Noname manuscript No.
(will be inserted by the editor)

Modeling Disjunctive Constraints with a Logarithmic Number
of Binary Variables and Constraints

Juan Pablo Vielma - George L. Nemhauser

the date of receipt and acceptance should be inserted later

Abstract Many combinatorial constraints over continuous variables such as SOS1 and
SOS2 constraints can be interpreted as disjunctive constraints that restrict the variables to
lie in the union of a finite number of specially structured polyhedra. Known mixed integer
binary formulations for these constraints have a number of binary variables and extra con-
straints linear in the number of polyhedra. We give sufficient conditions for constructing
formulations for these constraints with a number of binary variables and extra constraints
logarithmic in the number of polyhedra. Using these conditions we introduce mixed integer
binary formulations for SOS1 and SOS2 constraints that have a number of binary variables
and extra constraints logarithmic in the number of continuous variables. We also introduce
the first mixed integer binary formulations for piecewise linear functions of one and two
variables that use a number of binary variables and extra constraints logarithmic in the num-
ber of linear pieces of the functions. We prove that the new formulations for piecewise linear
functions have favorable tightness properties and present computational results showing that
they can significantly outperform other mixed integer binary formulations.

1 Introduction

Since the 1957 paper by Dantzig [15], the issue of modeling problems as mixed integer
programs (MIPs) has been extensively studied. A study of the problems that can be modeled
as MIPs began with Meyer [35-38] and was continued by Jeroslow and Lowe [21,23-25,
31].

An important question in the area of mixed integer programming (MIP) is characterizing
when a disjunctive constraint of the form

zeJrcry,)

icl

An extended abstract of this paper appeared in [47]

J. P. Vielma - G. L. Nemhauser
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,
GA, USA. E-mail: {jvielma, gnemhaus} @isye.gatech.edu

where P, = {7 € R" : Az < b’} and I is a finite index set, can be modeled as a binary integer
program. Jeroslow and Lowe [21,24,31] showed that a necessary and sufficient condition
is for {P;}ies to be a finite family of polyhedra with a common recession cone. That is, the
directions of unboundedness of the polyheda given by {z € R" : A’z < 0} for i € I are all
equal. Using results from disjunctive programming [3,4,6,9,20,41] they showed that, in this
case, constraint (1) can be simply modeled as

A <xib' Viel, z=Y7, Yxi=1, xe{01} Viel)
icl icl

The possibility of reducing the number of continuous variables in these models has been
studied in [5,10,22], but the number of binary variables and extra constraints needed to
model (1) has received little attention. However, it has been observed that a careful con-
struction can yield a much smaller model than a naive approach. Perhaps the simplest exam-
ple comes from the equivalence between general integer and binary integer programming.
The requirement x € [0,u] N Z can be written in the form (1) by letting P; := {i} for all i
in I := [0,u] N Z which, after some algebraic simplifications, yields a representation of the

form (2) given by
z=Yix, Yx=1 xe{01} Viel 3)

icl icl

This formulation has a number of binary variables that is linear in |/| and can be replaced by

[logyu]
2= Y 2x, z<u, x€{0,1} Vie{0,... [logyul}. 4)
i=0

In contrast to (3), (4) has a number of binary variables that is logarithmic in |I|. Another
example of a model with a logarithmic number of variables is the work in [28], which also
considers polytopes of the form P; := {i} to model different choices from an abstract set /.
This work is used in [29] to model edge coloring problems by using I = {possible colors}.

Although (4) appears in the mathematical programming literature as early as [48], and
the possibility of modeling with a logarithmic number of binary variables and a linear num-
ber of constraints is studied in the theory of disjunctive programming [4] and in [19], we
are not aware of any formulation with a logarithmic number of binary variables and extra
constraints for the case in which each polyhedron P; contains more than one point.

The main objective of this work is to show that some well known classes of constraints
of the form (1) can be modeled with a logarithmic number of binary variables and extra
constraints. Although modeling with fewer binary variables and constraints might seem ad-
vantageous, a smaller formulation is not necessarily a better formulation. More constraints
might provide a tighter LP relaxation and more variables might do the same by exploiting
the favorable properties of projection [7]. For this reason, we will also show that under some
conditions our new formulations are as tight as any other mixed integer formulation, and we
empirically show that they can provide a significant computational advantage.

The paper is organized as follows. In Section 2 we study the modeling of a class of
hard combinatorial constraints. In particular we introduce the first formulations for SOS1
and SOS2 constraints that use only a logarithmic number of binary variables and extra con-
straints. In Section 3 we relate the modeling with a logarithmic number of binary variables
to branching and we introduce sufficient conditions for these models to exist. We then show
that for a broad class of problems the new formulations are as tight as any other mixed in-
teger programming formulation. In Section 4 we use the sufficient conditions to present a
new formulation for non-separable piecewise linear functions of one and two variables that

uses only a logarithmic number of binary variables and extra constraints. In Section 5 we
study the extension of the formulations from Sections 2 and 3 to a slightly different class of
constraints and study the strength of these formulations. In Section 6 we show that the new
models for piecewise linear functions of one and two variables can perform significantly
better than the standard binary models. Section 7 gives some conclusions.

2 Modeling a Class of Hard Combinatorial Constraints

In this section we study a class of constraints of the form (1) in which the polyhedra P; have
the simple structure of only allowing some subsets of variables to be non-zero. Specifically,
we study constraints over a vector of continuous variables A indexed by a finite set J that
are of the form

relJos) ca’, 6)

icl

where [is a finite set such that |I| is a power of two, A” := {4 € RL{' : YjesAj < 1} is the
|/|-dimensional simplex in RV, §; C J for each i € I and

O(S)={reA’ : ;=0 Vj¢Si}. (6)

Furthermore, without loss of generality we assume that (J;c; S; = J. Since Q(S;) is a face
of A7 we call A’ the ground set of the constraint. Except for Theorem 5, our results easily

extend to the case in which the simplex is replaced by a box in]Rli‘, but the restriction to
A’ greatly simplifies the presentation. We will study this extension in Section 5. We finally
note that the requirement of |I| being a power of two is without loss of generality as we can
always add 222 1/Il —|1| polyhedra Q(S;) with S; = 0 to (5). We study the implications of
this completion on formulation sizes in Section 3.

Disjunctive constraint (5) includes SOS1 and SOS2 constraints [8] over continuous vari-
ables in A’. SOS1 constraints on 2 € R". allow at most one of the A variables to be non-zero
which can be modeled by letting I =J = {1,...,n} and S; = {i} for each i € I. SOS2 con-
straints on (4;)}_, € R allow at most two A variables to be non-zero and have the extra
requirement that if two variables are non-zero their indices must be adjacent. This can be
modeled by letting I = {1,...,n},J={0,...,n} and S; = {i — 1,i} foreachi € I.

Mixed integer binary models for SOS1 and SOS2 constraints have been known for many
years [16,33], and some recent research has focused on branch-and-cut algorithms that do
not use binary variables [18,26,27,34]. However, the incentive of being able to use state
of the art MIP solvers (see for example the discussion in section 5 of [46]) makes binary
models for these constraints very attractive [14,32,39,40].

