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1. Introduction

We consider Mixed Integer Linear Programming (MILP) formulations of joint probabilistic or chance
constraints for finitely distributed random variables. For arbitrary distributions such constraints have been
extensively studied and have many applications (see for example [18, 22] and the references within). The
discrete distribution case has been studied in [3, 7, 11, 13, 15, 21] and used in applications in [3, 4, 12, 16, 20].
Finite distributions also appear naturally in Sample Average Approximations (SAA) of general probabilistic
constraints [14].

We concentrate on the probabilistically constrained set Q := {x ∈ Rd : P
�
x ≥ ξ

�
≥ 1−δ} where δ ∈ (0, 1)

and ξ is a d-dimensional random vector with finite support {ξ1, . . . , ξS} ⊂ Rd
+ and with P(ξ = ξs) = 1/S for

each s ∈ {1, . . . , S}. A standard MILP formulation for Q was introduced in [19] and is given by

S�

s=1

zs ≤ k, (1a)

zs ∈ {0, 1} ∀s ∈ {1, . . . , S} (1b)

x ≥ (1− zs)ξ
s ∀s ∈ {1, . . . , S} (1c)

where k := �δS�. This formulation uses binary variables z ∈ {0, 1}S such that zs = 1 if x � ξs and restricts
the number of violated x ≥ ξs inequalities through the cardinality constraint (1a). The Linear Programming
(LP) relaxation of formulation (1) can be very weak, so valid inequalities for it have been developed in
[11, 15]. In addition, a strengthened version of (1) was introduced in [15]. Because of the use of big-M type
constraints based on lower bounds on x we denote the original and strengthened versions of (1) as Big-M
and Strong Big-M formulations respectively.

Alternative MILP formulations for Q can be constructed using standard disjunctive programming argu-
ments. Unfortunately, the sizes of the resulting formulations are exponential in S for fixed δ. Although this
size can be significantly reduced by using so-called (1 − δ)-efficient points [3, 7, 18, 21], the resulting sizes
usually remain exponential (e.g. see section 5.3 of [24] for an example in which the reduced formulation size
is exponential in d). Hence, it is not practical to use these disjunctive formulations directly and they are
mostly used as a base for specialized algorithms [3, 6, 7, 8] or to construct valid inequalities [19, 21, 23].

Our main contribution is to introduce two new MILP formulations for Q. The first formulation can be
used to construct a hierarchy of relaxations for Q and the second one provides a computational advantage
over other formulations. In addition, both formulations can consider more than one row of (1c) at a time.
To the best of our knowledge, no other existing formulation can do this without assuming a special structure
for {ξ1, . . . , ξS}.

The rest of this paper is organized as follows. In Section 2 we introduce the new formulations and their
theoretical properties and in Section 3 we present results of computational experiments that illustrate the
strength and effectiveness of existing and new formulations.

2. New Formulations

Our new formulations rely on the following disjunctive characterization of the feasible region of (1) when
considering only a subset D of the rows of (1c).

For D ⊂ {1, . . . , d} let xD = (xi)i∈D, ξsD = (ξsi )i∈D and define QD :=
�
(x, z) ∈ RD×{0, 1}S :

�S
s=1 zs ≤

k, xD ≥ (1− zs)ξsD ∀s ∈ {1, . . . , S}
�
. Additionally for D ⊂ {1, . . . , d} and g ∈ RD let vD(g) = {s ∈

{1, . . . , S} : g � ξsD} be the set of scenarios for which g violates constraint g ≥ ξsD and define QD
g :=�

(x, z) ∈ RD × {0, 1}S : xD ≥ g, zs = 1 ∀s ∈ vD(g),
�

s/∈vD(g) zs ≤ (k − |vD(g)|)
�
. We then have the

following two lemmas whose proofs are straightforward.

