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University of Chile, dsaure@dii.uchile.cl

Juan Pablo Vielma
MIT Sloan School of Management, jvielma@mit.edu

We study dynamic decision-making under uncertainty when, at each period, a decision-maker implements a

solution to a combinatorial optimization problem. The objective coefficient vectors of said problem, which

are unobserved prior to implementation, vary from period to period. These vectors, however, are known

to be random draws from an initially unknown distribution with known range. By implementing different

solutions, the decision-maker extracts information about the underlying distribution, but at the same time

experiences the cost associated with said solutions. We show that resolving the implied exploration versus

exploitation trade-off efficiently is related to solving a Lower Bound Problem (LBP), which simultaneously

answers the questions of what to explore and how to do so. We establish a fundamental limit on the asymptotic

performance of any admissible policy that is proportional to the optimal objective value of the LBP problem.

We show that such a lower bound might be asymptotically attained by policies that adaptively reconstruct

and solve LBP at an exponentially decreasing frequency. Because LBP is likely intractable in practice, we

propose policies that instead reconstruct and solve a proxy for LBP, which we call the Optimality Cover

Problem (OCP). We provide strong evidence of the practical tractability of OCP which implies that the

proposed policies can be implemented in real-time. We test the performance of the proposed policies through

extensive numerical experiments and show that they significantly outperform relevant benchmarks in the

long-term and are competitive in the short-term.
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1. Introduction

Motivation. Traditional solution approaches to many operational problems are based on com-

binatorial optimization and typically involve instantiating a deterministic mathematical program,

whose solution is implemented repeatedly over time: nevertheless, in practice, instances are not

usually known in advance. When possible, parameters characterizing said instances are estimated

off-line, either by using historical data or from direct observation of the (idle) system. Unfor-

tunately, off-line estimation is not always possible as, for example, historical data (if available)

might only provide partial information pertaining previously implemented solutions. Consider, for
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instance, shortest path problems in network applications: repeated implementation of a given path

might reveal cost information about arcs on such a path, but might provide no further information

about costs of other arcs in the graph. Similar settings arise, for example, in other network applica-

tions (e.g., tomography and connectivity) in which feedback about cost follows from instantiating

and solving combinatorial problems such as spanning and Steiner trees.

Alternatively, parameter estimation might be conducted on-line using feedback associated with

implemented solutions, and revisited as more information about the system’s primitives becomes

available. In doing so, one must consider the interplay between the performance of a solution and

the feedback generated from its implementation: some parameters might only be reconstructed by

implementing solutions that perform poorly (relative to the optimal solution). This is an instance of

the exploration versus exploitation trade-off which is at the center of many dynamic decision-making

problems under uncertainty, and as such, it can be approached through the multi-armed bandit

paradigm (Robbins 1952). However, the combinatorial setting has salient features that distinguish it

from the traditional bandit. In particular, the combinatorial structure induces correlation between

the cost of different solutions, thus raising the question of how to collect (i.e., by implementing what

solutions) and combine information for parameter estimation. Also, because of such correlation,

the underlying combinatorial problem might be invariant to changes in certain parameters, hence

not all parameters might need to be estimated to solve said problem. Therefore, answering the

question of what parameters to estimate is also crucial in the combinatorial setting.

Unfortunately, the features above either prevent or discourage the use of traditional bandit

algorithms. First, in the combinatorial setting, traditional algorithms might not be implementable

as they would typically require solving the underlying combinatorial problem at each period, for

which, depending on the application, there might not be enough computational resources. Second,

even with enough computational resources, such algorithms would typically call for implementing

each feasible solution at least once, which in the settings of interest might take a prohibitively large

amount of time (i.e., number of periods) and also result in poor performance.

Main Objectives and Assumptions. A thorough examination of the arguments behind results

in the traditional bandit setting reveals that their basic principles are still applicable to the com-

binatorial setting. Thus, our objective can be seen as interpreting said principles and adapting

them to the combinatorial setting with the goal of developing efficient policies that are amenable

to implementation, and in the process, understanding how performance depends on the structure

of the underlying combinatorial problem.

We consider a decision-maker that at each period must solve a combinatorial optimization prob-

lem with a linear objective function whose cost coefficients are random draws from a distribution

that is identical in all periods and initially unknown (except for its range). We assume (without
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loss of generality) that the underlying combinatorial problem is that of cost minimization, and

that the feasible region consists of a time-invariant nonempty collection of nonempty subsets (e.g.,

paths on a graph) of a discrete finite ground set (e.g., arcs of a graph), which is known upfront by

the decision-maker. By implementing a solution, the decision-maker observes the cost realizations

for the ground elements contained in said solution. Following the bulk of the bandit literature, we

measure performance in terms of the cumulative regret, which is the expected cumulative additional

cost incurred relative to that of an oracle with prior knowledge of the cost distribution.

Main Contributions. Our contributions are as follows:

i) We establish a fundamental limit on the asymptotic performance of any admis-

sible policy and show that this lower bound is attainable: We prove that no policy

can achieve an asymptotic (on N , which denotes the total number of periods) regret lower

than z∗LBP lnN , where z∗LBP is the optimal objective value of an instance-dependent optimiza-

tion problem, which we call the Lower Bound Problem (LBP). This problem simultaneously

answers the questions of what to explore and how to do so. More specifically, we show that in

the combinatorial setting it suffices to focus exploration on a subset of the ground set which we

call a critical set. To the best of our knowledge, ours is the first lower bound for the stochastic

combinatorial bandit setting. Then, we show that said lower bound might be asymptotically

attained (up to a sub-logarithmic term) by near-optimal policies that adaptively reconstruct

and solve LBP at an exponentially decreasing frequency.

ii) We develop an efficient policy amenable for real-time implementation: The near-

optimal policies alluded above reconstruct LBP adaptively over time. However, their imple-

mentation is impractical mainly because LBP depends non-trivially on the cost distribution

(and thus, is hard to reconstruct), and because LBP is often an exponentially-sized problem

that is unlikely to be timely solvable in practice. Nonetheless, we develop an implementable

policy, which we call the OCP-based policy, by means of replacing LBP in the near-optimal

policies by a proxy that distills LBP’s two main goals: determining what should be explored

and how to do so. Said proxy, which we denote the Optimality Cover Problem (OCP), is a

combinatorial optimization problem that is easier to reconstruct in practice as it depends

solely on the vector of mean costs. While OCP is still an exponentially-sized problem, we

provide strong evidence that it can be solved in practice. In particular, we show that OCP

can be formulated as a Mixed-Integer Programming (MIP) problem that can be effectively

tackled by state-of-the-art solvers, or via problem-specific heuristics. Finally, we show that a

variant of the OCP-based policy admits an asymptotic performance guarantee that is similar

to that of the near-optimal policy.
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iii) We numerically show that the OCP-based policy significantly outperforms exist-

ing benchmarks: The key to the efficiency of the OCP-based policy is that it explores as

dictated by OCP (i.e., focusing exploration on critical elements) and rarely explores every

ground element, let alone every solution, of the combinatorial problem. Through extensive

computational experiments we show that such a policy significantly outperforms existing

upper-confidence-bound-type benchmarks (i.e., adaptations of the UCB1 policy of Auer et al.

(2002) to the combinatorial setting), even when OCP is solved heuristically in a greedy way.

The optimal lnN scaling of the regret is well-known in the bandit literature (Lai and Robbins

1985) and can even be achieved in the combinatorial setting by traditional algorithms. The regret

of such algorithms, however, is proportional to the number of solutions, which in combinatorial

settings, is typically exponential. This suggests that the dependence on N might not be the major

driver of performance in the combinatorial setting, especially in finite time. To this end, we aim

at studying the optimal scaling of the regret with respect to the combinatorial aspects of the set-

ting. In doing so, our performance bounds sacrifice the optimal dependence on N (by adding a

sub-logarithmic term) for the sake of clarity in terms of their dependence on the underlying combi-

natorial aspects of the problem, thus facilitating their comparison to the fundamental performance

limit. In this regard, our analysis shows that efficient exploration is achieved when it is focused on

a critical set of elements of the ground set. Our results speak of a fundamental principle in active

learning, which is somewhat obscured in the traditional bandit setting: that of only exploring what

is necessary to reconstruct the optimal solution to the underlying problem, and doing so at the

least possible cost.

The Remainder of the Paper. Section 2 reviews the related work. Section 3 formulates the

problem and reviews ideas from the classic bandit setting. In Section 4 we establish a fundamental

limit on the asymptotic performance and propose a near-optimal policy. Section 5 presents an

efficient practical policy, amenable to implementation, whose performance is similar to that of the

near-optimal policy. Section 6 discusses the computational aspects for solving OCP, and Section

7 illustrates the numerical experiments. Finally, Section 8 presents extensions and concluding

remarks. All proofs and supporting material are relegated to Online Appendix A.

2. Literature Review

Traditional Bandit Settings. Introduced in Thompson (1933) and Robbins (1952), the multi-

armed bandit setting is a classical framework for studying dynamic decision-making under uncer-

tainty. In its traditional formulation a gambler maximizes cumulative reward by pulling arms of

a slot machine sequentially over time when limited prior information on reward distributions is

available. The gambler faces the classical exploration versus exploitation trade-off: either pulling
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the arm thought to be the “best” (exploitation) at the risk of failing to actually identify such an

arm, or trying other arms (exploration) which allows identifying the best arm but hampers reward

maximization.

The seminal work of Gittins (1979) shows that for the case of independent arm rewards and

discounted infinite horizon, the optimal policy is of the index type. Unfortunately, index-based

policies are not always optimal (see Berry and Fristedt (1985), and Whittle (1982)) or cannot

be computed in closed-form. In their seminal work, Lai and Robbins (1985) study asymptotically

efficient policies for the undiscounted case. They establish a fundamental limit on achievable perfor-

mance, which implies the (asymptotic) optimality of the order lnN (where N is the total number

of periods) dependence in the regret (see Kulkarni and Lugosi (1997) for a finite-sample minimax

version of the result). In the same setting, Auer et al. (2002) introduce the celebrated index-based

UCB1 policy, which is both efficient and implementable.

Envisioning each feasible solution as an arm, the combinatorial bandit setting that we study

corresponds to a bandit with correlated rewards (and many arms): only a few papers address this

case (see e.g., Ryzhov and Powell (2009) and Ryzhov et al. (2012)). Alternatively, envisioning each

ground element (e.g., arcs of a graph) as an arm, the combinatorial setting can be seen as a bandit

with multiple simultaneous pulls: Anantharam et al. (1987) extend the fundamental bound of Lai

and Robbins (1985) to such a setting and propose efficient allocation rules; see also Agrawal et al.

(1990). The setting we study imposes a special structure on the set of feasible simultaneous pulls,

which prevents us from applying known results.

Bandit Problems with a Large Set of Arms. Bandit settings with a large number of arms have

received significant attention in the last decade. In these settings, arms are typically endowed with

some structure that is exploited to improve upon the performance of traditional bandit algorithms.

A first strand of (non-combinatorial) literature considers settings with a continuous set of arms,

where exploring all arms is not feasible. Agrawal (1995) studies a multi-armed bandit in which

arms represent points in the real line and their expected rewards are continuous functions of the

arms. Mersereau et al. (2009) and Rusmevichientong and Tsitsiklis (2010) study bandits with

possibly infinite number of arms when expected rewards are linear functions of an (unknown) scalar

and a vector, respectively. Our paper also relates to the literature on linear bandit models (see

e.g., Abernethy et al. (2008) and Dani et al. (2008)) as the model we study is a linear stochastic

bandit with a finite (but combinatorial) number of arms. In a more general setting, Kleinberg et al.

(2008) consider the case where arms form a metric space, and expected rewards satisfy a Lipschitz

condition. See Bubeck et al. (2011) for a review of work in “continuum” bandits.

Bandit problems with some combinatorial structure have been studied in the context of assort-

ment planning: in Rusmevichientong et al. (2010), Sauré and Zeevi (2013), and Bernstein et al.
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(2018), for example, product assortments are implemented in sequence and (non-linear) rewards

are driven by a choice model with initially unknown parameters. Unlike in these papers, we assume

in our model that the random cost vector is independent of the implemented solution at each

period – see Remark 1 for further details. Also, see Caro and Gallien (2007) for a similar assortment

planning formulation with linear independent rewards.

Gai et al. (2012) study combinatorial bandits when the underlying problem belongs to a restricted

class, and extend the UCB1 policy to this setting. Their policy applies to the more general setting

we study, and is used as a benchmark in our numerical experiments. They establish a performance

guarantee that exhibits the right dependence on N , but is expressed in terms of a polynomial of

the size of the ground set. We show that optimal performance dependence on the ground set is

instead tied to the structure of the underlying combinatorial problem in a non-trivial manner.

Concurrent to our work, two papers examine the combinatorial setting: Chen et al. (2013) provide

a tighter performance bound for the UCB1-type policy of Gai et al. (2012), which they extend to

the combinatorial setting we study – their bound is still expressed as a polynomial of the size of

the ground set; also, Liu et al. (2012) develop a policy for network optimization problems (their

ideas can be adapted to the setting we study as well) but in a different feedback setting. Their

policy collects information through implementation of solutions in a “barycentric spanner” of the

solution set, which in the feedback setting of this paper could be set as a solution-cover: see further

discussion in Online Appendix A.6. Probable performance of their policy might be arbitrarily worse

than that of the OCP-based policy that we propose.