We first review a formulation for (5) with a linear number of binary variables and a
formulation with a logarithmic number of binary variables and a linear number of extra con-
straints. We then study how to obtain a formulation with a logarithmic number of variables
and a logarithmic number of extra constraints and show that this can be achieved for SOS1
and SOS2 constraints.

The most direct way of formulating (5) as an integer programming problem is by as-
signing a binary variable for each set Q(S;) and using formulation (2). After some algebraic
simplifications this yields the formulation of (5) given by

red’, <Y x Vied, Yx=1, xe{01} Viel (7

i€l(j) i€l

where I(j) ={i €1 : j € S;}. This gives a formulation with |/| binary variables and |J| + 1
extra constraints and yields standard formulations for SOS1 and SOS2 constraints. (We con-
sider the inequalities of ground set A’ as the original constraints and disregard the bounds
on x.)

The following theorem shows that by using techniques from [19] we can obtain a for-
mulation with log, || binary variables and |/| extra constraints. Let L(r) := {1,...,log, r}.

Theorem 1 Let B : I — {0,1}°2/l be any bijective function and c(B) be the support of
vector B. Then

YAu< Y x+ Y (1-x) viel, 2ed!, xe{o0,1} VieL(l]) @)
J#Si I¢c(B(i)) leo(B(i))

is a valid formulation for (5).
Proof The formulation simply fixes A; to zero for all j ¢ S; when x takes the value B(i). O

The following example illustrates formulation (8) for SOS1 and SOS2 constraints.

Example 1 LetJ = {1,...,4}, (Aj)‘}:l € A7 be SOS1 constrained and let B*(1) = (1,1)7,
B*(2) = (1,0)7, B*(3) = (0,1)T and B*(4) = (0,0). Formulation (8) for this case with
B=DB"is
Ae AJ, X1,X2 € {0,1}, M+ +A4<2—x1—x2, M+A3+A<1—x1+x,
MHAL+A<1+x1—x2, A+A+2A3<x+x.
LetJ={0,...,4} and (lj)‘}:O € A’ be SOS2 constrained. Formulation (8) for this case
with B=B* is
reA x1,x€{0,1}, A+Az+A<2—x1—x2, Ao+M3+A<1—x+x2,
A+M+A<T+xi—x2, Ao+A+A <xi+x.

For SOS1 constraints, for which |I(j)| = 1 for all j € J, we obtain the following alter-
native formulation of (5) which has log, |I| binary variables and 21og, |I| extra constraints.

Theorem 2 Let B : 1 — {0,11°%1 pe any bijective function. Then

rea’, Y A<x, Y A<(-x) Vjel, xe{0,1} VIeL(I),)
jeJt(1,B) jeJO(1,B)

where J*(I,B) = {j € J : Vi € I(j) 1€ o(B(i)} and J°(I,B) = {j € J : Vi € I(j)

1 ¢ 6(B(i))}, is a valid formulation for SOSI constraints.

Proof For SOSI constraints we have I =J = {1,...,n} and §; = {j} for each i € I. This
implies that /() = {j} and hence J*(,B) = {j €J : 1 € 6(B(j))} and J°(,B) = {j € J :
I ¢ o(B(/))}. Then, in formulation (9), we have that A; =0 for all x % B(j). O

The following example illustrates formulation (9) for SOS1 constraints.

Example 2 LetJ ={1,...,4}, (),j)‘}:l € A7 be SOS|1 constrained. Formulation (9) for this
case with B = B* from Example 1 is

AEAJ, x1,%€{0,1}, L+ <x;, L+A<Il-x, L+A4<x, bLt+tl<l-x.

We don’t know how to give meaning to the binary variables in formulation (8) because
fixing them individually has little effect on the A variables. For example fixing x; = 1 and
letting x; be free in either of the formulations of Example 1 has no effect on the A variables.
In contrast fixing x; = 1 individually in (9) has the very precise effect fixing to zero all A;’s
for which B(i); = 0 for all i such that j € S;. Analogously, fixing x; = 0 individually in (9)
fixes to zero all A;’s for which B(i); = 1 for all i such that j € S;. Fixing the binary variables
then gives a way of enforcing A € Q(S;) by systematically fixing certain A variables to zero.

Formulation (9) is valid for SOS1 constraints independent of the choice of B. In con-
trast, for SOS2 constraints, where |I(j)| = 2 for some j € J, formulation (9) can be invalid
for some choices of B. This is illustrated by the following example.

Example 3 Let J ={0,...,4} and (lj)‘}:o € A’ be SOS2 constrained. Formulation (9) for
this case with B = B* is

red!, xixe{0,1}, A+A<xi, B+A<l-x, A<x, M<l-xn

which has the feasible solution Ag = 1/2, 4, = 1/2, A} = 43 = 44 =0, x; =x; = 1 that does
not comply with SOS2 constraints. However, the formulation can be made valid by adding
constraints

M <xi4x2, A <2—x—x. (10)

For any B we can always correct formulation (9) for SOS2 constraints by adding a num-
ber of extra linear inequalities, but with a careful selection of B the validity of the model can
be preserved without the need for additional constraints.

Definition 1 (SOS2 Compatible Function) A function B : {1,...,n} — {0, 1}"°22() is
compatible with an SOS2 constraint on (A;)_, € R if it is bijective and for all i €
{1,...,n— 1} the vectors B(i) and B(i + 1) differ in at most one component.

Theorem 3 [f B is an SOS2 compatible function then (9) is valid for SOS2 constraints.

Proof For SOS2 constraints we have that/ = {1,...,n},J={0,...,n} and S; = {i— 1,i} for
each i € I. This implies that /(0) = {1} and I(n) = {n}. Then, in a similar way to the proof
of Theorem 2 for SOS1 constraints, we have that for j € {0,n} formulation (9) imposes
Aj =0 for all x # B(j).

In contrast, for j € J\{0,n} we have I(j) ={j,j+ 1} andhence J* ([,B)={jeJ: 1€
o(B(j))No(B(j+1))} and J°(I,B) ={j€J : I ¢ o(B(j))and [¢ 6(B(j+1))}. Using
the fact that B is SOS2 compatible we have that, in formulation (9), A; = 0 for all x ¢
{B(j),B(j+1)}. D

The following example illustrates how an SOS2 compatible function yields a valid for-
mulation.

Example 3 continued Let B°(1) = (1,0)7, B°(2) = (1,1)7, B°(3) = (0,1)” and B°(4) =
(0,0)”. Formulation (9) with B = B? for the same SOS2 constraints is

reA!, x,xef{0,1}
M+ <xi, B+A4<(1-x) (11
Ao <xy, Ao+ <(1—x2). (12)

Finally, the following lemma shows that an SOS2 compatible function can always be
constructed.

Lemma 1 For any n € Z, there exists a compatible function for SOS2 constraints on

(A)=o-

Proof We construct an SOS2 compatible function B : {1,...,2"} — {0,1}" inductively on r.

