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Abstract. Many combinatorial constraints over continuous variables
such as SOS1 and SOS2 constraints can be interpreted as disjunctive
constraints that restrict the variables to lie in the union of m specially
structured polyhedra. Known mixed integer binary formulations for these
constraints have a number of binary variables and extra constraints that
is linear in m. We give sufficient conditions for constructing formulations
for these constraints with a number of binary variables and extra con-
straints that is logarithmic in m. Using these conditions we introduce the
first mixed integer binary formulations for SOS1 and SOS2 constraints
that use a number of binary variables and extra constraints that is loga-
rithmic in the number of continuous variables. We also introduce the first
mixed integer binary formulations for piecewise linear functions of one
and two variables that use a number of binary variables and extra con-
straints that is logarithmic in the number of linear pieces of the functions.
We prove that the new formulations for piecewise linear functions have
favorable tightness properties and present computational results show-
ing that they can significantly outperform other mixed integer binary
formulations.

1 Introduction

An important question in the area of mixed integer programming (MIP) is char-
acterizing when a disjunctive constraint of the form

z ∈
⋃
i∈I

Pi ⊂ IRn, (1)

where Pi = {z ∈ IRn : Aiz ≤ bi}, can be modeled as a binary integer program.
Jeroslow and Lowe ([1–3]) showed that a necessary and sufficient condition is
for {Pi}i∈I to be a finite family of polyhedra with a common recession cone.
? This research has been supported by NSF grant CMMI-0522485, AFOSR grant

FA9550-07-1-0177 and Exxon Mobil Upstream Research Company.
?? The authors would like to thank Daniel Espinoza for pointing out the relation be-

tween SOS2 compatible functions and Gray codes.



2

Using results from disjunctive programming ([4–9]) they showed that, in this
case, constraint (1) can be simply modeled as

Aizi ≤ xibi ∀i ∈ I, z =
∑
i∈I

zi,
∑
i∈I

xi = 1, xi ∈ {0, 1} ∀i ∈ I. (2)

The possibility of reducing the number of continuous variables in these mod-
els has been studied in [10–12], but the number of binary variables and extra
constraints needed to model (1) has received little attention. However, it has
been observed that a careful construction can yield a much smaller model than
a naive approach. Perhaps the simplest example comes from the equivalence be-
tween general integer and binary integer programming (see for example page 12
of [13]). The requirement x ∈ [0, u]∩ZZ can be written in the form (1) by letting
Pi := {i} for all i in I := [0, u] ∩ ZZ which, after some algebraic simplifications,
yields a representation of the form (2) given by

z =
∑
i∈I

i xi,
∑
i∈I

xi = 1, xi ∈ {0, 1} ∀i ∈ I. (3)

This formulation has a number of binary variables that is linear in |I| and can
be replaced by

z =
blog2 uc∑
i=0

2i xi, z ≤ u, xi ∈ {0, 1} ∀i ∈ {0, . . . , blog2 uc}. (4)

In contrast to (3), (4) has a number of binary variables that is logarithmic in
|I|. Although (4) appears in the mathematical programming literature as early
as [14], and the possibility of modeling with a logarithmic number of binary
variables and a linear number of constraints is studied in the theory of disjunctive
programming (see for example [5]) and in [15], we are not aware of any other
non-trivial formulations with a logarithmic number of binary variables and extra
constraints.

The main objective of this work is to show that some well known classes of
constraints of the form (1) can be modeled with a logarithmic number of binary
variables and extra constraints. Although modeling with fewer binary variables
and constraints might seem advantageous, a smaller formulation is not necessar-
ily a better formulation (see for example section I.1.5 of [16]). More constraints
might provide a tighter LP relaxation and more variables might do the same by
exploiting the favorable properties of projection (see for example [17]). For this
reason, we will also show that under some conditions our new formulations are
as tight as any other mixed integer formulation, and we empirically show that
they can provide a significant computational advantage.