Proposition 1. Let D ⊂ 2{1,...,d} be such that
�

D∈D D = {1, . . . , d}, then (x, z) satisfies (1) if and only if
(xD, z) ∈ QD for all D ∈ D.
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Proposition 2. Let GD :=
�
g ∈

�
j∈D {ξsj}Ss=1 : |vD(g)| ≤ k

�
where

�
denotes the cartesian product. Then

QD =
�

g∈GD
QD

g .

Using these two propositions we can use standard MILP formulations for disjunctive constraints to obtain
reformulations of (1). However, before we give them, we refine the characterization of QD in Proposition 2
by reducing the number of points in GD as follows.

Proposition 3. Let G̃D :=
�k

l=0

�
g ∈

�
j∈D {ξsj}Ss=1 : |vD(g)| ≤ l and |vD(g − q)| > l ∀q ∈ RD

+ \ {0}.
�

then
QD =

�

g∈G̃D

QD
g . (2)

Proof. For the first inclusion let (x0, z0) ∈ QD and for each j ∈ D let sj := argmaxSs=1{ξsj : x0
j ≥ ξsj}.

Let g ∈ RD be such that gj := ξ
sj
j for each j. Then g ∈ G̃D and (x0, z0) ∈ QD

g . The reverse inclusion is
direct.

When D is a singleton GD = G̃D, but when |D| > 1 G̃D can be significantly smaller that GD. However,
G̃D is usually a strict superset of the (1− δ)-efficient points associated with QD. These facts are illustrated
in the following example.

Example 1. Let d = 2, S = 4, ξ1 = (0, 20), ξ2 = (10, 10), ξ3 = (20, 0), ξ4 = (30, 30) and k = 2. For
this data the projection onto the x space of (1) is given by the shaded region in Figure 1. This depicts
the choice of D = {1, 2} for which ξi = ξi{1,2} for i ∈ {1, . . . , 4}. The figure also shows the projections

onto the x1 and x2 variables which corresponds to the choices of D = {1} and D = {2} respectively. In
these two last cases we can see that GD = G̃D (points surrounded by triangles for D = {1} and by squares

for D = {2}). For instance, for D = {2} we have that
���v{2}

�
ξ2{2}

���� = 2 and
���v{2}

�
ξ2{2} + λw

���� ≥ 3 for

any λ > 0. In contrast, for D = {1, 2} we have G̃D = {(10, 20), (20, 10), (20, 20), (30, 30)} (points sur-
rounded by circles) while GD = {(10, 20), (20, 10), (20, 20), (30, 30), (10, 30), (20, 30), (30, 10), (30, 20)} (points
surrounded by circles and diamonds). In particular, (20, 20) is in G̃D because

��v{1,2} ((20, 20))
�� = 1 and��v{1,2} ((20, 20)− q)

�� ≥ 2 for any q ∈ R2
+ (such as for q = −u and q = −v), while (30, 10) is not in G̃D

because
��v{1,2} ((30, 10))

�� = 2, but
��v{1,2} ((30, 10) + λh)

�� = 2 for any sufficiently small λ > 0. Finally,

note that G̃D strictly contains the set of (1− δ)-efficient points which is given by {(10, 20), (20, 10), (20, 20)}
(points surrounded by hexagons).

Using Propositions 1 and 3 we can construct the following two families of formulations for Q.
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Figure 1: Example 1

Proposition 4. Let D ⊂ 2{1,...,d} be such that
�

D∈D D = {1, . . . , d}. Then

xj ≥
�

g∈G̃D

yDg gj ∀j ∈ D, D ∈ D (3a)

�

g∈G̃D

yDg = 1 ∀D ∈ D (3b)

yDg ∈ {0, 1} ∀g ∈ G̃D, D ∈ D (3c)

0 ≤ zD,g
s ≤ yDg ∀g ∈ G̃D, s ∈ {1, . . . , S}, D ∈ D (3d)

zD,g
s ≥ yDg ∀g ∈ G̃D, s ∈ vD(g), D ∈ D (3e)