Drawing ideas from the literature of prediction with expert advice (see e.g., Cesa-Bianchi and

Lugosi (2006)), Cesa-Bianchi and Lugosi (2012) study an adversarial combinatorial bandit where

arms belong to a given finite set in Rd (see Auer et al. (2003) for a description of the adversarial

bandit setting). Our focus instead is on stochastic (non-adversarial) settings. In this regard, our

work leverages the additional structure imposed in the stochastic setting to develop efficient policies

that are implementable in real-time.

3. Combinatorial Formulation versus Traditional Bandits

3.1. Problem Formulation

Model Primitives and Basic Assumptions. We consider a decision-maker that faces a combi-

natorial optimization problem with a linear objective function repeatedly over time. The feasible

region of the combinatorial problem is time-invariant and consists of a nonempty collection S of

nonempty subsets (e.g., paths on a graph) of a discrete finite ground set A (e.g., arcs in a graph).

We assume that both A and S are known upfront by the decision-maker, and without loss of

generality, that the problem is that of cost minimization.
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The cost coefficient vector at each period is a vector of independent random variables. (We

assume that all random variables are defined in a probability space (Ω,F ,P).) Furthermore, these

random variables jointly form a sequence of i.i.d. random vectors across periods. We let Bn(a)

denote the random cost coefficient associated with element a ∈ A in period n ≥ 1, and define

Bn := (Bn(a) : a∈A) as the random cost coefficient vector in period n. (Throughout the paper,

we use the notation x(a) to refer to the a-th element of vector x.) Let F denote the (common)

distribution of the cost coefficient vectors and B ∼ F with B := (B(a) : a∈A) so that each Bn is an

independent copy of B. We assume that F is initially unknown (by the decision-maker) except for

its range: it is known that l(a)<B(a)<u(a) a.s. for each a∈A for given vectors l := (l(a) : a∈A)

and u := (u(a) : a∈A) such that l < u component-wise. (We also assume for simplicity that the

marginal distributions of F are absolutely continuous with respect to the Lebesgue measure in R.)

At the beginning of period n, the decision-maker selects and implements a solution Sn ∈ S.

Then, the random cost vector Bn is realized and the cost associated with solution Sn is incurred

by the decision-maker. Finally, the decision-maker observes the realized cost coefficients only for

those ground elements included in the solution implemented, i.e., the decision-maker observes

(bn(a) : a∈ Sn), where bn(a) denotes the realization of Bn(a), a∈A, n≥ 1.

The decision-maker is interested in minimizing the total expected cost incurred in N periods

(N is not necessarily known upfront). Let π := (Sn)
∞
n=1 denote a non-anticipating policy, where

Sn : Ω→S is an Fn-measurable function that maps the available “history” at period n to a solution

in S, where Fn := σ({Bm(a) : a ∈ Sm , m < n})⊆ F for n≥ 1, with F0 := σ(∅). Finally, note that

the expected cumulative cost associated with a policy π is given by

Jπ(F,N) :=
N∑
n=1

E

{∑
a∈Sn

B(a)

}
.

(Note that the right-hand-side above depends on the policy π through the sequence (Sn)
∞
n=1).

Remark 1. In our formulation, Bn is independent of Sn. While this accommodates several appli-

cations such as shortest path, Steiner tree, and knapsack problems, it may not accommodate

applications such as assortment selection problem with discrete choice models.

Full-Information Problem and Regret. Define B :=
∏
a∈A(l(a), u(a)). For a cost vector ν :=

(ν(a) : a∈A)∈B, define the underlying combinatorial problem, denoted by Comb(ν), as follows:

z∗Comb(ν) := min

{∑
a∈S

ν(a) : S ∈ S

}
, (1)

where z∗Comb(ν) denotes the optimal objective value of Comb(ν). Let S∗(ν) denote the set of optimal

solutions to Comb(ν), and define µ(a) :=E{B(a)} for each a∈A and µ := (µ(a) : a∈A).
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Suppose for a moment that F is known upfront: it can be seen that always implementing an

optimal solution to Comb(µ) is the best among all non-anticipating policies. That is, because of the

linearity of the objective function, a clairvoyant decision-maker with prior knowledge of F would

implement Sn ∈ S∗(µ) for all n≥ 1, thus incurring an expected cumulative cost of

J∗(F,N) :=N z∗Comb(µ).

(Note that the right-hand-side above depends on F through µ.) In practice, the decision-maker

does not know F upfront, hence no admissible policy incurs an expected cumulative cost below

that incurred by the clairvoyant decision-maker. Thus, we measure the performance of a policy π

in terms of its expected regret, which for given F and N is defined as

Rπ(F,N) := Jπ(F,N)−J∗(F,N).

The regret represents the expected cumulative additional cost incurred by a policy π relative to

that incurred by a clairvoyant decision-maker (note that regret is always non-negative).

Remark 2. Although the regret also depends on the combinatorial optimization problem through

S, we omit such dependence to simplify the notation.

3.2. Known Results and Incorporating Combinatorial Aspects

We begin with two definitions and then discuss the existing results in the bandit literature.

Definition 1 (Regularity). The distribution F is regular if µ∈B and the density of B(a): (i)

can be parameterized by its mean µ(a), and thus we denote it by fa(·;µ(a)); (ii) 0< Ia(µ(a), λ(a))<

∞ for all l(a) < λ(a) < µ(a) < u(a), a ∈ A, where Ia(µ(a), λ(a)) denotes the Kullback-Leibler

divergence (see e.g., Cover and Thomas (2006)) between fa(·;µ(a)) and fa(·;λ(a)); and (iii)

Ia(µ(a), λ(a)) is continuous in λ(a)<µ(a) for all µ(a)∈ (l(a), u(a)).

The assumption of parameterizing the density function fa by its mean µ(a) is made for clarity of

exposition and can be relaxed (see Lai and Robbins (1985)).

Definition 2 (Consistency). A policy π is said to be consistent if Rπ(F,N) = o(Nα) for all

α> 0, for every regular F .

Traditional multi-armed bandits correspond to settings where S is formed by ex-ante identical

singleton subsets of A, i.e., settings where S = {{a} : a∈A}, and all marginal distributions of F are

identical, thus the combinatorial structure is absent. In such settings, and under mild assumptions,

the seminal work of Lai and Robbins (1985) establishes an asymptotic lower bound on the regret

attainable by any consistent policy. Different policies, such as the celebrated index-based UCB1
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algorithm (Auer et al. 2002), have been shown to (nearly) attain such asymptotic performance

limit. Combining the results in Theorem 1 of Lai and Robbins (1985) and Theorem 1 in Auer et al.

(2002), we have that∑
a∈A:µ(a)>µ∗

(µ(a)−µ∗)K(a)≤ lim inf
N→∞

RUCB1(F,N)

lnN
≤

∑
a∈A:µ(a)>µ∗

8

µ(a)−µ∗
,

where µ∗ := min{µ(a) : a∈A}, and K(a) denotes the inverse of the Kullback-Leibler divergence

between F and an alternative distribution Fa under which µ∗ = µ(a). Lai and Robbins (1985) show

that consistent policies must explore (pull) each element (arm) in A at least on order lnN times.

Thus, balancing the exploration versus exploitation trade-off in the traditional setting narrows

down to answering how frequently to explore each element a ∈A. (The answer to this question is

given by lnN/N exploration frequency in Lai and Robbins (1985)).

Note that the combinatorial setting can be seen as a traditional bandit with a combinatorial

number of arms, where arm rewards are correlated. Thus, one might attempt to apply off-the-

shelf index-based policies such as UCB1 envisioning each solution S ∈ S as an arm. However, this

approach has two important disadvantages in our setting (consider that |S| is normally exponential

in |A|): (i) computing an index for every solution in S is comparable to solving the underlying

combinatorial problem by enumeration which, in most settings of interest, is impractical; and (ii)

because traditional policies assume that all solutions are upfront identical, they have to periodically

explore every solution in S with a frequency proportional to lnN/N . However, because of the

correlation between the solutions, this might no longer be necessary in the combinatorial setting.

To illustrate the issues above, consider two examples in which, for simplicity of exposition, we

ignore the exploration frequencies. That is, we assume that whatever elements in A are selected

for exploration, they are selected persistently over time (irrespective of how), so that their mean

cost estimates are accurate.

Example 1. Consider the digraph G = (V,A) for V = {vi,j : i, j ∈ {1, . . . , k+ 1}, i≤ j} and A =

{ei}ki=1 ∪ {pi,j : i≤ j ≤ k} ∪ {qi,j : i≤ j ≤ k} where ei = (vi,i, vi+1,i+1), pi,j = (vi,j, vi,j+1), and qi,j =

(vi,j, vi+1,j). This digraph is depicted in the left panel of Figure 1 for k= 3. Let S be composed of

all paths from node s := v1,1 to node t := vk+1,k+1.

Consider constants 0< ε < c�M and let the distribution F be such that µ (ei) = c, µ (pi,j) =

µ (qi,j) =M , for all i ∈ {1, . . . , k}, i≤ j ≤ k, n ∈N, and l(a) = ε and u(a) =∞ for every arc a ∈A.

The shortest (expected) path is S∗ = {e1, e2, . . . , ek} with expected length (cost) z∗Comb(µ) = kc,

|A|= k(k+ 2), and |S| corresponds to the number of s− t paths, which is equal to 1
k+2

(
2(k+1)
(k+1)

)
∼

4k+1

(k+1)3/2
√
π

(Stanley 1999).
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!(p1)=M !(q1)=M

!(q2)=M

!(qk)=M

!(p2)=M
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s

t

s t

Figure 1 Graph for Example 1 (left), and Example 2 (right).

A traditional bandit policy would need to explore all 1
k+2

(
2(k+1)
(k+1)

)
paths. However, the same

exploration goal can be achieved while leveraging the combinatorial structure of the solution set to

expedite estimation: a key observation is that one might conduct mean cost estimation for elements

in the ground set, and then aggregate those to produce cost estimates for all solutions. A natural

way of incorporating this observation is to explore a minimal solution-cover E of A (i.e., E ⊆ S

such that each a ∈ A belongs to at least one S ∈ E and E is minimal with respect to inclusion

for this property). In Example 1 we can easily construct a solution-cover E of size k+ 1, which is

significantly smaller than |S|.

An additional improvement follows from exploiting the ideas in the lower bound result in Lai

and Robbins (1985). To see this, note that, unlike in the traditional setting, solutions are not ex-

ante identical in the combinatorial case. This opens up the possibility that information collection

on some ground elements might be stopped after a finite number of periods, independent of N ,

without affecting asymptotic efficiency. This is illustrated in the following example.

Example 2. Let G= (V,A) be the digraph depicted in the right panel of Figure 1 and let S be

composed of all paths from node s to node t. Set l(a) = 0 and u(a) =∞ for every arc a ∈A, and

let F be such that µ (e) = c, µ (g) = ε, µ (f) = µ (h) = c+ε
2

, µ (pi) = µ (qi) =M for n ∈N and for all

i∈ {1, . . . , k} where 0< ε� c�M . The shortest (expected) path in this digraph is {e}.

In Example 2, |S| = (k + 2), and the only solution-cover of A is E = S, which does not provide

an advantage over traditional approaches. However, a cover is required only if we need to explore

every element in A. Indeed, feedback obtained through exploration only needs to guarantee the
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optimality of path {e} with respect to all plausible scenarios. However, because the combinatorial

problem is that of cost minimization, it suffices to check only one possibility: that in which every

unexplored element a∈A has an expected cost equal to its lowest possible value l(a). In Example 2

we note that every path other than {e} uses arcs f and h and the sum of the expected costs of f

and h is strictly larger than that of e. Together with the fact that the cost of every arc has a lower

bound of zero, this implies that exploring arcs f and h is sufficient to guarantee the optimality of

{e}. We can explore arcs f and h by implementing any path that contains them, but the cheapest

way to do so is by implementing path {f, g,h}.

Examples 1 and 2 show that in the combinatorial setting efficient policies do not need to explore

every solution in S or even every ground element in A. In particular, Example 2 shows that the

questions of what elements of A to explore (e.g., arcs f and h) and how to explore them (e.g.,

through path {f, g,h}) become crucial to construct efficient policies in the combinatorial setting.

However, we still need to answer the question of when (i.e., with what frequency) to explore. To

achieve this, we extend the fundamental performance limit of Lai and Robbins (1985) from the

traditional multi-armed bandits to the combinatorial setting.

4. Bounds on Achievable Asymptotic Performance

4.1. A Limit on Achievable Performance

Following the arguments in the traditional bandit setting, consistent policies must explore those

subsets of suboptimal ground elements that have a chance of becoming part of any optimal solution,

i.e., those subsets for which there exists an alternative cost distribution F ′ such that said subset

belongs to each optimal solution in S∗(µ′), where µ′ denotes the vector of mean costs under

distribution F ′. Because the range of F is known, for a given set D ⊆ A, it is only necessary to

check whether D belongs to each optimal solution in S∗ ((µ∧ l)(D)), where

(µ∧ l) (D) := (µ(a)1{a /∈D}+ l(a)1{a∈D} : a∈A) ,

and 1{} denotes the indicator function of a set. We let D(µ) denote the collection of all nonempty

subsets of suboptimal ground elements satisfying the condition alluded above, that are minimal

with respect to inclusion. We have that D ∈D(µ) if and only if

(a) D⊆A and D 6= ∅,

(b) D∩S∗ = ∅ for all S∗ ∈ S∗(µ),

(c) D⊆ S for all S ∈ S∗ ((µ∧ l)(D)),

(d) There is no subset D′ ⊂D for which (a)− (c) hold.
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In other words, we take a pessimistic approach and define D(µ) as the collection of nonempty

subsets of suboptimal ground elements that become part of any optimal solution if their mean

costs are set to their lowest possible values.

