 658 88086 1514

15×15×5.3 1597445 8915 62303 676 87221 1365

15×15×5.4 69915 414 24458 316 21531 183

15×15×5.5 2446533 *(5.31) 267827 *(3.12) 252785 *(2.76)

20×20×4.1 1467191 *(5.47) 276398 *(4.76) 266335 *(4.61)

20×20×4.2 443557 3516 119486 1608 82886 1405

20×20×4.3 1138180 *(0.91) 193803 4542 274232 6018

20×20×4.4 1326488 *(5.16) 242747 *(3.71) 234069 *(3.16)

20×20×4.5 565157 4017 96044 1527 55810 797

20×20×5.1 1270320 *(7.27) 157087 *(6.64) 140360 *(7.17)

20×20×5.2 1578741 *(6.08) 191001 *(6.05) 157241 *(6.94)

20×20×5.3 1592919 *(5.17) 146261 *(3.93) 134323 *(3.34)

20×20×5.4 1848134 *(7.44) 158929 *(6.65) 155001 *(5.37)

20×20×5.5 1652678 *(5.95) 140109 *(4.51) 138528 *(4.93)

Total 23206668 127383.38 2965940 102970.78 2879688 105663.29

Best Gap 0 5 6

Table 7
Cplex cuts v/s SOS2 based cuts v/s both cuts for transp-noFC-disc.

30

CPLEX cuts SOS2 based cuts Both cuts

Instance Nodes Time Nodes Time Nodes Time

10×10×4.1 11822 18 5028 12 4799 15

10×10×4.2 6989 11 5617 10 1941 4.75

10×10×4.3 1872 3.40 2146 4.04 1284 3.82

10×10×4.4 110 0.60 155 1.23 71 1.70

10×10×4.5 10912 17 6526 9.94 4705 13

10×10×5.1 8679 15 8710 20 4229 14

10×10×5.2 91207 160 15913 80 20229 71

10×10×5.3 1082 2.75 1116 5.82 1394 5.97

10×10×5.4 3021 6.50 3035 12 2116 13

10×10×5.5 40217 59 14625 52 18711 56

12×18×4.1 2968910 *(1.36) 355825 7291 171793 3491

12×18×4.3 103737 316 25067 287 26627 303

12×18×4.4 222660 552 19261 256 17985 279

12×18×4.5 1307114 5112 121665 1759 118996 1620

12×18×5.1 3200785 *(0.49) 85760 2345 68108 2180

12×18×5.2 2980359 *(6.24) 152001 *(4.08) 147556 *(4.07)

12×18×5.3 2875942 *(3.54) 180347 *(3.05) 21001 *(8.20)

12×18×5.4 1132544 3521 88118 2467 63931 1569

12×18×5.5 2394031 *(2.97) 237784 8835 170530 *(2.65)

15×15×4.1 1072654 3833 100128 1691 105382 2304

15×15×4.2 687775 2550 77712 697 101242 1191

15×15×4.3 2620258 *(2.26) 290555 *(1.21) 188654 4057

15×15×4.4 417251 1089 69255 742 45153 409

15×15×4.5 870461 3483 57178 676 69903 888

15×15×5.1 2884161 *(2.42) 185097 7912 184183 *(0.92)

15×15×5.2 2835407 *(7.32) 156001 *(4.81) 154000 *(4.74)

15×15×5.3 2670548 *(4.38) 160973 *(1.54) 181507 *(1.67)

15×15×5.4 2658701 8909 157852 6979 117267 4685

15×15×5.5 2908891 *(8.42) 157001 *(6.73) 132518 *(5.50)

20×20×4.1 1610144 *(8.27) 114001 *(7.17) 107001 *(7.33)

20×20×4.2 149246 *(1.82) 166001 *(1.51) 156065 *(1.22)

20×20×4.3 1898997 *(2.26) 145001 *(1.93) 126103 *(2.04)

20×20×4.4 1566417 *(6.14) 125148 *(6.33) 100482 *(6.02)

20×20×4.5 1618928 *(0.51) 204777 *(0.32) 132625 6069

20×20×5.1 1650041 *(11.16) 51748 *(11.06) 49908 *(9.49)

20×20×5.2 1642505 *(8.01) 60436 *(8.32) 60506 *(6.79)

20×20×5.3 1497741 *(10.66) 44000 *(8.82) 48903 *(8.53)

20×20×5.4 1667211 *(14.41) 45001 *(12.59) 43900 *(12.42)

20×20×5.5 1644338 *(9.37) 46659 *(10.34) 45000 *(10.00)

Total 51933668 229661.21 3743223 202145.61 3016308 189241.55

Best Gap 1 8 13

Table 8
Cplex cuts v/s SOS2 based cuts v/s both cuts for transp-FC-cont.