The paper is organized as follows. In Section 2 we study the modeling of a
class of hard combinatorial constraints. In particular we introduce the first for-
mulations for SOS1 and SOS2 constraints that use only a logarithmic number of
binary variables and extra constraints. In Section 3 we relate the modeling with
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a logarithmic number of binary variables to branching and we introduce suffi-
cient conditions for these models to exist. We then show that for a broad class of
problems the new formulations are as tight as any other mixed integer program-
ming formulation. In Section 4 we use the sufficient conditions to present a new
formulation for non-separable piecewise linear functions of one and two variables
that uses only a logarithmic number of binary variables and extra constraints. In
Section 5 we show that the new models for piecewise linear functions of one and
two variables can perform significantly better than the standard binary models.
Section 6 gives some conclusions.

2 Modeling a Class of Hard Combinatorial Constraints

In this section we study a class of constraints of the form (1) in which the
polyhedra Pi have the simple structure of only allowing some subsets of variables
to be non-zero. Specifically, we study constraints over a vector of continuous
variables λ indexed by a finite set J that are of the form

λ ∈
⋃
i∈I

Q(Si) ⊂ ∆J , (5)

where I is a finite set, ∆J := {λ ∈ IRJ
+ :

∑
j∈J λj ≤ 1} is the |J |-dimensional

simplex in IRJ , Si ⊂ J for each i ∈ I and

Q(Si) =
{
λ ∈ ∆J : λj ≤ 0 ∀ j /∈ Si

}
. (6)

Furthermore, without loss of generality we assume that
⋃
i∈I Si = J . Except

for Theorem 3, our results easily extend to the case in which the simplex ∆J

is replaced by a box in IRJ
+, but the restriction to ∆J greatly simplifies the

presentation.
Disjunctive constraint (5) includes SOS1 and SOS2 constraints [18] over con-

tinuous variables in ∆J . SOS1 constraints on λ ∈ IRn
+ allow at most one of the

λ variables to be non-zero which can be modeled by letting I = J = {1, . . . , n}
and Si = {i} for each i ∈ I. SOS2 constraints on (λj)nj=0 ∈ IRn+1

+ allow at
most two λ variables to be non-zero and have the extra requirement that if two
variables are non-zero their indices must be adjacent. This can be modeled by
letting I = {1, . . . , n}, J = {0, . . . , n} and Si = {i− 1, i} for each i ∈ I.

Mixed integer binary models for SOS1 and SOS2 constraints have been known
for many years (see for example [19, 20]), and some recent research has focused
on branch-and-cut algorithms that do not use binary variables [21–24]. However,
the incentive of being able to use state of the art MIP solvers (see for example
the discussion in section 5 of [25]) makes binary models for these constraints
very attractive (see for example [26–29]).

We first review a formulation for (5) with a linear number of binary variables
and then we give a formulation with a logarithmic number of binary variables
and a linear number of extra constraints. We then study how to obtain a formu-
lation with a logarithmic number of variables and a logarithmic number of extra
constraints and show that this can be achieved for SOS1 and SOS2 constraints.
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The most direct way of formulating (5) as an integer programming problem
is by assigning a binary variable for each set Q(Si) and using formulation (2).
After some algebraic simplifications this yields the formulation of (5) given by

λ ∈ ∆J , λj ≤
∑
i∈I(j)

xi ∀j ∈ J,
∑
i∈I

xi = 1, xi ∈ {0, 1} ∀i ∈ I

where I(j) = {i ∈ I : j ∈ Si}. This gives a formulation with |I| binary variables
and |J |+ 1 extra constraints and yields the standard formulations for SOS1 and
SOS2 constraints. (We consider ∆J as the original constraints and disregard the
bounds on x.)

The following proposition shows that by using techniques from [15] we can
obtain a formulation with dlog2 |I|e binary variables and |I| extra constraints.