The case r = 1 follows immediately. Now assume that we have an SOS2 compatible function
B:{l,...,2"} = {0,1}". We define B: {1,...,2"+1} — {0,1}F! as

. B(i), ifi <2" - 1 ifi<2"
B(i); =< - vie{l,...,r}, B(i = ,
(@) {B(Z"+1 —i+1); ow. { J ©re1 {0 0.W.

which is also SOS2 compatible. 0O

The function from the proof of Lemma 1 is not the only possible SOS2 compatible
function. In fact, Definition 1 is equivalent to requiring (B(i))?_, to be a reflected binary or
Gray code [49] and the construction from Lemma 1 corresponds to a version of this code
that is usually called the standard reflected Gray code. Definition 1 is also equivalent to

requiring (B(i))}_, to be a Hamiltonian path on the hypercube.

3 Branching and Logarithmic Size Formulations

We have seen that fixing the binary variables of (9) provides a systematic procedure for
enforcing A € Q(S;). In this section we exploit the relation between this procedure and
specialized branching schemes to extend the formulation to a more general framework.

We can identify each vector in {0, 1}'°2 /| with a leaf in a binary tree with log, |/| levels
such that each component corresponds to a level and the value of that component indicates
the selected branch in that level. Then, using function B we can identify each set Q(S;) with
a leaf in the binary tree and we can interpret each of the log, |/| variables as the execution of
a branching scheme on sets Q(S;). The formulations in Example 3 illustrate this idea.

In formulation (9) with B = B° the branching scheme associated with x; sets A =1, =0
when x; = 0 and A3 = A4 = 0 when x; = 1, which is equivalent to the traditional SOS2
constraint branching of [8] whose dichotomy is fixing to zero variables to the “left of”
(smaller than) a certain index in one branch and to the “right” (greater) in the other. In
contrast, the scheme associated with x, sets A, = 0 when x, = 0 and A9 = A4 = 0 when
xp = 1, which is different from the traditional branching as its dichotomy can be interpreted
as fixing variables in the “center” and on the “sides” respectively. If we use function B*
instead we recover the traditional branching. The drawback of the B* scheme is that the
second level branching cannot be implemented independently of the first level branching
using linear inequalities. For BY the branch alternatives associated with x, are implemented

by (12), which only include binary variable x,. In contrast, for B* one of the branching
alternatives requires additional constraints (10) which involve both x; and x;. The binary
tree associated with the model for B* and B? are shown in Figure 1, where the arc labels
indicate the values taken by the binary variables and the indices of the A variables which
are fixed to zero because of this and the node labels indicate the indices of the A variables
that are set to zero because of the cumulative effect of the binary variable fixing. The main
difference in the trees is that for B = B* the effect on the A variables of fixing x; to a
particular value depends on the value previously assigned to x; while for B = BY this effect
is independent of the previous assignment to xj.

x1 =0 xp =1 x1=0 xp =1
{0,1} {3,4} {0,1} {3,4}
x=0 xn=1 xp =0 xn=1 x =0 xn=1 x =0 xn =1
{0,2} {4} {o} {2,4} {2} {0,4} {2} {04}
(a) B=B". (b) B=B".

Fig. 1 Two level binary trees for example 3.

This example illustrates that a sufficient condition for modeling (5) with a logarithmic
number of binary variables and extra constraints is to have a binary branching scheme for
A € Ui O(Si) with a logarithmic number of dichotomies and for which each dichotomy
can be implemented independently. This condition is formalized in the following definition.

Definition 2 (Independent Branching Scheme) {Lk,Rk}‘,f: with L, R, C J is an indepen-
dent branching scheme of depth d for disjunctive constraint (5) if

d
Joas) = N (L) UQ(RY))- (13)
el k=1

This definition can then be used in the following theorem and immediately gives a suf-
ficient condition for modeling with a logarithmic number of variables and constraints.

Theorem 4 Let {Q(S;)}icr be a finite family of polyhedra of the form (6) and {Lk,Rk}Ef i
be an independent branching scheme for A € J;c; Q(S;). Then

Aed, YA <x YA < (-x) x € {01} Vke L(I]) (14)
J#Lk JERk

is a valid formulation for (5) with log, |I| binary variables and 210g, |I| extra constraints.

Formulation (9) with B = B® in Example 3 illustrates how an SOS2 compatible function
induces an independent branching scheme for SOS2 constraints. In general, given an SOS2
compatible function B: {1,...,n} — {0,1}1°%2" the induced independent branching is given
by Ly =J\J"(k,B), Ry =J\J(I,B) forall k € {1,...,n}.

Formulation (14) in Theorem 4 can be interpreted as a way of implementing a special-
ized branching scheme using binary variables. Similar techniques for implementing special-
ized branching schemes have been given in [1] and [42], but the resulting models require at
least a linear number of binary variables. To the best of our knowledge the first independent
branching schemes of logarithmic depth for the case in which polytopes Q(S;) contain more
than one point are the ones for SOS1 constraints from Theorem 2 and for SOS2 constraints
induced by an SOS2 compatible function.

Formulation (14) can be obtained by algebraic simplifications from formulation (2) of
(5) rewritten as the conjunction of two-term polyhedral disjunctions. Both the simplifications
and the rewrite can result in a significant reduction in the tightness of the linear programming
relaxation of (14) [4,5,10,22]. Fortunately, as the following theorem shows, the restriction
to A’ makes (14) as tight as any other mixed integer formulation for (5).

Theorem 5 Let Py and Q) be the projection onto the A variables of the LP relaxation of for-
mulation (14) and of any other mixed integer programming formulation of (5) respectively.
Then Py, = conv (U,c; O(Si)) and hence P), C Q.

Proof Without loss of generality | J;c; S; = J and hence for every j € J there is a i € I such
that j € S;. Using this, it follows that P, = A’ = conv (;c; Q(S;)). The relation with other
mixed integer programming formulations follows directly from Theorem 3.1 of [24]. O

Theorem 5 might not be true if we do not use ground set A, but this restriction is not too
severe as it includes a popular way of modeling piecewise linear functions. We explore this
modeling in Section 4 and the potential loss of Theorem 5 when using a different ground set
in Section 5.

We finally study the effect on formulation (14) of dropping the assumption that |/| is
a power of two. As mentioned in Section 2, if |/| is not a power of two we can complete
I to an index set of size 2/°©2 Il without changing (5). If we now construct a formulation
that is of logarithmic size with respect to the completed index set we obtain a formulation
that is still of logarithmic order with respect to the original index set. For instance, if 7 is
not a power of two we can complete it and apply Theorem 1 to obtain a formulation with
[log, |I|] < log, || + 1 binary variables and 21°22/ll < 2|7| extra constraints with respect to
the original index set /. This is illustrated in the following example.

Example 4 LetJ={1,...,3}, (lj);zl € A’ be SOS1 constrained. In this case = {1,...,3}
and S; = {i} for all i € I. We can complete I so that || is a power of two by letting [=
{1,...,4}. We then set S4 = 0 to avoid adding new feasible solutions. Using B = B* from
example 1 formulation (8) for the completed / is

reA, x1,x€{0,1}, A+Az<2-x1—x2, A+A3 <1 —x1 +x2,
M+ <l+xi—x, AM+AL+A3<x+x.