31

CPLEX cuts SOS2 based cuts Both cuts

Instance Nodes Time Nodes Time Nodes Time

10×10×4.1 4579 7.71 1485 4.41 1985 7.32

10×10×4.2 3238 5.77 3472 6.23 1948 5.20

10×10×4.3 1322 2.75 990 3.09 1339 4.93

10×10×4.4 87 0.49 80 1.06 32 1.71

10×10×4.5 4514 7.17 4034 7.32 4508 13

10×10×5.1 3653 7.32 3217 7.97 3577 16

10×10×5.2 24649 46 6085 28 8721 24

10×10×5.3 945 2.50 1072 4.07 692 6.26

10×10×5.4 489 1.87 1097 6.34 901 7.66

10×10×5.5 10778 18 6378 17 9874 24

12×18×4.1 2173838 7834 285594 5214 155958 2342

12×18×4.3 6660 22 6017 45 7164 78

12×18×4.4 36257 89 11965 163 12378 139

12×18×4.5 378608 1333 67287 739 84762 776

12×18×5.1 848909 2736 58861 1396 31660 746

12×18×5.2 3469023 *(5.85) 201061 *(2.88) 178376 *(2.70)

12×18×5.3 2453048 7335 91420 2577 131197 5124

12×18×5.4 524181 1570 47099 591 23337 543

12×18×5.5 2002878 7724 113926 2717 79638 2195

15×15×4.1 633556 2200 29001 *(3.15) 50286 865

15×15×4.2 161670 440 40076 235 45452 406

15×15×4.3 552886 2036 67317 1067 57676 1078

15×15×4.4 62013 147 26041 207 21032 171

15×15×4.5 118514 361 27982 278 32389 298

15×15×5.1 1685290 6617 103147 3480 90598 2909

15×15×5.2 2849164 *(4.74) 171082 *(2.05) 182884 *(2.98)

15×15×5.3 2495035 *(2.59) 167754 6653 174064 7327

15×15×5.4 848063 2875 61125 1776 50907 1382

15×15×5.5 2922026 *(5.98) 164891 *(4.48) 146382 *(4.36)

20×20×4.1 1618321 *(6.98) 111001 *(6.06) 105622 *(6.52)

20×20×4.2 354148 2122 38797 1785 15000 *(2.14)

20×20×4.3 1896239 *(1.20) 150570 6730 137917 6247

20×20×4.4 1500046 *(5.89) 127391 *(4.79) 70000 *(5.48)

20×20×4.5 1203688 7713 91196 2515 79513 2624

20×20×5.1 1791917 *(9.29) 59001 *(8.36) 57397 *(9.20)

20×20×5.2 1711543 *(8.21) 75001 *(8.22) 70001 *(7.72)

20×20×5.3 1455162 *(6.71) 64000 *(6.42) 46969 *(7.37)

20×20×5.4 1603970 *(10.40) 56058 *(9.01) 59540 *(8.71)

20×20×5.5 1756480 *(9.13) 51329 *(6.22) 59628 *(6.09)

Total 39167387 173253.2 2593900 148255.17 2291304 145358.82

Best Gap 2 8 8

Table 9
Cplex cuts v/s SOS2 based cuts v/s both cuts for transp-FC-disc.

32

SOS2 based cuts Both cuts

Problem Type (A) (B) (C) (D) (E) (A) (B) (C) (D) (E)

max-noFC-cont 763 4003 44 0 0 610 3077 48 0 0

max-noFC-disc 759 3836 40 0 0 642 3104 41 0 0

max-FC-cont 821 4614 36 245 0 765 4528 53 228 0

max-FC-disc 813 4608 34 284 0 807 4682 51 265 0

transp-noFC-cont 8328 44276 564 0 0 8470 44843 584 0 0

transp-noFC-disc 5821 29938 390 0 0 5732 29449 388 0 0

transp-FC-cont 6504 46884 724 3207 18243 6124 43800 739 35843 17228

transp-FC-disc 4870 49555 520 2636 17138 47222 33395 560 2600 14890

Table 10
Total number of SOS2 based cuts generated.

33