As an illustration, consider the examples in the previous section. In Example 1 we have that

D(µ) = {{p1,1, q1,1} ,{p2,2, q2,2} ,{p3,3, q3,3} ,{p1,1, p1,2, q1,2, q2,2} ,{p2,2, p2,3, q2,3, q3,3} ,

{p1,1, p1,2, p1,3, q1,3, q2,3, q3,3} ,{p1,1, p1,2, q1,2, p2,3, q2,3, q3,3}}

and in Example 2 we have that D(µ) = {{f} ,{h}}.
We conclude that for any D ∈ D(µ), there exists an alternative distribution F ′ under which D

is included in every optimal solution. Because said elements are suboptimal under distribution F

(condition (b) above), consistent policies must distinguish F from F ′ to attain asymptotic opti-

mality. The following proposition, whose proof can be found in Online Appendix A.1.1, shows that

this can be accomplished by selecting at least one element in each set D ∈ D(µ) at a minimum

frequency. For n≥ 1 and a∈A, define the random variable Tn(a) as the number of times that the

decision-maker has selected ground element a prior to period n, that is Tn(a) := |{m<n : a∈ Sm}| .

Proposition 1. For any consistent policy π and D ∈D(µ) we have that

lim
N→∞

PF
{

max{TN+1(a) : a∈D}
lnN

≥KD(µ)

}
= 1, (2)

for a positive finite constant KD(µ).

Similar to the traditional bandit setting, KD(µ) represents the inverse of the Kullback-Leibler

divergence between F and the alternative distribution F ′ alluded above.

Proposition 1 characterizes what needs to be explored by a consistent policy by imposing a lower

bound on the number of times that certain subsets of A ought to be explored. To obtain a valid

performance bound, we additionally need to characterize how to explore these subsets in the most

efficient way. In particular, in addition to selecting the set of ground elements that need to be

explored, a consistent policy needs to implement solutions in S that include those ground elements

in the most efficient manner. To assess the regret associated with implementing a solution S ∈ S
given a mean cost vector ν ∈B, we define

∆ν
S :=

∑
a∈S

ν(a)− z∗Comb(ν).

The following Lower Bound Problem (henceforth, LBP ) jointly determines the set of ground ele-

ments needed to be explored, a set of solutions that cover this set of ground elements, and their

exploration frequencies. Furthermore, it does so in the most efficient way possible (i.e., by solving

for the minimum-regret solution-cover).
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Definition 3 (LBP ). For a given cost vector ν ∈B, define the lower bound problem LBP (ν) as

z∗LBP (ν) := min
∑
S∈S

∆ν
S y(S) (3a)

s.t. max{x(a) : a∈D} ≥KD(ν), D ∈D(ν) (3b)

x(a)≤
∑

S∈S:a∈S

y(S), a∈A (3c)

x(a), y(S)∈R+, a∈A,S ∈ S, (3d)

where z∗LBP (ν) denotes the optimal objective value of LBP (ν). Also, define ΓLBP (ν) as the set of

optimal solutions to LBP (ν)

Consider a solution (x, y) to LBP (µ) where x = (x(a) : a ∈ A) and y = (y(S) : S ∈ S). The set

{a∈A : x(a)> 0} corresponds to the elements of the ground set that are explored to satisfy Propo-

sition 1 and the actual values x(a) represent the exploration frequencies TN+1(a)/N . Similarly, the

set {S ∈ S : y(S)> 0} corresponds to the solution-cover (which we also call the exploration set) of

the selected ground elements, and the values y(S) represent the exploration frequencies of the solu-

tions in the cover. Indeed, constraints (3b) enforce exploration conditions (2) and constraints (3c)

enforce the cover of the elements of A selected by (3b). The next result establishes a lower bound

on the asymptotic regret of any consistent policy in the combinatorial setting which is proportional

to z∗LBP (µ).

Theorem 1. The regret of any consistent policy π is such that

lim inf
N→∞

Rπ(F,N)

lnN
≥ z∗LBP (µ). (4)

From Theorem 1 we see that the fundamental limit on performance is deeply connected to both

the combinatorial structure of the problem, as well as the range and mean of distribution F .

Remark 3. A value of zero for z∗LBP (µ) suggests that the regret may not necessarily grow as a

function of N . To see how this indeed can be the case, consider the setting in Example 2 with a

slight modification: set now l(f) = l(h) = c/2+ε/4. One can check that in this case, D(µ) = ∅ as any

suboptimal solution includes arcs f and h, whose cost lower bounds already ensure the optimality

of solution {e}. Thus, in this case, z∗LBP (µ) = 0 and a finite regret (independent of N) might be

attainable. Indeed, this setting is such that active learning is not necessary, and information from

implementing optimal solutions in S∗(µ) suffices to guarantee the optimality of said solutions.

(This is not restricted to the case of shortest path problems: in Online Appendix A.1.2 we discuss

settings in which z∗LBP (µ) = 0 and the underlying combinatorial problem is minimum-cost spanning

tree, minimum-cost perfect matching, generalized Steiner tree, or knapsack.)
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Figure 2 Graph for Example 3.

4.2. An Asymptotically Near-Optimal Policy

For n≥ 1, define µ̂n := (µ̂n(a) : a∈A), where

µ̂n(a) :=

∑
m<n:a∈Sm bm(a)

|m<n : a∈ Sm|
, a∈A,

denotes the sample mean of cost realizations for ground element a prior to period n. (Initial

estimates are either collected from implementing a solution-cover or from expert knowledge.)

To match the lower bound of Theorem 1, given the construction of LBP (µ), it is natural to

try allocating exploration efforts only to the solutions prescribed by LBP (µ) (i.e., those S ∈ S

with y(S)> 0). Unfortunately, said solution is not readily available in practice, as it depends on

the mean cost vector which is only partially estimated at any given time. Nonetheless, one might

still focus exploration on the solution to LBP (µ̂n) hoping that said solution converges to that

of LBP (µ). While this is indeed the case when µ̂n→ µ, collecting information only on solutions

prescribed by LBP (µ̂n) does not suffice (in general) to accurately estimate the full mean cost

vector, as the following example illustrates.

Example 3. Let G= (V,A) be the digraph depicted in Figure 2 and let S be composed of all paths

from node s to node t. Set l(a) = 0 and u(a) =∞ for every arc a∈A, and F be such that µ (e) = c,

µ (d) = µ (p1) = µ (q1) = ε/6, µ (p2) = µ (q2) = c−2ε/3

2
, and µ (fi) = µ (gi) = c+ε/2

2
for all i ∈ {1, . . . , k}

where 0< ε� c. The shortest (expected) path in this digraph is {e}.

For every i ∈ {1, . . . , k}, define Si := {d, p1, q1, fi, gi} and S̃i := {d, p2, q2, fi, gi}. In Example 3

we have that D(µ) = {{f1} ,{f2} , . . . ,{fk} ,{g1} ,{g2} , . . . ,{gk}}. This, in turn, implies that the
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minimum-regret solution-cover (i.e., exploration set) induced by the optimal solution to LBP (µ)

is {Si}ki=1 with a regret of kε.

Suppose that we implement a policy that initially draws samples of the costs of p1 and q1 that are

extremely high, so that the solution to LBP (µ̂n) consists of solutions {S̃i}ki=1. There on, focusing

exploration on the solution to LBP (µ̂n) might imply that no further samples of p1 and q1 are

needed, thus µ̂n→ ν ′ = (ν ′(a) : a∈A), with ν ′ (a) = µ (a) for all a in A except a∈ {p1, q1}. One can

see that in such a case, the exploration set (solution-cover) that LBP (µ̂n) could converge to is

{S̃i}ki=1 with a regret of ck which is not an optimal solution to LBP (µ).

Example 3 shows that convergence of LBP (µ̂n) to LBP (µ) (and even z∗LBP (µ̂n) to z∗LBP (µ)) is

not guaranteed if exploration is restricted to the solution to LBP (µ̂n). Thus, to assure convergence

of z∗LBP (µ̂n) to z∗LBP (µ) (so as to attain the asymptotic performance in the lower bound result in

Theorem 1), one must collect samples on a subset of A that might contain more elements than

those explored by the solution to LBP (µ), and do so at a small but positive frequency.

While one might be able to formulate the problem of finding a subset of the ground set whose

exploration incurs the least regret while guaranteeing the convergence of LBP (µ̂n) to LBP (µ),

we instead choose to expand the exploration efforts to the whole ground set. By maintaining

exploration frequencies on these additional elements small, the overall regret should still be driven

by the cost of exploring the solution to LBP (µ̂n).

Following the discussion above, next we propose a policy that focuses exploration on the solution

to LBP (µ̂n), but also at a lesser (tunable) degree on a solution-cover of the ground set. Such an

approach ensures the convergence of the solution to LBP (µ) by guaranteeing that µ̂n→ µ (see

below for a more detailed discussion). To simplify the reconstruction of the LBP (and the exposi-

tion), we make the following technical assumption, needed for proving a performance guarantee.

Assumption 1. F is regular and the density function fa(·; ·) is known by the decision-maker for all

a∈A, and there exists a known finite constant K such that KD (µ)≤K for all D ∈D (µ). In addi-

tion, there is no set D⊆A such that z∗Comb (µ) = z∗Comb ((µ∧ l) (D)) with S∗(µ) 6= S∗ ((µ∧ l) (D)).

Knowing the parametric form of the cost density function for each a ∈ A reduces the burden

of estimating KD (µ) as this can be performed by simply estimating µ (as is also the case for ∆µ
S

and the set D (µ)). The last part of Assumption 1 is necessary to correctly reconstruct the set of

constraints (3b), and holds with probability one when, for example, mean costs are random draws

from an absolutely continuous distribution: this suits most practical settings where mean costs

are unknown and no particular structure for them is anticipated (note that any additional prior

structural information on the mean cost vector might be taken advantage of).
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Under Assumption 1, convergence of z∗LBP (µ̂n) to z∗LBP (µ) is assured if µ̂n converges to µ. As

discussed in Example 1, this can be achieved by exploring a cover of A. We formalize the problem

of finding a minimum-regret cover of A in the following definition.

Definition 4 (Cover Problem). For a given cost vector ν ∈ B, define the cover problem

Cover(ν) as

z∗Cover(ν) := min
∑
S∈S

∆ν
S y(S) (5a)

s.t. 1≤
∑

S∈S:a∈S

y(S), a∈A (5b)

y(S)∈ {0,1} , S ∈ S, (5c)

where z∗Cover(ν) denotes the optimal objective value of the Cover(ν) problem. Also, define ΓCover(ν)

as the set of optimal solutions to Cover(ν).

The proposed policy, which we refer to as the LBP-based policy and denote by π∗, is described by

Algorithm 1. The LBP-based policy formulates and solves LBP (µ̂n) and Cover (µ̂n), and focuses

exploration efforts (at different degrees) on the solutions to said problems. To enforce the loga-

rithmic exploration frequency found in Theorem 1, we use an idea known as the doubling trick

(Cesa-Bianchi and Lugosi 2006, Chapter 2.3). This approach also allows us to minimize the number

of times that the underlying combinatorial problem Comb (µ̂n) and auxiliary exploration problems

LBP (µ̂n) and Cover (µ̂n) need to be solved. The doubling trick divides the horizon into cycles of

growing length so that cycle i starts at time ni where {ni}i∈N is a strictly increasing sequence of

positive integers such that n1 = 1 and ni+2 − ni+1 ≥ ni+1 − ni for all i ∈N. Within each cycle, we

first solve Comb (µ̂n), LBP (µ̂n) and Cover (µ̂n), and then ensure that the appropriate exploration

frequencies are achieved (in expectation). The frequency of exploration can then be controlled

by varying the increment in length of the cycles (e.g., to achieve exploration frequencies propor-

tional to lnN/N , we can use cycles of exponentially increasing lengths). In Algorithm 1, we choose

ni := max{bei1/(1+ε)c, ni−1 + 1}, i≥ 2, given a tuning parameter ε > 0. For S ∈ S \S∗(µ̂n), we define

pS :=

{
y(S)/(ni+1−ni) if

∑
S′∈S y(S′)≤ (ni+1−ni)

y(S)/
∑

S′∈S y(S′) otherwise

where y(S) (in the definition of pS) refers to the solution to the LBP (see Algorithm 1). We also

define pS∗ := (1−
∑

S∈S\S∗(µ̂n) pS)/|S∗(µ̂n)| for S∗ ∈ S∗(µ̂n). Note that pS is a probability measure

that enforces the right exploration frequency (as prescribed by LBP ) for solution S ∈ S. Also, in

Algorithm 1, γ is a tuning parameter that controls the cover-based exploration frequency.