We can alternatively think of this formulation as being obtained by setting A4 = 0 in the
formulation for SOS1 constraints over (A j)‘}zl € A’ given in Example 1.

Formulation (14) deals with the requirement that |/| is a power of two somewhat dif-
ferently. It is clear that (14) does not have this requirement explicitly as it only needs the
existence of an independent branching scheme. Fortunately, if a family of constraints has an
independent branching scheme when |/| is a power of two we can easily construct an inde-
pendent branching scheme for the cases in which |/| is not a power of two. This is illustrated
in the following example.

Example 5 Let {L;,R;} ,?;’%2 " be an independent branching scheme for an SOS2 constraint

on ()Lj)7:0 € A form:=20"&11 and 7 = {0,...,7}. Then {Lk,Rk},[l;"(fz"w defined by

Ly :=L;nH0,...,n}, Ri:=RN{0,....n} Vke{l,...,[log,n]} (15)

is an independent branching scheme for an SOS2 constraint on (4;)’_ € A’ forJ ={0,...,n}.

For example, for n = 3 and 72 = 4, SOS2 compatible function B® from example 3 yields
the independent branching scheme for SOS2 on (4 j)f}:o € A’ givenby L; := {2,3,4},R; :=
{0,1,2},L,:={0,1,3,4} and R, := {1,2,3}. By restricting this scheme to {0,...,3} we get
the independent branching scheme for SOS2 on ()Lj)izo € A givenby L; := {2,3}, R| :=
{0,1,2}, L, :={0,1,3} and R, := {1,2,3}. This scheme yields the following formulation
of SOS2 on (4;)3_, € A”.

reA!, x,xef{0,1}
Mo+M<x, A<(1-x)
M <x, A<(1-x).

Note that this formulation can also be obtained by completing the constraintto I = {1,...,4}
by adding S4 = 0 and using formulation (9) for B = B from example 3. We could show the
validity of this procedure without referring to independent branching schemes by proving
an analog to Theorem 3 for the case in which |/| is not a power of two. A third alternative is
to again think of this formulation as being obtained by setting A4 = 0 in the formulation for
SOS2 constraints over (lj)‘}zo € A’ given in the continuation of Example 3.

4 Modeling Nonseparable Piecewise Linear Functions

In this section we use Theorem 4 to construct a model for non-separable piecewise linear
functions of two variables that use a number of binary variables and extra constraints loga-
rithmic in the number of linear pieces of the functions. We also extend this formulation to
functions of n variables, in which case the formulation is slightly larger, but still asymptoti-
cally logarithmic for fixed n.

Imposing SOS2 constraints on (4;)7_ € A’ with J = {0,...,n} is a popular way of
modeling a one variable piecewise-linear function which is linear in n different intervals [26,
27,30,34,44]. This approach has been extended to non-separable piecewise linear functions
in [30,34,44,50]. For functions of two variables this approach can be described as follows.

We assume that for an even integer w we have a continuous function f : [0,w]> — R
which we want to approximate by a piecewise linear function. A common approach is to
partition [0, w]2 into a number of triangles and approximate f with a piecewise linear func-
tion that is linear in each triangle. One possible triangulation of [O,W]2 is the J; or “Union
Jack” triangulation [43] which is depicted in Figure 2(a) for w = 4. The J; triangulation

4 4
3 3 L N
2 2
1 il L N
T
0 0
0 1 2 3 4 0 2 < 4
(a) Example of “Union Jack” Trian- (b) Triangle selecting branching
gulation

Fig. 2 Triangulations

of [0,w]? for any even w is obtained by adding copies of the 8 triangles shaded gray in
Figure 2(a). This yields a triangulation with 2w? triangles.

We use this triangulation to approximate f with a piecewise linear function that we
denote by g. Let I be the set of all the triangles of the J; triangulation of [0, w]2 and let S; be
the vertices of triangle i. For example, in Figure 2(a), the vertices of the triangle labeled T
are Sy := {(0,0),(1,0),(1,1)}. A valid model for g(y) [30,34,44] is

YLh=1 y=Y vk, g0) =} f)A (16a)
jel jel jel
relJos) ca, (16b)
iel
where J := {0,...,w}? v; = j for j € J. This model becomes a traditional model for one

variable piecewise linear functions when we restrict it to one coordinate of [0, w]2 by setting
y2:0andl(s,,) =0forall0<s<w,1<tr<w.

To obtain a mixed integer formulation of (16) with a logarithmic number of binary vari-
ables and extra constraints it suffices to construct an independent binary branching scheme
of logarithmic depth for (16b) and use formulation (14). Binary branching schemes for (16b)
with a similar triangulation have been developed in [44] and [34], but they are either not in-
dependent or have too many dichotomies. We adapt some of the ideas of these branching
schemes to develop an independent branching scheme for the two-dimensional J; triangu-
lation. Our independent branching scheme will basically select a triangle by forbidding the
use of vertices in J. We divide this selection into two phases. We first select the square in
the grid induced by the triangulation and we then select one of the two triangles inside this
square.

To implement the first branching phase we use the observation made in [34,44] that
selecting a square can be achieved by applying SOS2 branching to each component. To make
this type of branching independent it then suffices to use the independent SOS2 branching

induced by an SOS2 compatible function. This results in the set of constraints

w 1 w)
Z Z Ay <1 Z Z Aiwy) ST =27,
va=0y, €5 (1,B,w) v2=0y, EJQ(!,B,W)
x; €{0,1} VieL(w), (17a)
w ’ w 2
Z Z Avivn) <A Z Z Awiwy) ST =27,
vi=0y,eJ5 (1,B,w) v1=0 VZEJg(l.B,W)
¥ €{0,1} VieL(w), (17b)

where B is an SOS2 compatible function and J; (1,B,w), J9(I,B,w) are the specializations
of J*(1,B), J°(1, B) for SOS2 constraints on (4;)'¥_o- Constraints (17a) and binary variables
x} implement the independent SOS2 branching for the first coordinate and (17b) and binary
variables xl2 do the same for the second one.

To implement the second phase we use the branching scheme depicted in Figure 2(b) for
the case w = 4. The dichotomy of this scheme is to select the triangles colored white in one
branch and the ones colored gray in the other. For general w, this translates to forbidding
the vertices (v, v2) with v; even and v, odd in one branch (square vertices in the figure) and
forbidding the vertices (v,v2) with v; odd and v, even in the other (diamond vertices in the
figure). This branching scheme selects exactly one triangle of every square in each branch
and induces the set of constraints

Z)’(sz) <o, Z)‘(Vl,vz) <l-=yo, € {Oa]}a (18)

(vi,v2)€EL (vi;v2)€R

where L= {(v,v2) €J : vjisevenand v isodd} and R = {(vi,v2) €J : vy is odd and v,
is even}. When w is a power of two the resulting formulation has exactly log, .7 binary vari-
ables and 2log, .7 extra constraints where .7 is the number of triangles in the triangulation.
We illustrate the formulation with the following example.