�

s/∈vD(g)

zD,g
s ≤ yDg (k − |vD(g)|) ∀g ∈ G̃D, D ∈ D (3f)

zs =
�

g∈G̃D

zD,g
s ∀s ∈ {1, . . . , S}, D ∈ D (3g)

zs ∈ {0, 1} ∀s ∈ {1, . . . , S} (3h)

is a valid formulation of Q. A smaller valid formulation is given by

xj ≥
�

g∈G̃D

yDg gj ∀j ∈ D, D ∈ D (4a)

�

g∈G̃D

yDg = 1 ∀D ∈ D (4b)

yDg ∈ {0, 1} ∀g ∈ G̃D, D ∈ D (4c)

S�

s=1

zs ≤ k (4d)

zs ∈ {0, 1} ∀s ∈ {1, . . . , S} (4e)

zs ≥
�

g:s∈vD(g)

yDg ∀s ∈ {1, . . . , S}, D ∈ D. (4f)
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Proof. For D = {D} we have that (3) with (3a) replaced by

xD,g
j ≥ yDg gj , xj =

�

g∈G̃D

xD,g
j ∀g ∈ G̃D, j ∈ D, D ∈ D (5)

is the standard MILP formulation of disjunctive characterization (2) (e.g. Corollary 2.1.2 of [2]). Then, for
D = {D}, we have that (3) is a valid formulation for QD as it is obtained from the standard disjunctive
formulation by eliminating variables xD,g

j in a way that naturally preserves formulation validity (e.g. [1, 5,
10]). The result then follows from Proposition 1.

Formulation (4) is valid for Q because it is obtained by similarly eliminating variables zD,g
s and xD,g

j

from the standard disjunctive formulation of (2) when using the equivalent definition of QD
g given by QD

g :=�
(x, z) ∈ RD × {0, 1}S : xD ≥ g, zs = 1 ∀s ∈ vD(g),

�S
s=1 zs ≤ k

�
.

The following two examples illustrate both formulations.

Example 2. For the data in Example 1 with D = {D} for D = {1, 2} formulation (3) is

10yD(10,20) + 20yD(20,10) + 20yD(20,20) + 30yD(30,30) ≤ x1, 20yD(10,20) + 10yD(20,10) + 20yD(20,20) + 30yD(30,30) ≤ x2

yD(10,20) + yD(20,10) + yD(20,20) + yD(30,30) = 1, yDg ∈ {0, 1} ∀g ∈ {(10, 20), (20, 10), (20, 20), (30, 30)}

0 ≤ zD,g
s ≤ yDg ∀s ∈ {1, . . . , 4}, g ∈ {(10, 20), (20, 10), (20, 20), (30, 30)}

zD,(10,20)
3 ≥ yD(10,20), zD,(10,20)

4 ≥ yD(10,20), zD,(20,10)
1 ≥ yD(20,10), zD,(20,10)

4 ≥ yD(20,10), zD,(20,20)
4 ≥ yD(20,20)

zD,(10,20)
1 + zD,(10,20)

2 ≤ 0, zD,(20,10)
2 + zD,(20,10)

3 ≤ 0,
3�

s=1

zD,(20,20)
s ≤ yD(20,20),

4�

s=1

zD,(30,30)
s ≤ 2yD(30,30)

zD,(10,20)
s + zD,(20,10)

s + zD,(20,20)
s + zD,(30,30)

s = zs, zs ∈ {0, 1} ∀s ∈ {1, . . . , 4}.

and formulation (4) is

10yD(10,20) + 20yD(20,10) + 20yD(20,20) + 30yD(30,30) ≤ x1, 20yD(10,20) + 10yD(20,10) + 20yD(20,20) + 30yD(30,30) ≤ x2

yD(10,20) + yD(20,10) + yD(20,20) + yD(30,30) = 1, yDg ∈ {0, 1} ∀g ∈ {(10, 20), (20, 10), (20, 20), (30, 30)}
4�

s=1

zs ≤ 2, zs ∈ {0, 1}, ∀s ∈ {1, . . . , 4}, z4 ≥ yD(10,20) + yD(20,10) + yD(20,20), z1 ≥ yD(20,10), z3 ≥ yD(10,20).