The LBP-based policy admits the following performance guarantee which we prove in Online

Appendix A.1.3.
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Algorithm 1 LBP-based policy π∗(γ, ε)

Set i= 0, and draw (b1(a) : a∈A) randomly from B

for n= 1 to N do

if n= ni then

Set i= i+ 1

Set S∗ ∈ S∗ (µ̂n) [Update exploitation set]

Set E ∈ ΓCover (µ̂n) [Update Cover-exploration set]

Set (x, y)∈ ΓLBP (µ̂n) [Update LBP-exploration set]

end if

if Tn(a)<γ i for some a∈A then

Set Sn = S for any S ∈ E such that a∈ S [Cover-based exploration]

else

Set Sn = S with probability pS, S ∈ S [LBP-based exploration/Exploitation]

end if

end for

Theorem 2. Consider γ ∈ (0,1) and ε > 0 arbitrary. The LBP-based policy π∗(γ, ε) is such that

lim
N→∞

Rπ∗(γ,ε)(F,N)

(lnN)
1+ε ≤ z∗LBP (µ) + γ z∗Cover(µ). (6)

4.3. Performance Gap Analysis

We observe that the constants accompanying the lnN term in the lower bound and upper bound

results in Theorems 1 and 2 do not match exactly. In this section we provide a discussion on this

gap.

Optimal Scaling with Respect to N . While it is possible to achieve the optimal lnN depen-

dence in the upper bound in Theorem 2 (through a different definition of cycles ni and introduction

of additional tunable parameters), this comes at the price of additional constants in front of the

second term in the right-hand side of (6). We introduce an additional sub-logarithmic term to the

optimal lnN scaling, so as to avoid introducing terms that emanate in part from the proof tech-

niques, and so as to have a bound that reflects a fundamental insight about the result: asymptotic

regret arises from suboptimal exploration which in the near-optimal policy (i.e., the LBP-based

policy) is distributed between the solution to LBP and, at a lower frequency, the solution to Cover.

Improved Upper Bounds. By setting γ arbitrarily close to zero, one can set the leading constant

in the right-hand side of (6) arbitrarily close to that in Theorem 1 up to sub-logarithmic terms.

However, it is not possible to set γ = 0 in general, as illustrated in Example 3, as this would not

guarantee convergence on the solution to LBP .
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It is possible, however, to reduce the gap between the leading constants in Theorems 1 and 2. For

that, instead of complementing exploration on the solution to LBP with the solution to Cover,

one can find a minimum-regret solution set that fulfills condition (2) and is robust to changes in

the mean cost of unexplored ground elements. That is, one can design a policy whose regret admits

a bound of the form

lim
N→∞

Rπ∗(γ,ε)(F,N)

(lnN)
1+ε ≤ z∗R (µ,γ) ,

for γ > 0, where z∗R (ν, γ) is the optimal solution to a “robust” variation of LBP (ν) for a given cost

vector ν ∈B (this formulation is presented in Online Appendix A.1.4), such that

z∗LBP (ν)≤ z∗R (ν, γ)≤ z∗LBP (ν) + γ z∗Cover(ν).

While we do not prove such bounds here (this requires more convoluted, lengthier arguments), the

insight derived from it remains the same: regret emanates from suboptimal exploration.

Improved Lower Bounds. As shown above, in general it is not possible to improve the leading

constant in (6) as finding and validating an optimal solution to LBP (µ) might require knowledge of

the mean costs of ground elements that are not explored by said solution. Hence, to find an optimal

solution of LBP (µ) we may need complementary exploration through a cover or a robust version of

LBP (µ). In contrast, our theoretical lower bound assumes advance knowledge of these unexplored

costs, which allows it to bypass this complementary exploration. This difference is precisely the

source of the gap between the leading constants in (4) and (6). It may be possible to derive an

improved lower bound by not assuming such an advance knowledge. Unfortunately, it is not clear

how to derive such a bound using the techniques in this paper or previous work on bandits.

5. An Efficient Practical Policy

A significant obstacle for the implementation of the LBP-based policy is the ability to reconstruct

and solve formulation (3) repeatedly over time. Indeed, the right-hand-side of (3b) depends non-

trivially on the distribution F , and while LBP is a continuous optimization problem, it has an

exponential number of constraints (3b) that do not have a clear separation procedure. In addition,

the maximum in constraint (3b) is known to be notoriously difficult to handle (Toriello and Vielma

2012). For this reason, we instead concentrate on developing practical policies inspired by the explo-

ration principles behind Theorems 1 and 2. In particular, we propose a policy that follows closely

the near-optimal policy of Theorem 2, but replaces formulation (3) by a proxy that: (i) depends

on the distribution F only through the vector of mean costs (and thus is easier to reconstruct);

and (ii) can be solved effectively with modern optimization techniques. To achieve this, we distill

the core combinatorial aspects of the LBP by focusing the questions of what ground elements

to explore and how to do so (i.e., through implementation of which solutions), while somewhat

ignoring the question of when to explore (e.g., the precise exploration frequencies).
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Modaresi, Sauré and Vielma: Learning in Combinatorial Optimization: What and How to Explore 19

5.1. The Optimality Cover Problem

With regard to the first question above (what to explore), from Proposition 1 we know that consis-

tent policies must try at least one element in each D ∈D(µ) at a specific minimum frequency, so as

to distinguish F from an alternative distribution that makes D part of any optimal solution. (Note

that mean cost estimates for these elements should converge to their true values, and that ought

to suffice to guarantee the optimality of the solutions in S∗(µ).) Here, we consider an alternative,

more direct mechanism which, in a nutshell, imposes the same exploration frequency on a set that

contains at least one element from each set in D(µ).

Suppose that exploration is focused on a subset C ⊆A and that elements outside C would not be

permanently sampled: in the long-run, a consistent mean cost vector estimate ν ∈B will essentially

be such that ν(a)≈ µ(a) for a ∈ C, but not much can be said about ν(a) for a /∈ C. If persistent

exploration on the subset C is to guarantee the optimality of the solutions in S∗(µ), independent

of (µ(a) : a /∈C), then (taking a pessimistic approach) C must be such that

z∗Comb (µ)≤ z∗Comb ((µ∧ l)(A \C)) , (7)

where we recall that (µ ∧ l)(A \C) = (l(a)1{a /∈C}+µ(a)1{a∈C} : a∈A). One can check that

D∩C 6= ∅ for any D ∈D(µ) for such a subset C. This, in turn, implies that setting x(a) =K for all

a ∈C, for a large enough positive constant K should lead to a feasible solution to LBP (µ). This

motivates the following definition.

Definition 5 (Critical Set). A subset C ⊆ A is a sufficient set if and only if (7) holds. A

sufficient set C ⊆A is a critical set if it does not contain any sufficient set C ′ ⊂C.

We may use condition (7) to simplify LBP by just enforcing the exploration of a critical set

(i.e., what to explore). Once the critical set is identified, we can explore it efficiently (in terms

of regret) by implementing a minimum-regret solution-cover (exploration set) of it (i.e., how to

explore). Both the selection of the critical set and its minimum-regret solution-cover can be achieved

simultaneously through the following combinatorial optimization problem.

Definition 6 (OCP ). For a given cost vector ν ∈B, we let the Optimality Cover Problem (hence-

forth, OCP (ν)) be the optimization problem given by

z∗OCP (ν) := min
∑
S∈S

∆ν
S y(S) (8a)

s.t. x(a)≤
∑

S∈S:a∈S

y(S), a∈A (8b)∑
a∈S

(l(a)(1−x(a)) + ν(a)x(a))≥ z∗Comb(ν), S ∈ S (8c)

x(a), y(S)∈ {0,1} , a∈A,S ∈ S, (8d)
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where z∗OCP (ν) denotes the optimal objective value of the OCP (ν) problem. Also, define ΓOCP (ν)

as the set of optimal solutions to OCP (ν).

By construction, a feasible solution (x, y) to OCP (µ) corresponds to incidence vectors of a critical

set C ⊆A and a solution-cover G of such a set. That is, (x, y) := (xC , yG) where xC(a) = 1 if a∈C

and zero otherwise, and yG(S) = 1 if S ∈ G and zero otherwise. In what follows we refer to a solution

(x, y) to OCP and the induced pair of sets (C,G) interchangeably.

Constraints (8c) guarantee the optimality of solutions in S∗(ν) even if costs of elements outside C

are set to their lowest possible values (i.e., ν(a) = l(a) for all a /∈C), and constraints (8b) guarantee

that G covers C (i.e., a ∈ S for some S ∈ G, for all a ∈ C). Finally, (8a) ensures that the regret

associated with implementing the solutions in G is minimized. Note that when solving (8), one can

impose y(S∗) = 1 for all S∗ ∈ S∗ (ν) without affecting the objective function, thus one can restrict

attention to solutions that cover optimal elements of A.

There is a clear connection between LBP (µ) and OCP (µ). This is formalized in the next Lemma,

whose proof can be found in Online Appendix A.2.

Lemma 1. An optimal solution to a linear relaxation of OCP (µ) when one relaxes the integrality

constraints over y(S) variables is also optimal to formulation LBP (µ) when one replaces KD(µ)

by 1 for all D ∈D(µ).

Proof of Lemma 1 shows that a feasible solution to LBP (µ) can be mapped to a feasible solution

to a linear relaxation of OCP (µ) (via proper augmentation), and vice versa. The above elucidates

that OCP (µ) is a version of LBP (µ) that imposes equal exploration frequencies across all solutions.

In this regard, the formulations are essentially equivalent up to a minor difference: optimal solutions

to OCP (µ) must cover all optimal ground elements; this, however, can be done without affecting

performance in both formulations and hence it is inconsequential. In what follows we discuss our

practical policy which periodically solves the OCP problem.

5.2. OCP-based Policy

We propose a practical policy, called the OCP-based policy, which closely follows the structure of

the LBP -based policy, except for a few qualitative differences. The OCP-based policy: (i) solves

OCP problem instead of LBP ; (ii) does not complement exploration on the solution to the Cover

problem; and (iii) enforces the logarithmic exploration frequency using the cycle definition n1 = 1

and ni := max
{
bei/Hc, ni−1 + 1

}
for all i≥ 2, given a fixed tuning parameter H > 0. Note that the

changes in (ii) and (iii) above ought to eliminate additional suboptimal exploration and induce

the proper exploration frequency, respectively, and should result in improved practical performance

(we test this policy in our numerical experiments)
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The OCP-based policy, which we denote by πOCP (H), is depicted in Algorithm 2. At the begin-

ning of each cycle, the OCP-based policy solves for S∗ ∈ S∗ (µ̂n), updates ΓOCP (µ̂n), and ensures

that all elements in the critical set have been explored with sufficient frequency. If there is time

remaining in the cycle, the policy implements (exploits) an optimal solution S∗ ∈ S∗ (µ̂n).

Algorithm 2 OCP-based policy πOCP (H)

Set i= 0, C =A, G a minimal cover of A, and draw (b1(a) : a∈A) randomly from B

for n= 1 to N do

if n= ni then

Set i= i+ 1

Set S∗ ∈ S∗ (µ̂n) [Update exploitation set]

Set (C,G)∈ ΓOCP (µ̂n) [Update OCP-exploration set]

end if

if Tn(a)< i for some a∈C then

Set Sn = S for any S ∈ G such that a∈ S [OCP-based exploration]

else

Set Sn = S∗ [Exploitation]

end if

end for

Proving a meaningful theoretical performance bound under the modifications (i)− (iii) above

is rather challenging. For this reason, we instead consider a variant of the OCP-based policy that

simply ignores the changes (ii) and (iii). In addition, such a policy solves for a %-optimal solution,

instead of an optimal solution, to OCP , for a tuning parameter % > 0. The parameter % allows

the policy to converge to an optimal solution to OCP (µ) – because there might exist multiple

optimal solutions to OCP (µ), solving for a %-optimal solution ensures that the policy settles on

one of them. The resulting policy, which we refer to as the modified OCP-based policy and denote

by π′OCP , can be found in Algorithm 3 in Online Appendix A.2.2.

To prove a performance bound, we need a relaxed version of Assumption 1.

Assumption 2. There is no set D ⊆ A such that z∗Comb (µ) = z∗Comb ((µ∧ l) (D)) with S∗(µ) 6=

S∗ ((µ∧ l) (D)).

Note that Assumption 2 ensures that Constraint (8c) is not active for any S /∈ S∗ (µ) and any

vectors x and y satisfying (8b) and (8d). As discussed in Section 4.2, this assumption holds when,
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for example, mean costs are randomly drawn from an absolutely continuous distribution. This suits

most practical settings where mean costs are unknown and no particular structure is anticipated.

Under Assumption 2, we obtain the following performance bound for the modified OCP-based

policy π′OCP (γ, ε, %). We note that as in Algorithm 1, ε is a tuning parameter used in the definition

of cycles, and γ is a tuning parameter that controls the cover-based exploration frequency.

Theorem 3. Consider γ ∈ (0,1), % > 0, and ε > 0 arbitrary. We then have that for % sufficiently

small

lim
N→∞

Rπ′OCP (γ,ε,%)(F,N)

(lnN)
1+ε ≤ z∗OCP (µ) + γ z∗Cover (µ) .

The proof of Theorem 3 follows a similar line of arguments as that of Theorem 1 for the near-

optimal LBP-based policy: we refer the reader to Online Appendix A.2.2 for details.