Example 6 Constraints (17)—(18) for w =2 are

0,0y A0 T Ao2) <Xy, Ao tAen TAee) < =X
200+ 21,0) T A20) S X210 Ao2) H A2 HAe S T—-xa))
Aoy Az <xo, Aqo) +Aag) < 1T—x0.

A portion of the associated branching scheme is shown in Figure 3. The shaded tri-
angles inside the nodes indicates the triangles forbidden by the corresponding assignment
of the binary variables.

The restriction to the first coordinate of [0,w]? yields a logarithmic formulation for
piecewise linear functions of one variable that only uses one of the SOS2 branchings and
does not use the triangle selecting branching. Furthermore, under some mild assumptions,
the model can be extended to non-uniform grids by selecting different values of v;.

The extension of the formulation to functions of n variables is direct from the definition
of the n-dimensional J; triangulation [43]. For D = [0, w]" with w an even integer the vertex
set of the triangulation is defined to be {0,...,w}" and the triangulation is composed by the
finite family of simplices defined as follows. Let N = {1,...,n}, ¥* = {v € {0,...,w}" :

yo =0 yo=1

Fig. 3 Partial B&B tree for Example 6

v;is odd, Vi € N}, Sym(N) be the group of all permutations on N and e’ be the i-th unit
vector of R”. For each (0, 7,s) € #° x Sym(N) x {—1,1}" we define j;(\°,7,s) to be
the simplex whose extreme points are {y'}_, where y' = y 4+ sn(i)e”<i> for each i € N.
The J; triangulation of D = [0,w]" is given by all the simplices j; (V*,7,s). By letting J =
{0,...,w}" and I be the set of triangles of the J; of D = [0,w]" we have that (16) is a
model for the piecewise linear approximation g of function f : [0,w]” — R. For this case,
to implement the independent branching scheme for (16b) we can use the fact that indices
v and s of the simplices determines the hypercube in which the simplex is contained and
index 7 determines the selection of one of the n! simplices contained in a given hypercube
(For example for the triangulation in Figure 1(a), the simplices for v = (1,1) and s =
(—1,—1) are the two triangles contained in box [0, 1]* and the triangle labeled T corresponds
to the permutation 7(1) =2, m(2) = 1). Then to select the hypercube we can again apply
independent SOS2 branching for each component which yields the constraints given by

Y A<y, Y A<l xe{01} VIeLw),VkeN (19)

vely (1.B.wk) vel0(1,Bwk)

where /5 (I, B,w,k) = {v € J : vy € I (I,B,w)} and [(1, B,w,k) = {v € J : vy € JY(I,B,w)}.
To select a permutation 7 it suffices to select between 7! (r) < £~ (s) or 77! (r) > =1 (s)
for each r,s € N, r < s. If we select a permutation with £7!(r) < 77! (s) we have that no
vertex v of the resulting triangulation will have an odd v, component and even v, component.
In contrast, if we select a permutation with 7~ !(s) < 7£~!(r) we have that no vertex v of the
resulting triangulation will have an even v, component and odd vy component. Hence to
select a simplex if suffices to apply the triangle selection branching depicted in Figure 2(b)

to each pair of indices r,s € N, r < s which yields the constraints given by

Y AS<ye Y W1y, Y €{01} VrseNr<s (20)
veL(rs) VER(r,s)

where L(r,s) ={v€J : v, is even and vs is odd} and R={v € J : v, is odd and v, is even}.
The resulting formulation has L := n[log, w] +n(n —1)/2 binary variables (and twice as
many extra constraints) and the J; triangulation has .7 := w"n! simplices. In contrast to
the two dimensional case, it is not clear how to explicitly relate these two numbers even
for the case when w is a power of two. However we can see that L grows asymptotically
as log, .7 only when n is fixed. More specifically, for fixed n we have L ~ log, 7 (i.e.
limy,_, L/log, 7 = 1), but for fixed w we have log, 7 € o(L) (i.e. lim,_.log, 7 /L =0).

5 Extension of the Model to Ground Set [0, 1]/

We replace A € A’ in definition (6) of Q(S;) with the box constraint A € [0,1}/ to obtain
0(Si)={A €[0,1) : 1; =0V j ¢ S;}. We have that an independent branching {L, R }¢_,
for (5) is also an independent branching for

2 el Jos) 1)

icl

since

DL

Jocs) =

iel k

(O(Lk) UQ(Ry)) - (22)

1

However, to preserve validity formulation (14) needs to be modified to

A €0,1)’ (23a)

Y A <WU\Lilxe, Y A4 <I\Re|(1—x), xe{0,1} Vke{l,....d}. (23b)
JELk JER

This formulation still has d binary variables and 2d extra constraints, but Theorem 5 is no
longer true for this formulation.

To understand the potential sources of weakness of formulation (23) we study how this
formulation can be constructed from the standard disjunctive programming formulation of
(21) in three steps, two of which have the potential for weakening the formulation. The first
step is to use identity (22) to reduce the formulation of (21) to the formulation of

A€ QL) UQ(Ry) (24)

for each k € {1,...,d}. The second step is to eliminate the duplicated continuous variables
of formulation (2) for (24) in the following way. Formulation (2) for (24) is given by

A A e R xoe {0,13 (252)
At <(l-xm) VieLn A7°<0 Vjg¢L (25b)
A < Vj€Ry, A7“<0 Vji¢R (25¢)

A=Atk A2k (25d)

14

Using (25d) we can eliminate variables A'*, 1% to obtain the formulation of (24) given by

Ael0,1, xe{o,1} (26a)
Aj <xi Vj ¢ Ly (26b)
Aj < (1—x) Vj & Re. (26¢)

The third and final step is to aggregate constraints (26b)—(26¢) and combine the resulting
formulation of (24) for all k € {1,...,d} to obtain (23).

With regard to the first step, we have that (22) shows how an independent branching
scheme rewrites disjunctive constraint (5) from its disjunctive normal form (DNF) as the
union of polyhedra (left hand side) to a conjunction of two-term polyhedral disjunctions
(right hand side). It is well known that this rewrite can significantly reduce the tightness of
mixed integer programming formulations [4]. More specifically, Theorem 3.1 of [24] tells us
that if we directly formulate constraint (21) the best we can hope is for the projection onto the
original A variables of the LP relaxation of our formulation to be equal to conv(U;c; O(S:))-
In contrast, if we construct a formulation for constraints (24) for each k € {1,...,d} and
then combine them, the best we can hope is for the projection onto the original A variables
of the LP relaxation of our formulation to be equal to (¢_, conv(Q(L;) U Q(Ry)). Because
the convex hull and intersection operations usually do not commute we only have

conv <UQ(Si)> ﬂconv O(Ly) UO(RY)) 27
il

and we can expect strict containment resulting in the first formulation being stronger. This
is illustrated in the following example.