Proposition 1. Let B : I → {0, 1}dlog2 |I|e be any injective function. Then

λ ∈ ∆J ,
∑
j /∈Si

λj ≤
∑

l/∈σ(B(i))

xl +
∑

l∈σ(B(i))

(1− xl) ∀i ∈ I,

xl ∈ {0, 1} ∀l ∈ L(|I|) (7)

where σ(B) is the support of vector B and L(r) := {1, . . . , dlog2 re}, is a valid
formulation for (5).

For SOS1 constraints, for which |I(j)| = 1 for all j ∈ J , we can obtain the
following alternative formulation of (5) which has dlog2 |I|e binary variables and
2dlog2 |I|e extra constraints.

Proposition 2. Let B : I → {0, 1}dlog2 |I|e be any injective function. Then

λ ∈ ∆J ,
∑

j∈J+(l,B)

λj ≤ xl,
∑

j∈J0(l,B)

λj ≤ (1− xl), xl ∈ {0, 1} ∀l ∈ L(|I|), (8)

where J+(l, B) = {j ∈ J : ∀i ∈ I(j) l ∈ σ(B(i))} and J0(l, B) = {j ∈ J :
∀i ∈ I(j) l /∈ σ(B(i))}, is a valid formulation for SOS1 constraints.

The following example illustrates formulation (8) for SOS1 constraints.

Example 1 Let J = {1, . . . , 4} and (λj)4j=1 ∈ ∆J be constrained to be SOS1
and let B∗(1) = (1, 1)T , B∗(2) = (1, 0)T , B∗(3) = (0, 1)T and B∗(4) = (0, 0)T .
Formulation (8) for this case with B = B∗ is

λ ∈ ∆J , x1, x2 ∈ {0, 1}, λ1+λ2 ≤ x1, λ3+λ4 ≤ 1−x1, λ1+λ3 ≤ x2,

λ2 + λ4 ≤ 1− x2.

Formulation (8) is valid for SOS1 constraints independent of the choice of B. In
contrast, for SOS2 constraints, where |I(j)| = 2 for some j ∈ J , formulation (8)
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can be invalid for some choices of B. This is illustrated by the following example.

Example 2
Let J = {0, . . . , 4} and (λj)4j=0 ∈ ∆J be constrained to be SOS2. Formulation
(8) for this case with B = B∗ is

λ ∈ ∆J , x1, x2 ∈ {0, 1}, λ0 + λ1 ≤ x1, λ3 + λ4 ≤ 1− x1, λ0 ≤ x2,

λ4 ≤ 1− x2

which has λ0 = 1/2, λ2 = 1/2, λ1 = λ3 = λ4 = 0, x1 = x2 = 1 as a feasible
solution that does not comply with SOS2 constraints. However, the formulation
can be made valid by adding constraints

λ2 ≤ x1 + x2, λ2 ≤ 2− x1 − x2. (9)

For any B we can always correct formulation (8) for SOS2 constraints by
adding a number of extra linear inequalities, but with a careful selection of
B the validity of the model can be preserved without the need for additional
constraints.

Definition 1 (SOS2 Compatible Function). We say that an injective func-
tion B : {1, . . . , n} → {0, 1}dlog2(n)e is compatible with an SOS2 constraint on
(λj)nj=0 ∈ IRn+1

+ if for all i ∈ {1, . . . , n− 1} the vectors B(i) and B(i+ 1) differ
in at most one component.

Theorem 1. If B is an SOS2 compatible function then (8) is valid for SOS2
constraints.

The following example illustrates how an SOS2 compatible function yields a
valid formulation.

Example 2 continued
Let B0(1) = (1, 0)T , B0(2) = (1, 1)T , B0(3) = (0, 1)T and B0(4) = (0, 0)T .
Formulation (8) with B = B0 for the same SOS2 constraints is

λ ∈ ∆J , x1, x2 ∈ {0, 1}
λ0 + λ1 ≤ x1, λ3 + λ4 ≤ (1− x1) (10)
λ2 ≤ x2, λ0 + λ4 ≤ (1− x2). (11)

An SOS2 compatible function can always be constructed and for each n ∈ ZZ+

there are several SOS2 compatible functions. In fact, definition 1 is equivalent to
requiring (B(i))ni=1 to be a reflected binary or Gray code (see for example [30]).
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3 Branching and Modeling with a Logarithmic Number
of Binary Variables and Constraints

The way in which formulation (8) is constructed does not provide a clear inter-
pretation of the binary variables used, which makes it hard to extend to other
combinatorial constraints. In this section we develop a more general scheme
which is related to specialized branching schemes.