6. Computational Aspects for Solving OCP and Policy Implementation

In this section we address the computational aspects for the practical implementation of the OCP-

based policy. We provide strong evidence that, for a large class of combinatorial problems, our

policies scale reasonably well. For this, we focus our attention on the practical solvability of OCP ,

which our policies solve repeatedly over time. Note that Comb(·) and OCP (·) have generic combi-

natorial structures and hence are, a priori, theoretically hard to solve. Hence, practical tractability

of said problems is essential for implementation.

Note that the OCP-based policy solves OCP at an exponentially decreasing frequency, thus

ensuring its timely solvability in the long-run. In the short-run, a time-asynchronous version of the

policy, that uses the incumbent solution to OCP until the new solution becomes available, can be

implemented (see Online Appendix A.3.6).

As mentioned above, in general OCP might be theoretically intractable. Nonetheless, in Online

Appendix A.3.7 we present a greedy oracle polynomial-time heuristic forOCP . The greedy heuristic

requires a polynomial number of calls to an oracle for solving Comb. It therefore runs in polynomial

time when Comb is polynomially solvable. Furthermore, it provides a practical solution method

for OCP when Comb is not expected to be solvable in polynomial time, but is frequently tractable

in practice (e.g., medium-size instances of NP-complete problems such as the traveling salesman

(Applegate et al. 2011), Steiner tree (Magnanti and Wolsey 1995, Koch and Martin 1998, Carvajal

et al. 2013), and set cover problems (Etcheberry 1977, Hoffman and Padberg 1993, Balas and

Carrera 1996)).

An advantage of the greedy heuristic described in Online Appendix A.3.7 is that it only requires

an oracle for solving Comb and hence does not require any knowledge of the specific structure of

Comb. In Section 7 we implement a variant of the OCP-based policy that uses this greedy heuris-

tic to solve OCP . We show that even such a myopic approach can already provide a reasonable
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approximation of the OCP-based policy and can significantly outperform alternative approaches.

However, we would expect much better performance from heuristics or approximations that exploit

the particular structure of Comb for a specific class of problems. Such focus on a specific class of

problems is, however, beyond the scope of this paper, thus we instead use mixed-integer program-

ming (MIP) to exploit structure in a generic way.

Over 50 years of theoretical and computational developments in MIP (Jünger et al. 2010) have

led to state-of-the-art MIP solvers with machine-independent speeds that nearly double every

year (Achterberg and Wunderling 2013, Bixby 2012). One key to this speed is a wide range of

highly effective generic primal heuristics (e.g., see Fischetti and Lodi (2011) and the “Primal

Heuristic” sections of Gamrath et al. (2016), Maher et al. (2017), and Gleixner et al. (2017)). Hence,

formulating OCP as a MIP opens up a wide range of exact and heuristic algorithms to solve it.

However, the effectiveness of this approach is strongly contingent on constructing a formulation with

favorable properties (Vielma 2015). In what follows we focus our attention on constructing such

formulations for the case in which Comb is theoretically tractable, i.e., it is solvable in polynomial

time. This class includes problems such as shortest path, network flow, matching, and spanning

tree problems (Schrijver 2003). For these problems we develop polynomial-sized MIP formulations

of OCP , which can be effectively tackled by state-of-the-art solvers.

6.1. MIP Formulations of OCP for Polynomially-Solvable Problems

In this section we assume that Comb is polynomially solvable. However, this does not imply that

OCP is tractable or practically solvable, as it might contain an exponential (in |A|) number of vari-

ables and constraints. The following theorem, whose proof can be found in Online Appendix A.3.1,

ensures that OCP remains in NP, the class of non-deterministic polynomially-solvable problems

(see e.g., Cook et al. (1998)).

Theorem 4. If Comb is in P, then OCP is in NP.

While it is possible to establish a non-trivial jump in theoretical complexity for problems within

P, we deem the study of the theoretical complexity of OCP for different problems outside the

scope of the paper. Instead, here we focus on their practical solvability. For this, we first establish

the existence of polynomial-sized MIP formulations when Comb admits a linear programming

(LP) formulation. Then, we address the case when Comb admits a polynomial-sized extended LP

formulation, and finally, the case when Comb does not admit such an extended formulation.

Problems with LP Formulations. We present a polynomial-sized formulation of OCP when

Comb admits a polynomial-sized LP formulation. To describe this formulation in simple matrix

notation we assume that A := {1, . . . , |A|}. Moreover, for v ∈Rr, let diag(v) be the r× r diagonal
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matrix with v as its diagonal. Also, we remember that l = (l(a) : a ∈ A) is the vector of lower

bounds on the range of F .

Proposition 2. Let yS ∈ {0,1}|A| be the incidence vector of S ∈ S, M ∈ Rm×|A|, and d ∈ Rm be

such that {yS}S∈S =
{
y ∈ {0,1}|A| :My≤ d

}
and conv

(
{yS}S∈S

)
=
{
y ∈ [0,1]|A| :My≤ d

}
. Then

a MIP formulation of OCP (ν) is given by

min
∑
i∈A

(∑
a∈A

ν(a)yi(a)− z∗Comb(ν)

)
(9a)

s.t. x(a)≤
∑
i∈A

yi(a), a∈A (9b)

Myi ≤ d, i∈A (9c)

MTw≤ diag(l)(1−x) + diag(ν)x (9d)

dTw≥ z∗Comb (ν) (9e)

x(a), yi(a)∈ {0,1} ,w ∈Rm, a, i∈A, (9f)

where x= (x(a) : a∈A), yi = (yi(a) : a∈A), and 1 is a vector of ones.

In the above, x represents the incidence vector of a critical set. Such a condition is imposed via

LP duality, using constraints (9d) and (9e), and eliminates the necessity of introducing constraint

(8c) for each solution in S. Similarly, each yi represents the incidence vector of a solution S ∈ S.

A formal proof of the validity of this formulation is included in Online Appendix A.3.3.

Formulation (9) has O(|A|2) variables and O (m |A|) constraints. If m is polynomial in the size

of the input of Comb, then we should be able to solve (9) directly with a state-of-the-art integer

programming (IP) solver. If m is exponential, but the constraints in the LP formulation can be

separated effectively, we should still be able to effectively deal with (9c) within a branch-and-cut

algorithm. However, in such a case one would have an exponential number of w variables, which

would force us to use a more intricate, and potentially less effective, branch-and-cut-and-price

procedure. Nonetheless, when Comb does not admit a polynomial-sized LP formulation, one can

still provide formulations with a polynomial number of variables, many of them also having a

polynomial number of constraints. We discuss such cases next.

Problems with Polynomial-Sized Extended Formulations. The first way to construct

polynomial-sized IP formulations of OCP is to exploit the fact that many polynomially-solvable

problems with LP formulations with an exponential number of constraints also have polynomial-

sized extended LP formulations (i.e., formulations that use a polynomial number of auxiliary vari-

ables). A standard example of this class of problems is the spanning tree problem, where m in the

LP formulation required by Proposition 2 is exponential in the number of nodes of the underlying
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graph. However, in the case of spanning trees, we can additionally use a known polynomial-sized

extended formulation of the form P :=
{
y ∈ [0,1]

|A|
: ∃z ∈Rp, Cy+Dz ≤ d

}
where C ∈Rm′×|A|,

D ∈ Rm′×p and d ∈ Rm′ , with both m′ and p being only cubic on the number of nodes (and

hence polynomial in |A|) (Martin 1991, e.g.). This formulation satisfies {yS}S∈S = P ∩{0,1}|A| and

conv
(
{yS}S∈S

)
= P . Then, a MIP formulation with a polynomial number of variables and con-

straints of OCP for the spanning tree problem is obtained by replacing (9c) with Cyi +Dzi ≤ d,

replacing (9d) with CTw≤ diag(l)(1−x)+diag(ν)x and DTw≤ 0, and adding the polynomial num-

ber of variables zi for i∈ {1, . . . , |A|}. Similar techniques can be used to construct polynomial-sized

formulations for other problems with polynomial-sized extended LP formulations.

Problems without Polynomial-Sized Extended Formulations. It has recently been shown

that there is no polynomial-sized extended LP formulations for the non-bipartite perfect match-

ing problem (Rothvoß 2017). Hence, we cannot use the techniques in the previous paragraph to

construct polynomial-sized IP formulations of OCP for matching. Fortunately, a simple linear pro-

gramming observation and a result by Ventura and Eisenbrand (2003) allow constructing a version

of (9) with a polynomial number of variables. The observation is that a solution y∗ is optimal

for max{νTy : My≤ d} if and only if it is optimal for max{νTy : MT
i y≤ di ∀i∈ I (y∗)} where

I (y∗) := {i∈ {1, . . . ,m} : MT
i y
∗ = di} is the set of active constraints at y∗, and Mi is the i-th row

of M . The number of active constraints can still be exponential for matching. However, for each

perfect matching y∗, Ventura and Eisenbrand (2003) give explicit C ∈ Rm′×|A|, D ∈ Rm′×p and

d ∈ Rm′ , such that m′ and p are polynomial in |A| and
{
y ∈ [0,1]

|A|
: ∃z ∈Rp, Cy+Dz ≤ d

}
={

y ∈R|A| : MT
i y≤ di ∀i∈ I (y∗)

}
. Using these matrices and vectors we can then do a replacement

of (9d) analog to that for spanning trees to obtain a version of (9) with a polynomial number

of variables. We would still have an exponential number of constraints in (9c), but these can be

separated in polynomial time for matching, so OCP for matching could be effectively solved by

branch-and-cut.

Perfect matching is the only explicit polynomially-solvable combinatorial optimization problem

that is known not to admit a polynomial-sized extended LP formulation. However, Rothvoß (2013)

shows that there must exist a family of matroid problems without a polynomial-sized extended LP

formulation. Fortunately, it can be shown (e.g., see Lemma 4 in Online Appendix A.3.2) that for

matroid problems, there exists a unique critical set C ⊆A that can be found in polynomial time.

Once this set is obtained, we can simply replace (9b) by 1≤
∑

i∈A y
i(a) for all a ∈C and remove

(9d)–(9e). We are not aware of any other polynomially-solvable combinatorial optimization problem

which requires non-trivial results to formulate OCP with a polynomial number of variables.

Remark 4. Further improvements and extensions to (9) can be achieved. We give two such exam-

ples in Online Appendices A.3.4 and A.3.5. The first example shows how (9) for OCP can be
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extended to the case when Comb is not in P, but admits a compact IP formulation. The second

example gives a linear-sized formulation of OCP for shortest path problems. We finally note that

Online Appendix A.3 comments on similar results for the Cover problem.

7. Numerical Experiments

In this section we study the finite-time performance of the OCP-based policy from Section 5. In

particular, we consider two policies: the OCP-based policy (as defined in Algorithm 2), and a

variant that solves OCP heuristically in a greedy way (using Algorithm 5 presented in Online

Appendix A.3.7). We refer to this latter policy as the Greedy-Heuristic policy. We divide the

numerical experiments into two classes: long-term and short-term experiments. We discuss the

long-term experiments in Section 7.1 and refer the reader to Online Appendix A.5 for the short-

term experiments. In what follows, we first describe the benchmark policies and then discuss the

studied settings and results.

7.1. Long-Term Experiments

7.1.1. Benchmark Policies and Implementation Details

Benchmark Policies. Our benchmark policies are versions of UCB1 (Auer et al. 2002), adapted

to the combinatorial setting. The UCB1 policy implements solution Sn in period n, where

Sn ∈ arg min
S∈S

{∑
m<n:Sm=S

∑
a∈S bm(a)

|m<n : Sm = S|
−

√
2 ln(n− 1)

|m<n : Sm = S|

}
.

Note that the estimate cost for solution S is based solely on past implementations of that solution.

We improve performance of UCB1 by: (i) conducting parameter estimation at the ground element

level to reduce variance of estimation; (ii) using min{Tn(a) : a∈ S} instead of |m<n : Sm = S| to

adjust confidence interval length to better reflect the amount of information used in estimating

parameters; (iii) adjusting said length so that confidence bounds remain within the bounds implied

by the range of F ; and (iv) reducing the solution set so that it only includes solutions that are

minimal with respect to inclusion – this could improve performance by preventing UCB1 to imple-

ment solutions that are clearly suboptimal. The resulting policy, which we denote by UCB1+,

implements solution Sn in period n, where

Sn ∈ arg min
S∈S

{
max

{∑
a∈S

µ̂n(a)−

√
2 ln(n− 1)

min{Tn(a) : a∈ S}
,
∑
a∈S

l(a)

}}
.

In a similar setting, Gai et al. (2012) propose an alternative adaptation of UCB1: a modified version

of such a policy in period n implements

Sn ∈ arg min
S∈S

{∑
a∈S

max

{
µ̂n(a)−

√
(K+ 1) ln(n− 1)

Tn(a)
, l(a)

}}
,

for a tuning parameter K> 0. We denote this policy as Extended UCB1+.
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Remark 5. Note that computing Sn in Extended UCB1+ can be accomplished by solving an

instance of Comb(·). Implementing UCB1+ in contrast, requires solving for Sn via explicit enu-

meration.