Example 3. For the data in Example 1 with D = {{1}, {2}} formulation (3) is

10y{j}10 + 20y{j}20 + 30y{j}30 ≤ xj ∀j ∈ {1, 2}

y{j}10 + y{j}20 + y{j}30 = 1 ∀j ∈ {1, 2}, y{j}g ∈ {0, 1} ∀g ∈ {10, 20, 30}, j ∈ {1, 2}

0 ≤ z{j},gs ≤ y{j}g ∀g ∈ {10, 20, 30}, s ∈ {1, . . . , 4}, j ∈ {1, 2}

z{1},103 ≥ y{1}10 , z{1},104 ≥ y{1}10 , z{1},204 ≥ y{1}20 z{2},101 ≥ y{2}10 , z{2},104 ≥ y{2}10 , z{2},204 ≥ y{2}20

z{1},101 + z{1},102 ≤ 0, z{2},102 + z{2},103 ≤ 0,
3�

s=1

z{j},20s ≤ y{j}20 ,
4�

s=1

z{j},30s ≤ 2y{j}30 ∀j ∈ {1, 2}

z{j},10s + z{j},20s + z{j},30s = zs ∀s ∈ {1, . . . , 4}, j ∈ {1, 2}, zs ∈ {0, 1} ∀s ∈ {1, . . . , 4}.

and formulation (4) is

10y{j}10 + 20y{j}20 + 30y{j}30 ≤ xj ∀ j ∈ {1, 2}

y{j}10 + y{j}20 + y{j}30 = 1 ∀j ∈ {1, 2}, y{j}g ∈ {0, 1} ∀g ∈ {10, 20, 30}, j ∈ {1, 2}
4�

s=1

zs ≤ 2, zs ∈ {0, 1} ∀s ∈ {1, . . . , 4}, z3 ≥ y{1}10 , z4 ≥ y{1}10 + y{1}20 z1 ≥ y{2}10 , z4 ≥ y{2}10 + y{2}20 .
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As shown in Examples 2 and 3, different choices of D yield different formulations. For instance, if we
take D = {Dl}dl=1 for Dl = {l} formulation (3) is equal to a known formulation that was first introduced
in [11] and which can also be obtained by combining Corollary 1 of [15] and Proposition 1 of [17]. Because
it is based on sets QD that only consider one row of (1c) at a time we refer to this formulation as the
1-row Extended Disjunctive Formulation and denote it by Ext-1-row. Similarly, if ξ1 ≥ ξ2 ≥ . . . ≥ ξS and
D = {D} for D = {1, . . . , d} then (3) reduces to the formulation in Theorem 9 of [11]. To the best of our
knowledge these are the only two special cases of formulations (3) and (4) that have previously appeared in
the literature. In particular, (4) with D = {Dl}dl=1 for Dl = {l} is a new formulation which we denote by
Proj-1-row as it is obtained from Ext-1-row by a variable elimination procedure that is akin to projection.

Similarly, for even d, we denote formulations (3) and (4) with D = {Dl}d/2l=1 for Dl = {2l−1, 2l} as Ext-2-row
and Proj-2-row respectively. These two formulations are also new to this paper. In fact, to the best of our
knowledge, these are the first two formulations that consider more than one row of (1c) at a time without
assuming some special structure such as in Theorem 9 of [11].

We can of course use families D composed of sets of size greater than two. However, the sizes of (3)

and (4) are Θ
��

D∈D S ∗ |G̃D|
�

and Θ
��

D∈D(|G̃D|+ S)
�

respectively and |G̃D| can be exponential in

D (e.g. see section 5.3 of [24]). Formulations based on (3) and (4) are hence tractable only for specially
structured {ξs}Ss=1 (e.g. for the special case in Theorem 9 of [11] we get |G̃D| = k + 1) or for very small
values of maxD∈D |D|. Even in those cases, the formulations can be tractable only in a theoretical sense. For
instance, Ext-1-row is theoretically compact in the sense that it has a polynomial number of variables and
constraints: S+ d(2+ k+S+ kS) variables besides x and d/2(6+ 4S+ k(3+ k+2S)) constraints excluding
variable bounds. However, as noted in [11], it is still too large to be of direct practical use. Fortunately,
Proj-1-row has a much smaller size: S+(k+1)d variables besides x and (k+2)d+1 constraints. As we will
see in Section 3, this smaller size allows Proj-1-row to be of direct computational use.