We can identify each vector in {0, 1}dlog2 |I|e with a leaf in a binary tree with
dlog2 |I|e levels in a way such that each component corresponds to a level and
the value of that component indicates the selected branch in that level. Then,
using function B we can identify each set Q(Si) with a leaf in the binary tree and
we can interpret each of the dlog2 |I|e variables as the execution of a branching
scheme on sets Q(Si). The formulations in Example 2 illustrates this idea.

In formulation (8) with B = B0 the branching scheme associated with x1

sets λ0 = λ1 = 0 when x1 = 0 and λ3 = λ4 = 0 when x1 = 1, which is equivalent
to the traditional SOS2 constraint branching of [18] whose dichotomy is fixing to
zero variables to the “left of” (smaller than) a certain index in one branch and
to the “right” (greater) in the other. In contrast, the scheme associated with x2

sets λ2 = 0 when x2 = 0 and λ0 = λ4 = 0 when x2 = 1, which is different from
the traditional branching as its dichotomy can be interpreted as fixing variables
in the “center” and on the “sides” respectively. If we use function B∗ instead
we recover the traditional branching. The drawback of the B∗ scheme is that
the second level branching cannot be implemented independently of the first
one using linear inequalities. For B0 the branch alternatives associated with x2

are implemented by (11), which only include binary variable x2. In contrast, for
B∗ one of the branching alternatives requires additional constraints (9) which
involve both x1 and x2.

This example illustrates that a sufficient condition for modeling (5) with a
logarithmic number of binary variables and extra constraints is to have a binary
branching scheme for λ ∈

⋃
i∈I Q(Si) with a logarithmic number of dichotomies

and for which each dichotomy can be implemented independently. This condition
is formalized in the following definition.

Definition 2. (Independent Branching Scheme) {Lk, Rk}dk=1 with Lk, Rk ⊂ J
is an independent branching scheme of depth d for disjunctive constraint (5) if⋃
i∈I Q(Si) =

⋂d
k=1 (Q(Lk) ∪Q(Rk)).

This definition can then be used in the following theorem and immediately
gives a sufficient condition for modeling with a logarithmic number of variables
and constraints.

Theorem 2. Let {Q(Si)}i∈I be a finite family of polyhedra of the form (6) and
let {Lk, Rk}dlog2(|I|)e

k=1 be an independent branching scheme for λ ∈
⋃
i∈I Q(Si).
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Then

λ ∈ ∆J ,
∑
j /∈Lk

λj ≤ xk,
∑
j /∈Rk

λj ≤ (1− xk),

xk ∈ {0, 1} ∀k ∈ {1, . . . , dlog2(|I|)e} (12)

is a valid formulation for (5) with dlog2(|I|)e binary variables and 2dlog2(|I|)e
extra constraints.

Formulation (8) with B = B0 in Example 2 illustrates how an SOS2 compat-
ible function induces an independent branching scheme for SOS2 constraints. In
general, given an SOS2 compatible function B : {1, . . . , n} → {0, 1}dlog2(n)e the
induced independent branching is given by Lk = J \J+(k,B), Rk = J \J0(l, B)
for all k ∈ {1, . . . , n}.

Formulation (12) in Proposition 2 can be interpreted as a way of implement-
ing a specialized branching scheme using binary variables. Similar techniques for
implementing specialized branching schemes have been previously introduced for
example, in [31] and [32], but the resulting models require at least a linear number
of binary variables. To the best of our knowledge the first non-trivial indepen-
dent branching schemes of logarithmic depth are the ones for SOS1 constraints
from Proposition 2 and for SOS2 constraints induced by an SOS2 compatible
function.