Example 7 Let J = {0,...,4} and (4)]70 € A’ be SOS2 constrained. We then have S; =
{0,1}, S ={1,2}, 85 = {2 3}, S4 = {3,4} and using PORTA [12] we get that

4
conv (UQ(S,»)) = {(lj)‘}:o €10, 1]5 MM <], M+ <1, Ap+HA3<],

ﬂo-i—?Lz-l—MSl}. (28)
Ifwe let d 1,L; ={2,3,4}, Ry ={0,1,2}, L, = {0,1,3,4} and R, = {1,2,3} we have
(é 1)UQ(R1)) N (Q(L2) UQ(Ry)). Again using PORTA we get that
conv (Q(Ll)UQ(Rl)) = {(lj)é}:o € [0,1]5 A<l M+M4<1, L+A4<,
M+l Ao+Az <1}
and
conv (Q(Ly) UQ(Ry)) = {(/lj)j':o €0,1P: <1, LM<, h+aa<l,
A+22<1, B+Al—A—A <1}

Clearly (1/2,1/2,1/2,1/2,1/2) € conv(Q(L1)UQ(R1))Nconv(Q(L,) UQ(R7)), but from
(28) we have (1/2,1/2,1/2,1/2,1/2) ¢ conv(Ji_, Q(S)). Hence

4
conv (UQ(S,-)) m conv(Q(Li) UQ(Ry)).

i=0

This source of weakness could be avoided by applying techniques from [4] at the ex-
pense of increasing the number of continuous variables.

With respect to the second step, it is well known that eliminating the multiple copies
of the continuous variables in formulation (2) can result in a weaker formulation [5, 10,
22]. Fortunately, as the following theorem shows, for constraints of the form (5) or (21)
eliminating the multiple copies of the continuous variables does not make the formulations
weaker.

Theorem 6 Ler Py be the projection onto the A variables of the LP relaxation of formula-
tion (7) for (5) and let P; the projection onto the A variables of the LP relaxation of the
Sformulation of (21) given by

refo,1), 2< Y x vieJ, Yx=1 xe{01} viel (29)
il (j) i€l

Then Py, = conv (U;c; O(Si)) and P, = conv (Uic; Q(Si)). In particular the projections onto

the A variables of the LP relaxations of formulations (25) and (26) are equal to conv(Q(Ly)U

O(Ry))-

Proof For P, the result follows directly from Theorem 5. For P; the result follows directly
from Section 3.1 of [22] because J;c; Q(S;) is the union of multidimensional intervals as
defined in that section. O

Theorem 6 shows that the traditional formulations for SOS1 and SOS2 constraints are
as tight as possible, which could explain their success. In addition, Theorem 6 shows that
the second step does not weaken the formulation as we get the following corollary.

Corollary 1 The projection onto the A variables of the LP relaxation of the formulation
given by (26) for allk € {1,...,d} is NI_, conv(Q(Ly) UQ(Ry)).

Finally, with respect to the third step, it is well known that a weaker integer programming
formulations can result from aggregating constraints. As expected it is also easy to construct
examples where formulation (26) is stronger than formulation (23) (the example for the strict
containment in (27) also works here). Of course, this source of weakness can be avoided by
simply choosing formulation (26) instead of (23) at the expense of increasing the number of
constraints from 2d to at most |J|d.

6 Computational Results

In this section we computationally test the logarithmic models for piecewise linear functions
of one and two variables against some other existing models. For a set of transportation
problems with piecewise linear cost functions, the logarithmic models provide a significant
advantage in almost all of our experiments.

We denote the model for piecewise linear functions of one and two variables from Sec-
tion 4 by Log. From the traditional models we selected the so called incremental and multiple
choice models. The incremental model for one variable functions appears as early as [16,17,
33], was extended to functions of several variables in [50] and it has been recently shown
to have favorable integrality and tightness properties [14,39,40]. We denote this model by
Inc. The multiple choice model appears in [2,14,31] and also has favorable integrality and

16

tightness properties. We denote this model by MC. We also include two models that are
based on independent branching schemes of linear depth. The first model is based on the
independent branching scheme for SOS2 constraints on (lj);f:o given by L, = {k,...,n},
Ry ={0,...,k} for every k € {1,...,n— 1}. This formulation has been independently de-
veloped in [42] and is currently defined only for functions of one variable. We denote this
model by LB1. The second model is based on an independent branching defined in [34, p.
573]. This branching scheme is defined for any triangulation and its depth is equal to the
number of vertices in the triangulation. In particular for piecewise linear functions of one
variable with k intervals or segments its depth is k+ 1 and for piecewise linear functions on
akxkgriditis (k+ 1)2. We denote the model by LB2. We also tested some other piecewise
linear models, but do not report results for them since they did not significantly improve
the worst results reported here. We refer the reader to [45] for a more detailed study and
evaluation of mixed integer formulations for piecewise linear functions. In addition to the
mixed integer programming formulations we tested the traditional SOS2 formulation of uni-
variate piecewise linear functions which does not include binary variables. We implemented
this formulation using CPLEX’s built in support for SOS2 constraints and we denote it by
SOS2. All models were generated using Ilog Concert Technology and solved using CPLEX
11 on a dual 2.4GHz Xeon Linux workstation with 2GB of RAM. Furthermore, all tests
were run with a time limit of 10000 seconds.

We note that Log, Inc, MC, LB1 and LB2 are mixed integer programming problems
that do not include SOS2 constraints such as the ones supported by CPLEX. Hence, when
CPLEX solves these formulations the only type of branching that occurs is due to the fixing
of binary variables to zero or one. For Log, LB1 and LB2 this binary branching induces a
specialized branching schemes that fixes some A variables to zero, but CPLEX does not
directly fix A variables to zero. In contrast, formulation SOS2 does not contain any binary
variables and to solve it CPLEX executes the traditional SOS2 branching of [8] by directly
fixing A variables to zero.

The first set of experiments correspond to piecewise linear functions of one variable
for which we used the transportation models from [46]. We selected the instances with 10
supply and 10 demand nodes and for each of the 5 available instances we generated several
randomly generated objective functions. We generated a separable piecewise linear objec-
tive function given by the sum of concave non-decreasing piecewise linear functions of the
flow in each arc. We use concave functions because they are widely used in practice and be-
cause using them results in NP-hard problems [26] that are challenging for our experiments.
For each instance and number of segments we generated 20 objective functions to obtain a
total of 100 instances for each number of segments. We excluded LB2 as LB1 performed
consistently better. Table 1 shows the minimum, average, maximum and standard deviation
of the solve times in seconds for 4, 8, 16 and 32 segments. The tables also shows the num-
ber of times the solves failed because the time limit was reached and the number of times
each formulation had the fastest solve time (win or tie). MC is the best model for 4 and 8
segments and Log is clearly the best model for 16 and 32 segments.