2.1. Formulation Strength

The variable eliminations used to construct (3) and (4) clearly preserve formulation validity, but do not
always preserve formulation strength [1, 5, 10]. However, strength preservation is shown to hold for Ext-1-row
in [11]. A direct extension of the proof in [11] shows that this holds for all versions of (3).

Proposition 5. The projection of the LP relaxation of (3) onto the (x, z) variables is equal to
�

D∈D conv(QD).

Proof. It suffices to show the result for D = {D}, that is to show that (3) for a single D is equal to conv(QD).
In this case we have that (3) with (3a) replaced by (5) is the standard disjunctive formulation of

�
g∈G̃D

QD
g

and hence its LP relaxation is equal to conv
��

g∈G̃D
QD

g

�
(e.g. Corollary 2.1.2 of [2]). Because the extreme

points of the LP relaxation of QD
g have integer z variables we additionally have that the projection onto the

(x, z) variables of the LP relaxation of this disjunctive formulation is also equal to conv
�
QD

�
. The result

then follows by noting that any solution to the LP relaxation of (3) can be easily extended to a solution to
the standard disjunctive formulation (e.g. pick g0 ∈ G̃D, let xg

j = yggj for all j ∈ D, g ∈ G̃D \ {g0} and

xg0

j = yg0g0j + xj −
�

g∈G̃D
yggj).

As a direct corollary we obtain the following hierarchies of relaxations of conv(Q).

Corollary 6. Let {Dp}Pp=1 be a family of partitions of {1, . . . , d} such that D1 = {Dj}dj=1 for Dj = {j},
DP = {D} for D = {1, . . . , d} and Dp is a refinement of Dp+1 (That is Dp is obtained from Dp+1 by
partitioning some of its elements). For each p ∈ {1, . . . , P} let Hp be the projection onto the (x, z) variables
of the LP relaxation of formulation (3) for D = Dp. Then Hp =

�
D∈Dp

conv
�
QD

�
and hence H1 ⊃ H2 ⊃

. . . ⊃ HP = conv(Q).

In general, the strength of the LP relaxation of (3) will be equivalent to conv(Q) only when DP = {D}
for D = {1, . . . , d}. However, in Section 3.2 we will see that even Ext-2-row and Ext-1-row can be very
strong formulations. Furthermore, Theorem 8 of [11] shows that Ext-1-row is always at least as strong as
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Strong Big-M and, although the LP relaxation of Ext-1-row can yield bounds arbitrarily close to the ones
provided by Strong Big-M (see Section 5.4.1 of [24]), it is usually a significantly stronger formulation (see
Section 5.4.2 and 5.5 of [24]).

With regards to formulation (4) we have that the additional variable eliminations necessary to construct
it do result in a loss of strength. However, in Section 3.2 we will see that the loss of strength can be quite
small. Furthermore, we have that the strength of Proj-1-row is equivalent to that of another known strong
formulation for Q. This formulation was introduced in [15] and is given by

S�

s=1

zs ≤ k (6a)

zs ∈ {0, 1} ∀s ∈ {1, . . . , k} (6b)

xj ≥ ξ
[1]j
j +

k�

s=1

�
ξ
[s+1]j
j − ξ

[s]j
j

�
wj

s ∀j ∈ {1, . . . , d} (6c)

wj
s ≥ wj

s+1 ∀s ∈ {1, . . . , k − 1}, j ∈ {1, . . . , d} (6d)

z[s]j ≥ wj
s ∀s ∈ {1, . . . , k}, j ∈ {1, . . . , d} (6e)

wj
s ∈ {0, 1} ∀s ∈ {1, . . . , k}, j ∈ {1, . . . , d} (6f)

where [·]j : {1, . . . , S} → {1, . . . , S} is the one to one function such that ξ
[1]j
j ≥ ξ