Formulation (12) can be obtained by algebraic simplifications from formula-
tion (2) of (5) rewritten as the conjunction of two-term polyhedral disjunctions.
Both the simplifications and the rewrite can result in a significant reduction in
the tightness of the linear programming relaxation of (12) (see for example [5,
10–12]). Fortunately, as the following propositions shows, the restriction to ∆J

makes (12) as tight as any other mixed integer formulation for (5).

Theorem 3. Let Pλ and Qλ be the projection onto the λ variables of the LP
relaxation of formulation (12) and of any other mixed integer programming for-
mulation of (5) respectively. Then Pλ = conv

(⋃
i∈I Q(Si)

)
and hence Pλ ⊆ Qλ.

Theorem 3 might no longer be true if we do not restrict to ∆J , but this
restriction is not too severe as it includes a popular way of modeling piecewise
linear functions. We explore this further in the following section.

4 Modeling Nonseparable Piecewise Linear Functions of
Two Variables

In this section we use Theorem 2 to construct a model for non-separable piece-
wise linear functions of two variables that use a number of binary variables and
extra constraints that is logarithmic in the number of linear pieces of the func-
tions. Although some non-separable functions can be separated there are many
practical reasons to avoid this separation (see for example the discussion on page
569 of [24]).
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Imposing SOS2 constraints on (λj)nj=0 ∈ ∆J with J = {0, . . . , n} is a popular
way of modeling a one variable piecewise-linear function which is linear in n
different intervals (see for example [22, 23]). This approach has been extended to
non-separable piecewise linear functions in [33, 24, 34, 35]. For functions of two
variables this approach can be described as follows.

We assume that for an even integer w we have a continuous function f :
[0, w]2 → IR which we want to approximate by a piecewise linear function. A
common approach is to partition [0, w]2 into a number of triangles and approx-
imate f with a piecewise linear function that is linear in each triangle. One
possible triangulation of [0, w]2 is the J1 or “Union Jack” triangulation (see for
example [36]) which is depicted in Figure 1(a) for w = 4. The J1 triangulation
of [0, w]2 for any even integer w is simply obtained by adding copies of the 8
triangles shaded gray in Figure 1(a). This yields a triangulation with a total
of 2w2 triangles. We use this triangulation to approximate f with a piecewise

8

Imposing SOS2 constraints on (λj)n
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for g(y) (see for example [33, 24, 34]) is

∑

j∈J

λj = 1, y =
∑
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⋃

i∈I

Q(Si) ⊂ ∆J , (13b)

where J := {0, . . . , w}2, vj = j for j ∈ J . This model becomes a traditional
model for one variable piecewise linear functions (see for example [22, 23]) when
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To obtain a mixed integer formulation of (13) with a logarithmic number
of binary variables and extra constraints it suffices to construct an independent
binary branching scheme of logarithmic depth for (13b) and use formulation
(12). Binary branching schemes for (13b) with a similar triangulation have been
developed in [34] and [24], but they are either not independent or have too many
dichotomies. We adapt some of the ideas of these branching schemes to develop
an independent branching scheme for the two-dimensional J1 triangulation. Our
independent branching scheme will basically select a triangle by forbidding the
use of vertices in J . We divide this selection into two phases. We first select the
square in the grid induced by the triangulation and we then select one of the
two triangles inside this square.

To implement the first branching phase we use the observation made in [24,
34] that selecting a square can be achieved by applying SOS2 branching to each
component. To make this type of branching independent it then suffices to use
the independent SOS2 branching induced by an SOS2 compatible function. This
results in the set of constraints

w∑
s=0

∑
r∈J+

2 (l,B,w)

λ(r,s) ≤ x(1,l),

w∑
s=0

∑
r∈J0

2 (l,B,w)

λ(r,s) ≤ 1− x(1,l),

x(1,l) ∈ {0, 1} ∀l ∈ L(w), (14a)
w∑
r=0

∑
s∈J+

2 (l,B,w)

λ(r,s) ≤ x(2,l),

w∑
r=0

∑
s∈J0

2 (l,B,w)

λ(r,s) ≤ 1− x(2,l),

x(2,l) ∈ {0, 1} ∀l ∈ L(w), (14b)

where B is an SOS2 compatible function and J+
2 (l, B,w), J0

2 (l, B,w) are the
specializations of J+(l, B), J0(l, B) for SOS2 constraints on (λj)wj=0. Constraints
(14a) implement the independent SOS2 branching for the first coordinate and
(14b) do the same for the second one.