The next set of experiments correspond to piecewise linear functions of two variables for
which we selected a series of two commodity transportation problems with 5 supply nodes
and 2 demand nodes. These instances were constructed by combining two 5 X 2 transporta-
tion problems generated in a manner similar to the instances used in [46]. The supplies,
demands and individual commodity arc capacities for each commodity were obtained from
two different transportation problems and the joint arc capacities were set to 3/4 of the
sum of the corresponding individual arc capacities. We considered an objective function of
the form ¥, f.(x},x2) where E is the common set of 10 arcs of the transportation prob-

stat Log LBI MC Inc SOS2 stat Log LBI MC Inc SOS2
min 0 0 0 0 0 min 1 3 1 5 1
avg 2 3 1 3 2 avg 12 26 10 47 16
max 12 16 8 15 8 max 84 116 39 160 202
std 2 3 2 3 1 std 11 17 7 31 23
wins 25 1 46 2 27 wins 34 0 43 0 23
fail 0 0 0 0 0 fail 0 0 0 0 0
(a) 4 segments. (b) 8 segments.
stat Log LBl MC Inc SOS2
min 0 7 2 23 2

avg 24 124 97 284 109
max 96 376 730 1250 1030

std 18 78 122 201 167
wins 95 0 3 0 2
fail 0 0 0 0 0

(c) 16 segments.

stat Log LBI MC Inc SOS2
min 2 117 23 214 10
avg 43 569 2246 889 925
max 194 2665 10000 3943 10000

std 39 476 3208 662 1900
wins 98 0 0 0 2
fail 0 0 9 0 2

(d) 32 segments.

Table 1 Solve times for one variable functions [s].

lems and f,(x},x2) is a piecewise linear function of the flows x’ in arc e of commodity i for
i =1,2. Each component f, (x; ,xg) for arc e with individual arc capacities u’e for commodity
i = 1,2 was constructed as follows. We begin by triangulating [0,)] x [0,u2] as described
in Section 4 with a K x K segment grid. Using this triangulation we then obtained £, (x!,x2)
by interpolating g (|| (x},x2)||) where [|- || is the euclidean norm and g : [0, || (u},u2)||] — R
is a continuous concave piecewise linear function which was randomly generated indepen-
dently for each arc in a similar way to the one variable functions of the previous set of
experiments. The idea of this function is to use the sub-linearity of the euclidean norm to
consider discounts for sending the two commodities in the same arc and concave function
g to consider economies of scale. We note that although g is concave its interpolation is not
always concave due to the known fact that multivariate interpolation on a predefined trian-
gulation is not always shape preserving [11]. We selected 5 combinations of different pairs
of the original transportation problems and for each one of these we generated 20 objective
functions for a total of 100 instances for each K. For these instances we excluded SOS2 and
LB1 as they are only defined for univariate functions. Table 2 shows the statistics for this set
of instances. In the two variable case, Log is best for all sizes and the advantage becomes
overwhelming for the largest instances.

It is clear that one of the advantages of Log is that it is smaller than the other formu-
lations while retaining favorable tightness properties. In addition, formulation Log effec-
tively transforms CPLEX’s binary variable branching into a specialized branching scheme
for piecewise linear functions. This allows formulation Log to combine the favorable prop-
erties of specialized branching schemes and the technology in CPLEX’s variable branching.
Given its computational advantages, we anticipate that Log will become a valuable tool in
practice.

stat Log LB2 MC Inc stat Log LB2 MC Inc
min 0 1 1 3 min 2 37 31 100
avg 3 6 6 32 avg 13 196 398 769
max 9 22 17 127 max 33 804 5328 6543
std 2 4 3 26 std 5 129 584 1111
wins 87 9 5 0 wins 100 0 0 0
fail 0 0 0 0 fail 0 0 0 31
(a) 4 x4 grid. (b) 8 x 8 grid.
stat Log LB2 MC Inc

min 27 3116 2853 772
avg 56 9825 9266 4857
max 118 10000 10000 10000

std 19 866 1678 3429

wins 100 0 0 0

fail 0 94 77 20
(c) 16 x 16 grid.

Table 2 Solve times for two variable functions on a4 x 4, 8 x 8 and 16 x 16 grids [s].

7 Conclusions

We have introduced a technique for modeling hard combinatorial problems with a mixed 0-1
integer programing formulation that uses a logarithmic number of binary variable and extra
constraints. It is based on the concept of independent branching which is closely related to
specialized branching schemes for combinatorial optimization. Using this technique we have
introduced the first binary formulations for SOS1 and SOS2 constraints and for one and two
variable piecewise linear functions that use a logarithmic number of binary variables and
extra constraints. Finally, we have illustrated the usefulness of these new formulations by
showing that for one and two variable piecewise linear functions they provide a significant
computational advantage.

There are still a number of unanswered questions concerning necessary and more gen-
eral sufficient conditions for the existence of formulations with a logarithmic number of
binary variables and extra constraints. For example, if we allow the formulation to have a
number of binary variables and extra constraints whose asymptotic growth is logarithmic
our sufficient conditions do not seem to be necessary. Consider cardinality constraints that
restrict at most K components of A € [0, 1]" to be non-zero. We do not know of an inde-
pendent branching scheme for this constraint, but it does have a formulation with a number
of variables and constraints of logarithmic order. We can write cardinality constraints in the
form (5) by letting J = {1,...,n}, I = {1,...,m} form = (¢) and {S;}"_, be the family of
all subsets of J such that |S;| = K. The traditional formulation for cardinality constraints is
[16,33]

-

)CjSK; A,jE[O,l], A,jSXﬁ Xj€{071} Vjeld. (30)

j=1

Let n be an even number. By choosing K = n/2, which is the non-trivial cardinality con-
straint with the largest number of sets S;, we can use the fact that for K = n/2 we have
n < 2log, ((¢)) to conclude that (30) has O(log,(|/])) binary variables and extra con-
straints.

Another question concerns the case in which / is not a power of two. Theoretically, this
does not pose a problem because we can complete / or adapt the independent branching
scheme. However, preliminary tests in [45] showed that the computational effectiveness of

19

independent branching schemes can be significantly reduced if / is not a power of two. This
is a common problem with binary encoded formulations, that can be mitigated by the use of
techniques developed in [13].

Acknowledgements This research has been supported by NSF grant CMMI-0522485, AFOSR grant FA9550-
07-1-0177 and Exxon Mobil Upstream Research Company. The authors would like to thank Daniel Espinoza
for pointing out the relation between SOS2 compatible functions and Gray codes. The authors would also
like to thank two anonymous referees for some very thoughtful comments.