[2]j
j ≥ . . . ≥ ξ

[S]j
j . Because

constraint (6c) forces xj ≥ ξsj in an incremental fashion we refer to this formulation as the Incremental
Model and denote it by Inc. Besides x this formulation has S + kd variables that are all binary and 2kd+ 1
constraints excluding variable bounds.

Proposition 7. The projection onto the (x, z) variables of the LP relaxations of Proj-1-row and Inc are
identical.

Proof. For any (x, z, w) feasible to the LP relaxation of Inc we have that (x, z, y) is a solution to the LP

relaxations of Proj-1-row for yi,s = wj
s−1 − wj

s for s ∈ {2, . . . , k + 1} and yi,1 = 1 −
�k+1

t=2 yi,t. Conversely,
for any (x, z, y) feasible to the LP relaxation of Proj-1-row we have that (x, z, w) is a solution to the LP

relaxations of Inc for wj
s =

�k+1
t=s+1 yj,t.

3. Computational Results

In this section we present some computational results illustrating properties of the two new formulations
introduced in the previous section. For this we use the probabilistically constrained fixed charge transporta-
tion problem given by

min
n�

i=1

d�

j=1

(ci,jwi,j + fi,jyi,j) (7a)

s.t.

d�

j=1

wi,j ≤ bi ∀i ∈ {1, . . . , n} (7b)

n�

i=1

wi,j = xj ∀j ∈ {1, . . . , d} (7c)

0 ≤ wi,j ≤ biyi,j ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , d} (7d)

yi,j ∈ {0, 1} ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , d} (7e)

P
�
x ≥ ξ

�
≥ 1− δ (7f)
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where ξ is a d-dimensional random vector of uncertain demands with finite support on {ξ1, . . . , ξS} ⊂ Rd
+

and with P(ξ = ξs) = 1/S for each s ∈ {1, . . . , S}. We use instances with n = 40 supply nodes, d = 10
demand nodes and varying number of samples of the uncertain demands S. Each instance is generated as
follows. ci,j ’s are independently chosen from the uniform distribution on [1, 100] and ξs’s are independently
chosen from the uniform distribution on [1, 50]10. To generate b we first independently chose di from the
uniform distribution on [1, 100] and then rescale it so the problem is feasible for each ξs. Finally, fi,j ’s are all
identical to 0 or 100 depending on the type of instance. All models are generated using IBM ILOG Concert
Technology and solved with IBM CPLEX v12 [9] on an 2.93GHz Xeon workstation. Our aim is to compare
the models out of the box without the need to add specialized cutting planes to CPLEX. Because of this
we are only able to test small and medium sized instances. Larger instances require the use of specialized
techniques such as the ones introduced in [11, 13, 15].

3.1. Solve Times

We begin by comparing the solve times for the MILP problems obtained when using different formulations
of (7f). In preliminary tests we discovered that the only formulations that could solve instances of non-trivial
sizes were Inc and Proj-1-row. These formulations have similar sizes and Proposition 7 shows they have the
same strength. In this section we illustrate how both formulations can provide a computational advantage
under different circumstances.

In our first experiment we consider a transportation problem without fixed charges (i.e. fi,j = 0 for all
i, j). We can then remove the y variables and the only binary variables of the resulting MILP are the ones
used to formulate (7f). We choose δ ∈ {0.10, 0.20} and S ∈ {2000, 3000}. Table 1(a) shows statistics for the
solve times over ten instances for each choice of δ and S. Solve times include the time required to generate
the formulations. In our second experiment we consider a transportation problem with fixed charges, so that
we have a MILP problem even with a deterministic version of (7f). These problems are much harder so we
now choose S ∈ {200, 300}. Table 1(b) shows statistics for the solve times over ten instances for each choice
of δ and S.