To implement the second phase we use the branching scheme depicted in
Figure 1(b) for the case w = 4. The dichotomy of this scheme is to select the
triangles colored white in one branch and the ones colored gray in the other.
For general w, this translates to forbidding the vertices (r, s) with r even and
s odd in one branch (square vertices in the figure) and forbidding the vertices
(r, s) with r odd and s even in the other (diamond vertices in the figure). This
branching scheme selects exactly one triangle of every square in each branch and
induces the set of constraints∑

(r,s)∈L

λ(r,s) ≤ x0,
∑

(r,s)∈R

λ(r,s) ≤ 1− x0, x0 ∈ {0, 1}, (15)

where L = {(r, s) ∈ J : r is even and s is odd} and R = {(r, s) ∈ J :
r is odd and s is even}. This formulation is illustrated by the following example.
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Example 3 Constraints (14)–(15) for w = 2 are

λ(0,0) + λ(0,1) + λ(0,2) ≤ x(1,1), λ(2,0) + λ(2,1) + λ(2,2) ≤ 1− x(1,1)

λ(0,0) + λ(1,0) + λ(2,0) ≤ x(2,1), λ(0,2) + λ(1,2) + λ(2,2) ≤ 1− x(2,1)

λ(0,1) + λ(2,1) ≤ x0, λ(1,0) + λ(1,2) ≤ 1− x0.

A portion of the associated branching scheme is shown in Figure 2. The shaded
triangles inside the nodes indicates the triangles forbidden by the correspond-
ing assignment of the binary variables. The restriction to the first coordinate
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branching independent it then suffices to use the independent SOS2 branching induced by an SOS2
compatible function. This results in the set of constraints given by

w∑

s=0

∑

r∈J+
2 (l,B,w)

λ(r,s) ≤ x(1,l),
w∑

s=0

∑

r∈J0
2 (l,B,w)

λ(r,s) ≤ 1− x(1,l), x(1,l) ∈ {0, 1} ∀l ∈ L(w) (14a)

w∑

r=0

∑

s∈J+
2 (l,B,w)

λ(r,s) ≤ x(2,l),
w∑

r=0

∑

s∈J0
2 (l,B,w)

λ(r,s) ≤ 1− x(2,l), x(2,l) ∈ {0, 1} ∀l ∈ L(w), (14b)

where B is an SOS2 compatible function and J+
2 (l, B, w), J0

2 (l, B, w) are the specializations of
J+(l, B), J0(l, B) for SOS2 constraints on (λj)w

j=0. Constraints (14a) implement the independent
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branching independent it then suffices to use the independent SOS2 branching induced by an SOS2
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Fig. 1. Triangulations and branching

Fig. 2. Partial B&B tree from Example 3

of [0, w]2 yields a logarithmic formulation for piecewise linear functions of one
variable that only uses one of the SOS2 branchings and does not use the trian-
gle selecting branching. Furthermore, under some mild assumptions, the model
can be extended to non-uniform grids by selecting different values of vj and to
functions of 3 variables as well.

5 Computational Results

In this section we computationally test the logarithmic models for piecewise lin-
ear functions of one and two variables against some other existing models. For
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a set of transportation problems with piecewise linear cost functions, the loga-
rithmic models provide a significant advantage in almost all of our experiments.