References

1. Appleget, J.A., Wood, R.K.: Explicit-constraint branching for solving mixed-integer programs. In:
M. Laguna, J.L. Gonzdlez (eds.) Computing tools for modeling, optimization, and simulation: inter-
faces in computer science and operations research, Operations research/computer science interfaces
series, vol. 12, pp. 245-261. Kluwer (2000)
2. Balakrishnan, A., Graves, S.C.: A composite algorithm for a concave-cost network flow problem. Net-
works 19, 175-202 (1989)
. Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3-51 (1979)
4. Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems.
SIAM J. Algebraic Discrete Methods 6, 466-486 (1985)
. Balas, E.: On the convex-hull of the union of certain polyhedra. Oper. Res. Lett. 7, 279-283 (1988)
6. Balas, E.: Disjunctive programming: Properties of the convex hull of feasible points. Discrete Appl.
Math. 89, 344 (1998)
7. Balas, E.: Projection, lifting and extended formulation in integer and combinatorial optimization. Ann.
Oper. Res. 140, 125-161 (2005)
8. Beale, EM.L., Tomlin, J.A.: Special facilities in a general mathematical programming system for non-
convex problems using ordered sets of variables. In: J. Lawrence (ed.) OR 69: Proceedings of the fifth
international conference on operational research, pp. 447-454. Tavistock Publications (1970)
9. Blair, C.: 2 rules for deducing valid inequalities for 0-1 problems. SIAM J. Appl. Math. 31, 614-617
(1976)
10. Blair, C.: Representation for multiple right-hand sides. Math. Program. 49, 1-5 (1990)
11. Carnicer, J.M., Floater, M..S.: Piecewise linear interpolants to lagrange and hermite convex scattered data.
Numer. Algorithms 13, 345-364 (1996)

12. Christof, T., Loebel, A.: PORTA — POlyhedron Representation Transformation Algorithm, version 1.3.
Available at http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/

13. Coppersmith, D., Lee, J.: Parsimonious binary-encoding in integer programming. Discrete Optim. 2,
190-200 (2005)

14. Croxton, K.L., Gendron, B., Magnanti, T.L.: A comparison of mixed-integer programming models for
nonconvex piecewise linear cost minimization problems. Manage. Sci. 49, 1268-1273 (2003)

15. Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5, 266-277 (1957)

16. Dantzig, G.B.: On the significance of solving linear-programming problems with some integer variables.
Econometrica 28, 30-44 (1960)

17. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press (1963)

18. de Farias Jr., LLR., Johnson, E.L., Nemhauser, G.L.: Branch-and-cut for combinatorial optimization prob-
lems without auxiliary binary variables. Knowl. Eng. Rev. 16, 25-39 (2001)

19. Ibaraki, T.: Integer programming formulation of combinatorial optimization problems. Discrete Math.
16, 39-52 (1976)

20. Jeroslow, R.G.: Cutting plane theory: disjunctive methods. Ann. Discrete Math. 1, 293-330 (1977)

21. Jeroslow, R.G.: Representability in mixed integer programming 1: characterization results. Discrete
Appl. Math. 17, 223-243 (1987)

22. Jeroslow, R.G.: A simplification for some disjunctive formulations. Eur. J. Oper. Res. 36, 116-121 (1988)

23. Jeroslow, R.G.: Representability of functions. Discrete Appl. Math. 23, 125-137 (1989)

24. Jeroslow, R.G., Lowe, J.K.: Modeling with integer variables. Math. Program. Study 22, 167-184 (1984)

25. Jeroslow, R.G., Lowe, J.K.: Experimental results on the new techniques for integer programming formu-

lations. J. Oper. Res. Soc. 36, 393403 (1985)
26. Keha, A.B., de Farias, I.R., Nemhauser, G.L.: Models for representing piecewise linear cost functions.
Oper. Res. Lett. 32, 44-48 (2004)

(98]

W

20

217.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44,

45.

46.

47.

48.

49.

50.

Keha, A.B., de Farias, I.R., Nemhauser, G.L.: A branch-and-cut algorithm without binary variables for
nonconvex piecewise linear optimization. Oper. Res. 54, 847-858 (2006)

Lee, J.: All-different polytopes. J. Comb. Optim. 6, 335-352 (2002)

Lee, J., Margot, F.: On a binary-encoded ilp coloring formulation. INFORMS J. Comput. 19, 406415
(2007)

Lee, J., Wilson, D.: Polyhedral methods for piecewise-linear functions I: the lambda method. Discrete
Appl. Math. 108, 269-285 (2001)

Lowe, J.K.: Modelling with integer variables. Ph.D. thesis, Georgia Institute of Technology (1984)
Magnanti, T.L., Stratila, D.: Separable concave optimization approximately equals piecewise linear opti-
mization. In: D. Bienstock, G.L. Nemhauser (eds.) IPCO, Lecture Notes in Computer Science, vol. 3064,
pp. 234-243. Springer (2004)

Markowitz, H.M., Manne, A.S.: On the solution of discrete programming-problems. Econometrica 25,
84-110 (1957)

Martin, A., Moller, M., Moritz, S.: Mixed integer models for the stationary case of gas network opti-
mization. Math. Program. 105, 563-582 (2006)

Meyer, R.R.: On the existence of optimal solutions to integer and mixed-integer programming problems.
Math. Program. 7, 223-235 (1974)

Meyer, R.R.: Integer and mixed-integer programming models - general properties. J. Optim. Theory
Appl. 16, 191-206 (1975)

Meyer, R.R.: Mixed integer minimization models for piecewise-linear functions of a single variable.
Discrete Math. 16, 163-171 (1976)

Meyer, R.R.: A theoretical and computational comparison of equivalent mixed-integer formulations.
Nav. Res. Logist. 28, 115-131 (1981)

Padberg, M.: Approximating separable nonlinear functions via mixed zero-one programs. Oper. Res.
Lett. 27, 1-5 (2000)

Sherali, H.D.: On mixed-integer zero-one representations for separable lower-semicontinuous piecewise-
linear functions. Oper. Res. Lett. 28, 155-160 (2001)

Sherali, H.D., Shetty, C.M.: Optimization with Disjunctive Constraints, Lecture Notes in Economics and
Mathematical Systems, vol. 181. Springer-Verlag (1980)

Shields, R.: personal communication (2007)

Todd, M.J.: Union jack triangulations. In: S. Karamardian (ed.) Fixed Points: algorithms and applica-
tions, pp. 315-336. Academic Press (1977)

Tomlin, J.A.: A suggested extension of special ordered sets to non-separable non-convex programming
problems. In: P. Hansen (ed.) Studies on Graphs and Discrete Programming, Annals of Discrete Mathe-
matics, vol. 11, pp. 359-370. North Holland (1981)

Vielma, J.P., Ahmed, S., Nemhauser, G.L.: Mixed-integer models for nonseparable piecewise linear op-
timization: Unifying framework and extensions. Oper. Res. (To Appear) (2009)

Vielma, J.P,, Keha, A.B., Nemhauser, G.L.: Nonconvex, lower semicontinuous piecewise linear opti-
mization. Discrete Optim. 5, 467—488 (2008)

Vielma, J.P.,, Nemhauser, G.L.: Modeling disjunctive constraints with a logarithmic number of binary
variables and constraints. In: A. Lodi, A. Panconesi, G. Rinaldi (eds.) IPCO, Lecture Notes in Computer
Science, vol. 5035, pp. 199-213. Springer (2008)

Watters, L.J.: Reduction of integer polynomial programming problems to zero-one linear programming
problems. Oper. Res. 15, 1171-1174 (1967)

Wilf., H.S.: Combinatorial algorithms—an update, CBMS-NSF regional conference series in applied
mathematics, vol. 55. Society for Industrial and Applied Mathematics (1989)

Wilson, D.: Polyhedral methods for piecewise-linear functions. Ph.D. thesis, University of Kentucky
(1998)