2000 3000
0.10 0.20 0.10 0.20

Inc min 10 33 2 77
avg 2 57 4 208
max 5 94 7 429
std 1 22 2 102

Proj-1-row min 5 1800 10 1800
avg 34 1800 88 1800
max 104 1800 282 1800
std 37 0 81 0

(a) Transportation Problems without Fixed Charges

200 300
0.10 0.20 0.10 0.20

Inc min 21 38 46 162
avg 479 578 591 1009
max 1800 1800 1800 1800
std 538 656 549 626

Proj-1-row min 9 25 12 53
avg 148 304 256 370
max 402 1007 1056 914
std 141 337 310 281

(b) Transportation Problems with Fixed Charges.

Table 1: Solve Times [s].

We see that for the problems without fixed charges Inc provides a substantial advantage over Proj-1-row,
while the reverse is true, although to a lesser extent, for problems with fixed charges. Tables 2 and 3 show
some solve statistics that shed some light on this behavior.

For example, we observe that Proj-1-row’s fewer rows seems to allow CPLEX’s preprocessing and cuts
to close more GAP at the root node for this formulation than for Inc. However, Inc’s smaller number of
non-zero coefficients seems to make the LP solve times smaller. We also observe that Inc seems to need fewer
branch-and-bound nodes to solve the problem. This could be due to branching being more efficient for this
model, which is a common property of incremental type formulations (see [25]). The relative effectiveness of
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2000 3000
0.10 0.20 0.10 0.20

Inc min 9 197 13 221
avg 57 369 56 604
max 174 713 109 1249
std 50 188 33 308

Proj-1-row min 289 22403 327 12892
avg 1845 38538 3244 16695
max 7245 57176 16254 20069
std 2468 14162 4897 2847

(a) Branch-and-bound nodes processed.

2000 3000
0.10 0.20 0.10 0.20

min 0.08 2.76 0.07 2.79
avg 0.35 4.26 0.43 4.41
max 0.82 5.40 0.76 5.49
std 0.26 0.82 0.25 0.94
min 0.08 2.75 0.05 2.77
avg 0.35 4.23 0.42 4.39
max 0.82 5.38 0.75 5.47
std 0.26 0.81 0.25 0.94

(b) Root GAP. [%]

2000 3000
0.10 0.20 0.10 0.20

Inc min 160 750 340 1480
avg 188 856 387 2068
max 220 960 410 2540
std 23 58 27 324

Proj-1-row min 180 1160 480 3360
avg 246 1605 704 4321
max 330 1930 990 6650
std 51 229 200 1062

(c) LP relaxation solve time. [ms]

2000 3000
0.10 0.20 0.10 0.20

Inc cols 4 6 6 9
bin 4 6 6 9
rows 4 8 6 12
nzs 13 23 19 34

Proj-1-row cols 4 6 6 9
bin 4 6 6 9
rows 2 4 3 6
nzs 210 817 464 1824

(d) Formulation Size
�
×103

�

Table 2: Statistics for Transportation Problems without Fixed Charges

200 300
0.10 0.20 0.10 0.20

Inc min 7 8 10 12
avg 77 57 80 67
max 246 175 181 112
std 70 56 60 34

Proj-1-row min 3 5 3 7
avg 38 50 48 47
max 100 175 154 108
std 33 58 47 36

(a) Branch-and-bound nodes processed
�
×103

�

200 300
0.10 0.20 0.10 0.20

min 2.90 4.69 2.94 5.49
avg 3.59 6.08 3.70 6.47
max 4.43 8.26 4.53 8.02
std 0.47 1.14 0.56 0.83
min 2.65 3.63 2.38 3.80
avg 3.63 5.15 3.60 5.49
max 4.49 7.33 4.47 7.22
std 0.54 1.15 0.62 0.95

(b) Root GAP. [%]