We denote the model for piecewise linear functions of one and two variables
from section 4 by (Log). From the traditional models we selected the one usually
denoted as the incremental model. This model for one variable functions appears
as early as [19, 37, 20] and it has been recently shown to have favorable integrality
and tightness properties [26, 28, 29]. The incremental model was extended to
functions of several variables in [35]. We denote this model by (Inc). We also
include two models that are based on independent branching schemes of linear
depth. The first model is based on the independent branching scheme for SOS2
constraints on (λj)nj=0 given by Lk = {k, . . . , n}, Rk = {0, . . . , k} for every
k ∈ {1, . . . , n−1}. This formulation has been independently developed in [32] and
is currently defined only for functions of one variable. We denote this model by
(LB1). The second model is based on an independent branching defined in [24, p.
573]. This branching scheme is defined for any triangulation and it has one branch
for every vertex in the triangulation. In particular for piecewise linear functions
of one variable with k intervals or segments the scheme has k + 1 branches and
for piecewise linear functions on a k×k grid it has (k+ 1)2 branches. We denote
the model by (LB2). We also tested some other piecewise linear models, but do
not report results for them since they did not significantly improve the worst
results reported here. All models were generated using Ilog Concert Technology
and solved using CPLEX 9 on a dual 2.4GHz Linux workstation with 2GB of
RAM. Furthermore, all tests were run with a time limit of 10000 seconds.

The first set of experiments correspond to piecewise linear functions of one
variable for which we used the transportation models from [25]. We selected
the instances with 10 supply and 10 demand nodes and for each of the 5 avail-
able instances we generated several randomly generated objective functions. We
generated a separable piecewise linear objective function given by the sum of
concave non-decreasing piecewise linear functions of the flow in each arc. For
each instance and number of segments we generated 20 objective functions to
obtain a total of 100 instances for each number of segments. Tables 1(a), 1(b)
and 1(c) show the minimum, average, maximum and standard deviation of the
solve times in seconds for 4, 8 and 16 segments. The tables also shows the num-
ber of times the solves failed because the time limit was reached and the number
of times each formulation had the fastest solve time. As a final test for the one
variable functions we tested the 3 best models on 100 instances with functions
with 32 segments. Table 1(d) presents the statistics for these instances. For 16
and 32 segments we excluded the “wins” row as (Log) had the fastest solve times
for every instance. The next set of experiments correspond to piecewise linear
functions of two variables and we again used the 10× 10 transportation models
from [25]. In this case we took two copies of the same transportation model for
each instance. We used an objective function which is the sum over all the arcs
in the original transportation problem of non-separable two variable piecewise
linear functions of the flows in the two copies of the arc. For each arc we gener-
ated the corresponding two variable piecewise linear function by triangulating a
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domain of the form [0, w]2 as described in section 4 with a 8 × 8 segment grid
to obtain a total of 128 triangles with 81 vertices. We then interpolated on this
grid the functions of the two flows xe, xe′ given by

√
(a1xe + b1)(a2xe′ + b2) for

a1, b1, a2, b2 ∈ IR+ randomly generated independently for each arc. In addition,
we eliminated the supply constraints from the two copies of the transportation
problem to make the instances easier to solve. These problems were not created
with a realistic application in mind and are just a simple extension of the prob-
lems in the previous set designed to include two variable non-separable functions.
We again generated 20 objective functions for each of the original instances for a
total of 100 instances. We excluded formulation (LB1) in this second set of tests
as it is only valid for functions of one variable. Table 2(a) shows the statistics for
this set of instances. As a final experiment we generated a new set of problems
using a 16× 16 grid for the interpolation obtaining a total of 512 triangles and
289 vertices. For these instances we only used formulations (Log) and (LB2).
Table 2(b) shows the statistics for this last set of instances. It is clear that one
of the advantages of the (Log) formulation is that it is smaller than the other

stat (Log) (LB1) (LB2) (Inc)

min 0 0 1 1
avg 2 2 4 3
max 9 9 27 16
std 1 1 3 2
fails 0 0 0 0
wins 72 27 0 1

(a) 4 segments.