Implementation Details. We report results when the marginal distributions of F are exponential

(we normalize the mean cost vector so that the maximum solution cost is at most one): we tested

many cost distributions and observed consistent performance. For the OCP-based and Greedy-

Heuristic policies, we report the results for H = 5: preliminary tests using H ∈ {5,10,20} always

resulted in logarithmic regrets. When choosing a solution from the exploration set to implement,

in case of a tie, our proposed policies select the solution that contains the most number of critical

elements. In case of a second tie, they select a solution with the smallest average cost. We imple-

mented UCB1+ and Extended UCB1+ with and without truncating indices at the implied lower

bounds. Here, we present the point-wise minimum regret among both versions of each policy. We

set K = 1 in Extended UCB1+, as this selection outperformed the recommendation in Gai et al.

(2012), and also is the natural choice for extending the UCB1 policy. Finally, all policies start by

implementing each solution in a common minimum-size cover of A.

All figures in this section report average performance for N = 2000 over 100 replications, and dot-

ted lines represent 95% confidence intervals. All policies were implemented in MATLAB R2011b.

Shortest path problems were solved using Dijkstra’s algorithm except when implementing UCB1+

(note that because of the index computation, the optimization problem must be solved by enumer-

ation). For Steiner tree and knapsack problems, we solved standard IP formulations using GUROBI

5.0 Optimizer. The OCP-based policy solves formulation (8) of OCP using GUROBI 5.0 Optimizer.

All experiments ran on a machine with an Intel(R) Xeon(R) 2.80GHz CPU and 16GB of memory.

The average running time for a single replication was around 30 seconds for the UCB1+, Extended

UCB1+ and Greedy-Heuristic policies, and around 1.5 minutes for the OCP-based policy. (Note,

however, that while the running time of the OCP-based policy grows (roughly) logarithmically

with the horizon, those of UCB1+ and Extended UCB1+ grow linearly.)

7.1.2. Settings and Results

We present settings complementary to those in Examples 1 and 2 in the sense that critical sets are

large, thus the OCP-based and Greedy-Heuristic policies do not have an immediate advantage. (See

Online Appendix A.4 for numerical experiments on Examples 1 and 2.) The settings are comprised

of the shortest path, Steiner tree and knapsack problems. We observed consistent performance of

our policies across these settings: here we only show a representative setting from each class.

Shortest Path Problem. We consider a shortest path problem on a randomly generated layered

graph – see panel (a) of Figure 2 in Ryzhov and Powell (2011) for an example of a layered graph.
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The graph consists of a source node, a destination node, and 5 layers in between, each containing

4 nodes. In each layer, every node (but those in the last layer) is connected to 3 randomly chosen

nodes in the next layer. The source node is connected to every node in the first layer and every

node in the last layer is connected to the destination node. Mean arc costs are selected randomly

from the set {0.1,0.2, . . . ,1} and then normalized. The representative graph is such that |A|= 56,

|S|= 324, and while the minimum-size cover of A is of size 13, the solution-cover to OCP (µ) is of

size 16 with an implied critical set of size 40.

Knapsack Problem. Here the set A represents items that might go into a knapsack to maximize

total utility. The solution set S consists of the subsets of items whose total weights do not exceed

the knapsack weight limit. Weight and utility of items, as well as the weight limit, are selected

randomly. The representative setting is such that |A|= 20, |S|= 24680, the minimum-size cover is

of size 4, and the solution-cover to OCP (µ) is of size 8 with an implied critical set of size 17.

Minimum Steiner Tree Problem. We consider a generalized version of the Steiner tree problem

(Williamson and Shmoys 2011), where for a given undirected graph with non-negative edge costs

and a set of pairs of vertices, the objective is to find a minimum-cost subset of edges (tree) such

that every given pair is connected in the set of selected edges. The graphs as well as the pairs of

vertices are generated randomly, as well as the mean cost values. The representative setting is such

that |A|= 18, |S|= 10651, and the minimum-size cover is of size 2. We consider two settings: one

where the lower bound vector is l = 0 (the solution-cover to OCP (µ) is of size 7 and the critical

set is of size 17) and one where lower bounds are positive numbers that are selected randomly (the

solution-cover to OCP (µ) is of size 5 and the critical set is of size 12).

Results. The left and right panel in Figure 3 depict the average performance of different policies for

the shortest path and knapsack settings, respectively. We see that in both settings, the OCP-based

and Greedy-Heuristic policies significantly outperform the benchmarks. The left panel in Figure 4

depicts the average performance of different policies for the Steiner tree setting when all cost lower

bounds are set to zero. In this case, all arcs (but those trivially suboptimal) are critical, however,

the OCP-based and Greedy-Heuristic policies still outperform the benchmarks. The right panel

in Figure 4 depicts average performance in the setting where lower bounds are positive numbers.

Note that the OCP-based policy significantly outperforms the benchmarks as it successfully limits

exploration to a critical set. Also note that the non-concave behavior of the regret curve of UCB1+

arises only in the transient as a by-product of truncation, and it disappears at around n= 1200.

Sample Path Regret Comparison. So far, the results in this section show that the average

performance of our policies is significantly better than that for the benchmarks. It turns out

that our policies outperform the benchmarks not only in terms of average, but also in terms of
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Figure 3 Average performance of different policies on the representative setting for the shortest path (left) and

knapsack (right) problems.
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Figure 4 Average performance of different policies on the representative setting for the Steiner tree problem with

zero (left) and positive (right) lower bounds.

worst-case regret: we compared the sample path final regrets (i.e., at time period N = 2000) of

OCP-based policy with those of UCB1+ and Extended UCB1+ policies: out of 700 sample paths in

the numerical experiments in Section 7.1.2 (and including those in the Online Appendix A.4), the

OCP-based policy outperforms the UCB1+ and Extended UCB1+ policies in all 700 (i.e., 100%

of sample paths) and 697 (i.e., 99.6% of sample paths), respectively.

7.2. Experiment with Size of the Ground Set

At the end of Section 1, we argued that, in the combinatorial setting, it is the constant accompa-

nying the lnN term in a performance guarantee that is worth characterizing. However, prior work

(see Section 2), lacking a fundamental performance limit, instead writes such an accompanying

constant as a function of the size of the ground set (i.e., |A|). However, following Theorem 1, we

know that such a constant is not a trivial function of |A|. Thus, the question of how said constant
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scales in practice with the size of the underlying combinatorial problem is of much relevance. For

this reason, we next explore how performance of various policies varies with the size of the ground

set.

We experiment with the shortest path problem on a layered graph (see Section 7.1.2 for a

description) with L layers, 2 nodes in each layer, complete connections between layers, and a

direct arc from the source s to sink t. We experiment with L = 2,4,6,8,10 which results in |A|=

9,17,25,33,41 and |S|= 5,17,65,257,1025, respectively.

We add a direct s− t arc (path) to the original description of the layered graph so as to isolate

the effect of size of the ground set on the performance of different policies. To this end, we let the

expected cost of the s− t arc (path) be 0.1, while all other arcs have an expected cost of 0.2/(L+1)

where L is the number of layers. Therefore, the s− t path is the expected shortest path while all

other paths (each of which has L+1 arcs) have an expected cost of 0.2, regardless of the size of the

ground set. Thus, increasing the size of the ground set does not affect the cost (regret) of different

paths in different instances. We run the experiments for N = 20,000 and 40 replications.

For the OCP-based policy, we solve the OCP problem using the linear-sized formulation (A-20)

presented in the Online Appendix A.3.5. We observe a behavior similar to the graph on the left

panel of Figure 6 for all choices of L. That is, the cumulative regret of all three policies grow

similar to a function K ln(n) for some policy-dependent constant K. We consider two estimates for

such a constant: (i) KFinal, which we find by dividing the average final regret, which we denote by

R̂(20000), by ln(20000), that is, KFinal := R̂(20000)/ ln(20000); (ii) KLS, which is found by fitting

the function KLS ln(n) to the sample of average regrets for n= 100,200, . . . ,20000 (by minimizing

the sum of squared errors). We present the value of both constants for the three policies and varying

|A| in Figure 5. We also present the average performance and computation time of different policies

for the instance with L= 10 (|A|= 41 and |S|= 1025) as a representative setting in Figure 6 as we

observed similar behavior in other instances. As can be seen in the left panel of Figure 6 (and also

from Figure 5), the OCP-based policy significantly outperforms both benchmark policies regardless

of the size of the ground set. Moreover, the constants KLS and KFinal are significantly smaller for

the OCP-based policy than those for the benchmark policies. In addition, such constants grow with

a much smaller rate for the OCP-based policy than the benchmarks. Moreover, as illustrated by the

right panel of Figure 6, the computation time of the OCP-based policy grows logarithmically with

N . Furthermore, there is a significant variation if we consider computation times. This is shown in

Table 1, which presents the average running time for a complete replication for each policy. This

time includes all calculations required by the policy (e.g., for the OCP-based policy, it includes
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|A|
9 17 25 33 41

OCP-based 75.54 79.43 81.18 92.60 142.38
UCB1+ 65.47 127.38 376.56 1483.71 6686.70

Extended UCB1+ 103.59 190.64 267.22 342.93 418.83

Table 1 Average total computation time (in seconds) for each replication of N = 20,000.

the solution time of all instances of OCP and Comb as dictated by Algorithm 2). We can see that

the OCP-based policy runs faster than both benchmark policies for (almost) all instances (we note

that although for much larger instances, one expects the Extended UCB1+ to run faster than the

OCP-based policy, the Extended UCB1+ performs very poorly, in terms of regret, regardless of

the size of the instance). Moreover, UCB1+, which is the more “competitive” benchmark policy

in terms of performance, is significantly slower than the OCP-based policy. These observations
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further pronounce the practical advantage of the OCP-based policy both in terms of performance

(i.e., regret) and computation time.

8. Conclusion

In this paper we study a class of sequential decision-making problems where the underlying single-

period decision problem is a combinatorial optimization problem, and there is initial uncertainty

about its objective coefficients. By framing the problem as a combinatorial multi-armed bandit,

we adapt key ideas behind results in the classical bandit setting to develop efficient practical poli-

cies. We show that in addition to answering the question of when (i.e., with what frequency) to

explore, which is key in the traditional bandit setting, in the combinatorial setting the key ques-

tions to answer are what and how to explore. We answer such questions by solving an optimization

problem which we call the Lower Bound Problem (LBP ). We establish a fundamental limit on

the asymptotic performance of any admissible policy that is proportional to the optimal objective

value of the LBP problem. We show that such a lower bound might be asymptotically attained by

near-optimal policies that adaptively reconstruct and solve LBP at an exponentially decreasing

frequency. Because LBP is likely intractable in practice, we propose a simpler and more practical

policy, namely the OCP-based policy, that instead reconstructs and solves a proxy for LBP , which

we call the Optimaltiy Cover Problem (OCP ). This proxy explicitly solves for the cheapest opti-

mality guarantee for the optimal solution to the underlying combinatorial problem. We prove a

performance guarantee for a variant of the OCP-based policy, which is proportional to the optimal

objective value of the OCP and can be compared to that of LBP . We also provide strong evidence

of the practical tractability of OCP which in turn implies that the proposed OCP-based policies

are scalable and implementable in real-time. Moreover, we test performance of the proposed poli-

cies through extensive numerical experiments and show that they significantly outperform relevant

benchmarks in the long-term and are competitive in the short-term.

The flexibility of the OCP-based policies allows them to be easily extended or combined with

other techniques that consider similar what-and-how-to-explore questions. For instance, the OCP-

based policy can be easily combined with the “barycentric spanner” of Awerbuch and Kleinberg

(2004) to extend our results from element-level observations to set- or solution-level observations.

Indeed, it can be shown that in such feedback settings, efficient exploration amounts to focusing

exploration on the solution to a variant of OCP . Moreover, the performance guarantee in Theorem

3 would remain valid with the constants associated with this alternative formulation. See Online

Appendix A.6 for further details.

From our results, we observe a performance gap between the fundamental limit on (asymptotic)

performance (Theorem 1) and the upper bound on the regret associated with near-optimal policies
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(Theorem 2). Although we provide a detailed discussion of this gap in Section 4.3, future research

can further investigate the possibility of closing this gap. Moreover, studying combinatorial bandit

settings with non-linear objective functions is another direction for future research.
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Lübbecke, M. E., Miltenberger, M., Müller, B., Pfetsch, M. E., Puchert, C., Rehfeldt, D., Schenker,

S., Schwarz, R., Serrano, F., Shinano, Y., Weninger, D., Witt, J. T. and Witzig, J. (2017), The scip

optimization suite 4.0, Technical Report 17-12, ZIB, Takustr.7, 14195 Berlin.

Martin, R. K. (1991), ‘Using separation algorithms to generate mixed integer model reformulations’, Oper-

ations Research Letters 10, 119–128.

Mersereau, A., Rusmevichientong, P. and Tsitsiklis, J. (2009), ‘A structured multiarmed bandit problem and

the greedy policy’, IEEE Transactions on Automatic Control 54(12), 2787–2802.

Niño-Mora, J. (2011), ‘Computing a classic index for finite-horizon bandits’, INFORMS Journal on Com-

puting 23(2), 254–267.

Robbins, H. (1952), ‘Some aspects of the sequential design of experiments’, Bulletin of the American Math-

ematical Society 58, 527–535.

 Electronic copy available at: https://ssrn.com/abstract=3041893 
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Online Appendix Companion to “Learning in Combinatorial Optimization: What

and How to Explore”

Appendix A: Omitted Proofs and Complementary Material

A.1. Omitted Proofs and Material from Section 4

A.1.1. A Limit on Achievable Performance

In this section we prove Proposition 1 and Theorem 1. We begin with some preliminaries. Define

Θa := (l(a), u(a)). For λ(a)∈Θa, the Kullback-Leibler divergence between fa(·;µ(a)) and fa(·;λ(a))

is defined as

Ia(µ(a), λ(a)) :=

∫ ∞
−∞

[ln (fa(xa;µ(a))/fa(xa;λ(a)))]fa(xa;µ(a)) dxa.