200 300
0.10 0.20 0.10 0.20

Inc min 14.20 26.50 17.30 46.20
avg 18.08 36.97 25.94 59.48
max 20.50 42.00 29.70 64.40
std 2.54 4.57 3.62 7.01

Proj-1-row min 20.50 39.50 31.80 63.60
avg 25.56 49.22 38.42 84.31
max 29.00 56.30 42.40 97.50
std 2.89 5.77 3.61 12.00

(c) LP relaxation solve time. [ms]

200 300
0.10 0.20 0.10 0.20

Inc cols 12 14 14 17
binaries 8 10 10 13
rows 8 12 10 16
nzs 28 38 34 50

Proj-1-row cols 12 14 14 17
binaries 8 10 10 13
rows 7 9 8 10
nzs 45 112 75 220

(d) Formulation Size
�
×102

�

Table 3: Statistics for Transportation Problems with Fixed Charges
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the formulations will then depend on which of these advantages is stronger for a particular class of problems.
For instance, it is possible that for the problems with fixed charges the efficient branching of Inc is diminished
by the existence of additional binary variables, which results in Proj-1-row having a better performance.

3.2. LP GAPs for Transportation Problems

Our final experiment compares the LP GAPs for the different formulations calculated as 100× zIP−zLP
zIP

where zIP is the optimal value of (7) and zLP is the optimal value of its LP relaxation. We compare
formulations Ext-k-row and Proj-k-row for k ∈ {1, 2} and include Strong Big-M as a reference. Because the
larger formulations are very hard to solve we consider a transportation problem without fixed charges and
choose δ ∈ {0.10, 0.20} and S ∈ {200, 300}. The sets G̃D for |D| = 2 were generated by enumeration, which
can be done relatively fast by first sorting the components of {ξs}Ss=1. Table 4 shows statistics for the GAPs
over ten instances for each choice of δ and S.

200 300
0.10 0.20 0.10 0.20

Ext-1-row min 0.00 0.32 0.01 0.30
avg 0.10 1.13 0.20 1.57
max 0.39 2.59 0.62 3.34
std 0.12 0.77 0.17 1.01

Ext-2-rows min 0.00 0.07 0.00 0.00
avg 0.08 0.59 0.12 0.71
max 0.32 1.52 0.30 1.72
std 0.10 0.48 0.10 0.59

Proj-1-row min 0.05 0.51 0.08 0.35
avg 0.18 1.29 0.29 1.64
max 0.47 2.59 0.70 3.37
std 0.14 0.71 0.17 0.98

Proj-2-rows min 0.05 0.12 0.08 0.02
avg 0.15 0.82 0.22 0.81
max 0.39 1.61 0.35 1.72
std 0.10 0.49 0.10 0.56

Strong Big-M min 4.21 11.71 5.28 12.55
avg 6.92 14.44 7.39 15.16
max 10.07 19.30 9.33 19.71
std 1.84 2.52 1.55 2.40

Table 4: LP GAPs for Transportation Problems without Fixed Charges [%]

As expected the k-row formulations are significantly better than the Strong Big-M formulation, the
extended formulations are better than the corresponding projected formulations and the 2-row formulations
are better than the corresponding 1-row formulations. However, we see that the loss in strength from the
extended to the projected formulations is quite small and can be smaller than the gain in strength from
1-row formulations to 2-row formulations. In particular, this allows Proj-2-row to be stronger on average
than Ext-1-row for δ = 0.20.

4. Future Work

Proposition 1 does not require that the sets in D be disjoint. Hence it is possible to strengthen the
formulations by considering subsets of rows that have some overlap. For instance, we could consider D =
{Dl}d−1

l=1 for Dl = {l, l+1} which would yield a strengthening of the 2-row formulations. Preliminary results
in smaller problems showed that the strengthened formulations can indeed provide slightly better LP bounds,
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but the increased size usually prevents them from performing better than the original 2-row formulations,
which are already outperformed by the 1-row formulations. Still, careful selection of the overlaps (e.g. by
considering correlations among the components of ξ) could provide a theoretical or computational advantage
in some problems.
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