stat (Log) (LB1) (LB2) (Inc)

min 1 0 1 0
avg 8 19 88 44
max 44 162 1171 245
std 8 19 147 36
fails 0 0 0 0
wins 98 1 1 0

(b) 8 segments.

stat (Log) (LB1) (LB2) (Inc)

min 1 13 15 46
avg 19 127 3561 374
max 83 652 10000 1859
std 17 105 3912 338
fails 0 0 21 0

(c) 16 segments.

stat (Log) (LB1) (Inc)

min 3 113 182
avg 33 880 1445
max 174 10000 8580
std 33 1289 1327
fails 0 1 0

(d) 32 segments.

Table 1. Solve times for one variable functions [s].

stat (Log) (LB2) (Inc)

min 1 3 95
avg 11 78 3521
max 102 967 10000
std 15 140 3648
fails 0 0 19
wins 99 1 0

(a) 8× 8 grid.

stat (Log) (LB2)

min 5 22
avg 374 2910
max 10000 10000
std 1057 3444
fails 1 11
wins 98 2
(b) 16× 16 grid.

Table 2. Solve times for two variable functions on a 8× 8 and 16× 16 grids [s].
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formulations while retaining favorable tightness properties. In addition, formu-
lation (Log) effectively transforms CPLEX’s binary variable branching into a
specialized branching scheme for piecewise linear functions. This allows formula-
tion (Log) to combine the favorable properties of specialized branching schemes
and the technology in CPLEX’s variable branching. This last property is what
probably allows (LB1) and (LB2) to outperform (Inc) too. In this regard we
would like to emphasise the fact that all models tested are pure mixed integer
programming problems (i.e. they do not include high level SOS2 constraints).
Although CPLEX allows SOS2 high level descriptions and can use specialized
SOS2 branching schemes that do not use binary variables the performance of
these features for CPLEX 9 was inferior to most binary models we tested (in-
cluding all for which results are presented here). Preliminary tests with CPLEX
11 show that these features have been considerably improved, which could make
them competitive with the binary models. It is clear that formulation (Log) is
superior to all of the others and that its advantage increases as the number of
segments grows.

6 Conclusions

We have introduced a technique for modeling hard combinatorial problems with
a mixed 0-1 integer programing formulation that uses a logarithmic number of
binary variable and extra constraints. It is based on the concept of independent
branching which is closely related to specialized branching schemes for combi-
natorial optimization. Using this technique we have introduced the first binary
formulations for SOS1 and SOS2 constraints and for one and two variable piece-
wise linear functions that use a logarithmic number of binary variables and extra
constraints. Finally, we have illustrated the usefulness of these new formulations
by showing that for one and two variable piecewise linear functions they provide
a significant computational advantage.

There are still a number of unanswered questions concerning necessary and
sufficient conditions for the existence of formulations with a logarithmic number
of binary variables and extra constraints. Simple examples show that it may not
always be possible to obtain such a model. Moreover, if we allow the formulation
to have a number of binary variables and extra constraints whose asymptotic
growth is logarithmic our sufficient conditions do not seem to be necessary.
Consider cardinality constraints that restrict at most K components of λ ∈
[0, 1]n to be non-zero. This constraint does not satisfy the sufficient conditions
but it does have a formulation with a number of variables and constraints of
logarithmic order. We can write cardinality constraints in the form (5) by letting
J = {1, . . . , n}, I = {1, . . . ,m} for m =

(
n
K

)
and {Sj}mj=1 be the family of all

subsets of J such that |Si| = K. The traditional formulation for cardinality
constraints is [19, 20]

n∑
j=1

xj ≤ K; λj ∈ [0, 1], λj ≤ xj , xj ∈ {0, 1} ∀j ∈ J. (16)
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Let n be an even number. By choosing K = n/2, which is the non-trivial car-
dinality constraint with the largest number of sets Si, we can use the fact that
for K = n/2 we have n ≤ 2 log2

( (
n
K

) )
to conclude that (16) has O(log2(|I|))

binary variables and extra constraints.
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