Define λ := (λ(a) : a∈A) and let Eλ and Pλ denote the expectation and probability induced when

each fa receives the parameter λ(a)∈Θa for all a∈A.

Define T̃N+1(S) as the number of times that the decision-maker has implemented solution S ∈ S

prior to period N + 1, that is, T̃N+1(S) := |m<N + 1 : Sm = S|. We can then rewrite the regret

function as

Rπ(F,N) =
∑
S∈S

∆µ
S EF

{
T̃N+1(S)

}
.

Next, we prove Proposition 1.

Proposition 1. For any consistent policy π and D ∈D(µ) we have that

lim
N→∞

PF
{

max{TN+1(a) : a∈D}
lnN

≥KD(µ)

}
= 1, (2)

for a positive finite constant KD(µ).

Proof of Proposition 1. For simplicity, we denote D(µ) by D. Consider D ∈ D as defined

in Section 4, and take λ∈B=
∏
a∈A(l(a), u(a)) so that λ(a) = µ(a) for a /∈D, and that D⊆ S∗ for

all S∗ ∈ S∗(λ). By the consistency of π, one has that

Eλ

N − ∑
S∗∈S∗(λ)

T̃N+1(S)

= o(Nα),
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for any α> 0. By construction, each optimal solution under λ includes each a∈D. Thus, one has

that
∑

S∗∈S∗(λ)

T̃N+1(S)≤max{TN+1(a) : a∈D}, and therefore

Eλ {N −max{TN+1(a) : a∈D}} ≤Eλ

N − ∑
S∗∈S∗(λ)

T̃N+1(S)

= o(Nα). (A-1)

We focus on 0 < α < 1 and take ε such that 0 < α < ε < 1. Define I(D,λ) :=

|D|max{Ia(µ(a), λ(a)) : a∈D}, D ∈D. We then have that

Pλ
{

max{TN+1(a) : a∈D}< (1− ε) lnN

I(D,λ)

}
= Pλ

{
N −max{TN+1(a) : a∈D}>N − (1− ε) lnN

I(D,λ)

}
(a)

≤ Eλ {N −max{TN+1(a) : a∈D}}
N − (1−ε) lnN

I(D,λ)

,

where (a) follows from Markov’s inequality. Note that for N large enough, we have that N −

((1− ε) lnN/I(D,λ))> 0, and because (1− ε) lnN/I(D,λ) =O(lnN), from (A-1) we have that

(N −O(lnN)) Pλ
{

max{TN+1(a) : a∈D}< (1− ε) lnN

I(D,λ)

}
= o(Nα),

where in above, (N −O(lnN)) refers to N − ((1− ε) lnN/I(D,λ)). The above can be re-written as

Pλ
{

max{TN+1(a) : a∈D}< (1− ε) lnN

I(D,λ)

}
= o(Nα−1). (A-2)

For a∈D and n∈N define

Ln(a) :=
n∑
k=1

ln
(
fa(b̂

k
a;µ(a))/fa(b̂

k
a;λ(a))

)
,

where b̂ka denotes the k-th cost realization for a∈D when policy π is implemented. Also, define the

event

Ξ(N) :=

{
LTN+1(a)(a)≤ (1−α) lnN

|D|
for all a∈D , max{TN+1(a) : a∈D}< (1− ε) lnN

I(D,λ)

}
,

and note that

Pλ {Ξ(N)} ≤ Pλ
{

max{TN+1(a) : a∈D}< (1− ε) lnN

I(D,λ)

}
.
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Next, we relate the probability of the event Ξ(N) under the two parameter configurations:

Pλ {Ξ(N)} =

∫
ω∈Ξ(N)

dPλ(ω)

(a)
=

∫
ω∈Ξ(N)

∏
a∈D

exp(−LTN+1(a)(a)) dPµ(ω)

(b)

≥
∫
ω∈Ξ(N)

exp(−(1−α) lnN) dPµ(ω)

= Nα−1Pµ {Ξ(N)} ,

where (a) follows from noting that probabilities under λ and µ differ only in that cost realizations

in D have different probabilities under λ and µ, and (b) follows from noting that LTN+1(a)(a) ≤

(1−α) lnN/ |D| for all ω ∈Ξ(N).

From above and (A-2) we have that

lim
N→∞

Pµ {Ξ(N)} ≤ lim
N→∞

N 1−α Pλ {Ξ(N)}= 0. (A-3)

Now, fix a ∈D. By the Strong Law of Large Numbers (see page 8 of Lai and Robbins (1985))

we have that

lim
n→∞

max
m≤n

Lm(a)/n= Ia(µ(a), λ(a)), a.s.[Pµ], ∀a∈D.

From above, we have that

lim
N→∞

max

{
Lm(a)

(1−ε) lnN

|D|Ia(µ(a),λ(a))

:m<
(1− ε) lnN

|D| Ia(µ(a), λ(a))

}
= Ia(µ(a), λ(a)), a.s.[Pµ], ∀a∈D.

From above and seeing that 1−α> 1− ε, we have for all a∈D that

limN→∞ Pµ
{
Lm(a)> (1−α) lnN

|D| for some m< (1−ε) lnN

|D|Ia(µ(a),λ(a))

}
=

limN→∞ Pµ
{

max

{
Lm(a)

(1−ε) lnN
|D|Ia(µ(a),λ(a))

:m< (1−ε) lnN

|D|Ia(µ(a),λ(a))

}
>
(

1−α
1−ε

)
Ia(µ(a), λ(a))

}
= 0.

Because I(D,λ)≥ |D| Ia(µ(a), λ(a)), we further have that

lim
N→∞

Pµ
{
Lm(a)>

(1−α) lnN

|D|
for some m<

(1− ε) lnN

I(D,λ)

}
= 0 ∀a∈D.

Then, in particular by taking m= TN+1(a) we have that

lim
N→∞

Pµ
{
LTN+1(a)(a)>

(1−α) lnN

|D|
, TN+1(a)<

(1− ε) lnN

I(D,λ)

}
= 0 ∀a∈D,
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40 Modaresi, Sauré and Vielma: Learning in Combinatorial Optimization: What and How to Explore

which in turn implies

lim
N→∞

Pµ
{
LTN+1(a)(a)>

(1−α) lnN

|D|
, max{TN+1(a) : a∈D}< (1− ε) lnN

I(D,λ)

}
= 0 ∀a∈D.

Finally, by taking the union of events over a∈D we have that

lim
N→∞

Pµ
{
LTN+1(a)(a)>

(1−α) lnN

|D|
for some a∈D , max{TN+1(a) : a∈D}< (1− ε) lnN

I(D,λ)

}
= 0.

(A-4)

Thus, by (A-3), (A-4), and the definition of Ξ(N) we have that

lim
N→∞

Pµ
{

max{TN+1(a) : a∈D}< (1− ε) lnN

I(D,λ)

}
= 0.

The result follows from letting ε and α approach zero, and taking KD := I(D,λ)−1.

�

Theorem 1. The regret of any consistent policy π is such that

lim inf
N→∞

Rπ(F,N)

lnN
≥ z∗LBP (µ). (4)

Proof of Theorem 1. For any consistent policy π, define ζπ(F,N) :=
∑

S∈S∆µ
S T̃N+1(S)

to be the total additional cost (relative to an oracle) associated with that policy. Note that

EF {ζπ(F,N)}=Rπ(F,N). The next lemma ties the asymptotic bounds in (2) to the solution to

LBP (µ) and establishes an asymptotic bound on the regret of any consistent policy.

Lemma 2. For any consistent policy π and regular F we have that

lim
N→∞

PF
(
ζπ(F,N)≥ z∗LBP (µ) lnN

)
= 1.

Proof of Lemma 2. Define the event ΥN :=
⋂
D∈D(µ) {max{TN+1(a) : a∈D} ≥KD(µ) lnN}

and let Υc
N denote the complement of the event ΥN . Note that ζπ(F,N)≥ z∗LBP (µ) lnN when ΥN

occurs, because
(
x(a) =

TN+1(a)

lnN
, a∈A

)
and

(
y(S) =

T̃N+1(S)

lnN
, S ∈ S

)
are feasible to LBP (µ). Thus,

one has that

PF
{
ζπ(F,N)

lnN
< z∗LBP (µ)

}
= PF

{
ζπ(F,N)

lnN
< z∗LBP (µ) , ΥN

}
+PF

{
ζπ(F,N)

lnN
< z∗LBP (µ) , Υc

N

}
≤ PF {Υc

N} . (A-5)
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From Proposition 1 and the union bound, we have that

lim
N→∞

PF {Υc
N} ≤

∑
D∈D(µ)

lim
N→∞

PF {max{TN+1(a) : a∈D}<KD(µ) lnN}= 0,

because |D(µ)|<∞. Thus, taking the limit in (A-5) we have that

lim
N→∞

PF {ζπ(F,N)< z∗LBP (µ) lnN}= 0.

�

Note that Lemma 2 establishes convergence in probability (hence it can be used to bound

ζπ(F,N), rather than just its expectation, which is the regret). Theorem 1 then follows directly

from Lemma 2 and Markov’s inequality.

A.1.2. Family of Instances with Finite Regret

Proposition 3. If the combinatorial problem Comb(ν) in (1) corresponds to a shortest path,

minimum-cost spanning tree, minimum-cost perfect matching, generalized Steiner tree or knapsack

problem, then there exists a family of instances where z∗LBP (µ) = 0 while the minimum-size cover

of A is arbitrarily large.

Proof of Proposition 3. The family for the shortest path problem is that based on Example 2

(which is parametrized by an integer k), and described after Theorem 1 in Section 4.

For minimum-cost spanning tree, consider a complete graph G = (V,A) with |V | = k nodes,

µ(a) = ε and l(a) = 0 for all a ∈ {(i, i+ 1) : i < k}, and l(a) =M > 0 for all a /∈ {(i, i+ 1) : i < k}

with k ε <M . One can check that any cover of A is of size at least (k−2)/2. In contrast, D(µ) = ∅,

independent of k, thus z∗LBP (µ) = 0. Note that the Steiner tree problem generalizes the minimum-

cost spanning tree problem, thus this instance covers the Steiner tree case as well.

For minimum-cost perfect matching, consider a complete graph G = (V,A) with |V | = 2k

nodes, µ(a) = ε and l(a) = 0 for all a ∈ {(2i+ 1,2i+ 2) : i < k}, and l(a) = M > 0 for all a /∈

{(2i+ 1,2i+ 2) : i < k} with k ε <M . One can check that any cover of A is of size at least 2(k−1).

In contrast, D(µ) = ∅, independent of k, thus z∗LBP (µ) = 0.

Finally, for the knapsack problem, consider the items A := {0,1, . . . ,Ck}, where C ∈N denotes

the knapsack capacity, and weights w ∈RCk+1 so that w(0) =C, and w(i) = 1 for i > 0. In addition,

set u(0) = 0 and µ(0) = ε and u(i) = −M < 0 for i > 0 (where u(a) denotes the upper bound on

the range of the “utility” distribution of ground element a), with ε <M . Note that in this case the

problem is of utility maximization. One can check that any cover of A is of size at least k+ 1. In

contrast, D(µ) = ∅, independent of k, thus z∗LBP (µ) = 0.
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A.1.3. Performance Guarantee of the LBP-based policy

Suppose that Assumption 1 holds. The following result provides a performance guarantee for

the LBP-based policy.

Theorem 2. Consider γ ∈ (0,1) and ε > 0 arbitrary. The LBP-based policy π∗(γ, ε) is such that

lim
N→∞

Rπ∗(γ,ε)(F,N)

(lnN)
1+ε ≤ z∗LBP (µ) + γ z∗Cover(µ). (6)

Proof of Theorem 2. The regret of the policy π∗ (we drop the dependence of π∗ on γ and

ε for simplicity) stems from two sources: exploration efforts and exploitation errors. That is,

Rπ∗(F,N) =R1(F,N) +R2(F,N),

where R1(F,N) is the exploration-based regret, i.e., that incurred at period n during cycle i if

Tn(a)< γ i for some a ∈A, or alternatively when sampling a solution, picking Sn 6= S∗ with S∗ ∈
S∗(µ̂ni), and R2(F,N) is the exploitation-based regret, i.e., that incurred when Tn(a)≥ γ i for all

a ∈A and we sample Sn = S∗. We prove the result by bounding each term above separately. (We

dropped the dependence of R1(F,N) and R2(F,N) on the policy π∗ to simplify notation.)

In the remainder of this proof, E and P denote expectation and probability when costs are

distributed according to F and policy π∗ is implemented.

Step 1 (Exploitation-based regret). Exploitation-based regret during cycle i is due to imple-

menting suboptimal solutions when minimum cover-based exploration requirements are met.

Let i′ denote a finite upper bound on the first cycle in which one is sure to randomize a solution

on at least one period, e.g., i′ := 1 + inf {i∈N, i≥ 2 : ni ≥ i |A| , ni+1−ni > |A|}. (Note that i′ does

not depend on N).

Fix i≥ i′ and note that when cover-based exploration requirements are met for n∈ [ni, ni+1−1],

one may exploit, that is, one may implement Sn = S∗ for some S∗ ∈ S∗(µ̂ni). We use the event

{Sn ∈ S∗(µ̂ni)} to denote exploitation. We also define ∆µ
max := maxS∈S {∆µ

S}. We then have that

R2(F,N) ≤ ni′∆
µ
max +

d(lnN)1+εe∑
i=i′

ni+1−1∑
n=ni

E
{
1{Tn(a)≥ γ(i− 1) , ∀a∈A,Sn ∈ S∗(µ̂ni)}∆µ

Sn

}
≤ ni′∆µ

max +
∞∑
i=i′

(ni+1−ni)P{S∗(µ̂ni) 6⊆ S
∗(µ), Tni(a)≥ γ(i− 1),∀a∈A}∆µ

max. (A-6)

Next, we find an upper bound for the probability inside the sum in (A-6). For this, note that

{S∗(µ̂ni) 6⊆ S
∗(µ)} ⊆

⋃
a∈A

{
|µ̂ni(a)−µ(a)| ≥ ∆µ

min

2s

}
, (A-7)
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where s := max{|S| : S ∈ S} and ∆µ
min := min{∆µ

S : S ∈ S \S∗ (µ)} denote the maximum solution

size and minimum optimality gap for the full-information problem, respectively. (We assume, with-

out loss of generality, that ∆µ
max and ∆µ

min are both positive, since otherwise, the problem is trivial.)

Indeed, note that

{
|µ̂ni(a)−µ(a)|< ∆µ

min

2s
, ∀a∈A

}
⊆

{∑
a∈S∗

µ̂ni(a)<
∑
a∈S

µ̂ni(a) , ∀S∗ ∈ S∗(µ) , S ∈ S \S∗ (µ)

}
.

The next proposition, whose proof can be found in Online Appendix A.7, allows us to bound (A-6)

using the observation above.

Proposition 4. For any fixed a∈A, n∈N, k ∈N, and ε > 0 we have that

P{|µ̂n(a)−µ(a)| ≥ ε,Tn(a)≥ k} ≤ 2exp

{
−2ε2k

L2

}
,

where L := max{u(a)− l(a) : a∈A}.

Using the above, the union bound, and (A-7), we have that

P{S∗(µ̂ni) 6⊆ S
∗(µ) , Tni(a)≥ γ(i− 1) , ∀a∈A} ≤∑

a∈A

P
{
|µ̂ni(a)−µ(a)| ≥ ∆µ

min

2s
,Tni(a)≥ γ(i− 1)

}
≤ 2 |A| exp

{
−(∆µ

min)
2
γ(i− 1)

2s2L2

}
. (A-8)

Now, for i≥ i′, one has that ni+1 ≤ e(i+1)1/(1+ε) and ni ≥ e(i−1)1/(1+ε) . Hence, ni+1−ni ≤ e(i+1)1/(1+ε) .

Using this, (A-6) and (A-8) we conclude that

R2(F,N)≤∆µ
max

(
ni′ +

∞∑
i=i′

2 |A| exp

{
(i+ 1)1/(1+ε)− (∆µ

min)
2
γ(i− 1)

2s2L2

})
.

Because (i+1)1/(1+ε) < i
(∆

µ
min)

2
γ

2s2L2 for i large enough, we conclude that R2(F,N)≤C1, for a positive

finite constant C1, independent of N .

Step 2 (Exploration-based regret). We separate the exploration-based regret into cover-based

and LBP-based regrets. The former arises at period n when there exists a∈A such that Tn(a)<γ i.

The latter arises when the cover-based exploration requirements are met and one samples Sn 6=

S∗ for S∗ ∈ S∗(µ̂ni). Let RCover
1 (F,N) and RLBP

1 (F,N) denote the cover-based and LBP-based

exploration regrets, respectively, so that

R1(F,N) :=RCover
1 (F,N) +RLBP

1 (F,N).
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Step 2.1 (Cover-based exploration regret). We first bound the cover-based exploration regret. Let

C denote the set of minimal covers of A, and ∆C
min denote the minimum optimality gap for the

Cover (µ) problem in (5), i.e.,

∆C
min := min

{(∑
S∈E

∆µ
S

)
− z∗Cover(µ) : E ∈C \ΓCover (µ)

}
.

We assume that ∆C
min > 0, since otherwise, the cover problem is trivial. Consider i > i′

and let Ei ∈ ΓCover (µ̂ni) denote the cover-based exploration set for any period n ∈ [ni, ni+1 −

1]. Define c := max{|E| : E ∈C} as the maximum size of a minimal cover of A and let I :={
i≤ (lnN)

1+ε
: i > i′ , dγ(i− 1)e< dγ ie

}
denote the set of cycles in which cover-based exploration

requirements are increased. Noting that Tni(a)≥ γ(i− 1) for all a∈A when i > i′, we have that

RCover
1 (F,N) ≤ c i′∆µ

max +
∑
i∈I

E

{
1{Tni(a)≥ γ(i− 1) ∀a∈A, Ei ∈ ΓCover (µ)}

∑
S∈Ei

∆µ
S

}

+
∑
i∈I

E

{
1{Tni(a)≥ γ(i− 1) ∀a∈A, Ei 6∈ ΓCover (µ)}

∑
S∈Ei

∆µ
S

}
≤ c i′∆µ

max +
(
γ (lnN)

1+ε
+ 1
)
z∗Cover(µ)

+ ∆µ
max c

∑
i∈I

P{Tni(a)≥ γ(i− 1) ∀a∈A, Ei 6∈ ΓCover (µ)} . (A-9)

Next, we bound the probability inside the sum in (A-9). For that, observe

{ΓCover(µ̂ni) 6⊆ ΓCover(µ)} ⊆
⋃
a∈A

{
|µ̂ni(a)−µ(a)| ≥ ∆1

4cs

}
, (A-10)

where ∆1 := min{∆C
min,∆

µ
min}. Indeed, note that{

|µ̂ni(a)−µ(a)|< ∆1

4cs
, ∀a∈A

}
⊆
{∣∣∣∆µ̂ni

S −∆µ
S

∣∣∣< ∆1

2c
, ∀S ∈ S

}
⊆

{∣∣∣∣∣∑
S∈E

(
∆
µ̂ni
S −∆µ

S

)∣∣∣∣∣< ∆1

2
, ∀E ∈C

}

⊆

{∑
S∈E

∆
µ̂ni
S >

∑
S∈E∗

∆
µ̂ni
S , ∀E∗ ∈ ΓCover (µ) , E ∈C \ΓCover (µ)

}
,

where we remember that for a cost vector ν ∈ B, ∆ν
S =

∑
a∈S ν(a) − z∗Comb(ν). We note that as

discussed in (A-7) in Step 1, by taking ∆1 ≤∆µ
min, we also ensure that {S∗(µ̂ni)⊆S∗(µ)}.

Using Proposition 4, the union bound, and (A-10), we have that
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P{Ei 6∈ ΓCover(µ) , Tni(a)≥ γ(i− 1) , ∀a∈A} ≤∑
a∈A

P
{
|µ̂ni(a)−µ(a)| ≥ ∆1

4sc
,Tni(a)≥ γ(i− 1)

}
≤ 2 |A| exp

{
−(∆1)

2
γ(i− 1)

8s2c2L2

}
. (A-11)

Using the above and (A-9) we obtain that

RCover
1 (F,N)≤ γ (lnN)

1+ε
z∗Cover(µ) +C2,

for a positive finite constant C2, independent of N .

Step 2.2 (LBP-based exploration regret). Consider now the LBP-based exploration regret

RLBP
1 (F,N). Let ∆D denote a uniform upper bound on the precision of each mean cost estimate

necessary to approximately reconstruct the set D(µ). That is, ∆D := min{∆µ
min,∆

D
2 ,∆

D
3 }/(2s),

where

∆D2 := min
{

min
{

∆
(µ∧l)(D)
S : S /∈ S∗ ((µ∧ l) (D))

}
:D⊆A \H, S∗ (µ) = S∗ ((µ∧ l) (D))

}
,

∆D3 := min{z∗Comb(µ)− z∗Comb ((µ∧ l) (D)) : D⊆A \H, S∗ (µ) 6= S∗ ((µ∧ l) (D))} ,

∆µ
min is as defined in Step 1, H :=

⋃
S∗∈S∗(µ)

⋃
a∈S∗ {a}, and (µ∧ l) (D) = (µ(a), a∈A \D) ∪

(l(a) : a∈D). The first threshold ∆µ
min ensures that S∗(µ̂n)⊆ S∗(µ). This is supported by Step 1

(see (A-7)). The second threshold ∆D2 ensures that

D(µ̂n)⊆D(µ)∪ 2H .

This follows from noting that: (i) for D /∈D (µ),

⋂
a∈A

{
|µ̂n(a)−µ(a)|<∆D

}
⊆ {z∗Comb(µ̂n) = z∗Comb ((µ̂n ∧ l) (D))} ,

implying that D /∈D (µ̂n); and (ii) not all solutions in S∗(µ) are necessarily optimal in the approxi-

mate problem (i.e., using the average costs), therefore, some of their ground elements might belong

to D(µ̂n). The third threshold ∆D3 ensures that D(µ)⊆D(µ̂n). This follows from noting that for

D ∈D(µ), ⋂
a∈A

{
|µ̂n(a)−µ(a)|<∆D

}
⊆ {z∗Comb(µ̂n)> z∗Comb ((µ̂n ∧ l) (D))} ,

implying that D ∈D (µ̂n). We conclude that

⋂
a∈A

{
|µ̂n(a)−µ(a)|<∆D

}
⊆ {D (µ̂n) =D (µ)∪Ho} ,
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for some Ho ∈ 2H . While we assume, without loss of generality, that ∆µ
min and ∆D2 are positive

(since otherwise, the problem is trivial), Assumption 1 implies that ∆D3 > 0. Thus, we have that

∆D > 0.

Consider now the issue of approximating the KD constants. We denote such estimates by K̂D.

By the continuity of Ia(·, ·) for all a ∈A, we have that KD(ν) is also continuous for all D ∈D(µ).

In addition, because it is known that KD(µ)≤K, there exists a finite constant κ> 0 such that

∣∣∣K̂D(µ̂n)−KD(µ)
∣∣∣≤ κ∑

a∈A

|µ̂n(a)−µ(a)| ,

for µ̂n in a neighborhood of µ (specifically, we consider a ball -using infinite norm- of radious lower

than %/ (|A|κ) centered at µ for %> 0 arbitrary). Note that we make use of the uniform bound and

use the approximation

K̂D(ν) :=KD(ν)∧K.

This, in turn, implies that K̂D(ν)≤K.

Define ∆K := %/ (|A|κ) for %> 0 arbitrary. We conclude that

⋂
a∈A

{
|µ̂n(a)−µ(a)|<∆K

}
⊆
{∣∣∣K̂D(µ̂n)−KD(µ)

∣∣∣<%, D ∈D(µ)
}
.

Let (xn, yn) ∈ ΓLBP (µ̂n), and consider (x∗, y∗) ∈ ΓLBP (µ), augmented so that y∗ (S∗) = K for

all S∗ ∈ S∗(µ) (note that because ∆µ
S∗ = 0 for all S∗ ∈ S∗(µ), one can make this augmentation

without affecting the objective value of LBP (µ)). Suppose that ‖µ̂n − µ‖∞ < δ/(2s) for some

0< δ <min{∆K ,∆D, %}, then we have that

max{xn(a) + δ : a∈D} ≥ KD(µ), D ∈D(µ)

max{x∗(a) + δ : a∈D} ≥ K̂D(µ̂n), D ∈D(µ̂n). (A-12)

For z ∈ Rk and δ > 0, we define zδ so that zδ(j) := z(j) + δ1{z(j)> 0}, j ≤ k, where z(j) is the

j-th element of z. From (A-12) we conclude that (x∗,δ, y∗,δ) is feasible to LBP (µ̂n). Seeing that

‖µ̂n−µ‖∞ < δ/(2s), we have
∣∣∣∆µ

S −∆µ̂n
S

∣∣∣< δ for all S ∈ S. Therefore, we have that

∑
S∈S

yn(S)∆µ
S

(a)

≤
∑
S∈S

yn(S)∆µ̂n
S + |S|Kδ

(b)

≤
∑
S∈S

y∗,δ(S)∆µ̂n
S + |S|Kδ
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(c)

≤
∑
S∈S

y∗(S)∆µ
S + δ |S| (δ+ ∆µ

max +K) + |S|Kδ

= z∗LBP (µ) + δ |S| (δ+ ∆µ
max + 2K) ,

where (a) follows from the fact that yn(S) ≤ K for all S ∈ S (this because K̂D(µ̂n) ≤ K), (b)

comes from that (x∗,δ, y∗,δ) is feasible to LBP (µ̂n), and (c) follows from that
∣∣∣∆µ

S −∆µ̂n
S

∣∣∣< δ and

y∗,δ(S)≤ y∗(S) + δ for all S ∈ S, and y∗(S)≤K for all S ∈ S. Seeing that δ <∆D <∆µ
min, taking

δ≤ %z∗LBP (µ)/ (|S| (∆µ
min + ∆µ

max + 2K)), we have that

∑
S∈S

yn(S)∆µ
S ≤ (1 + %)z∗LBP (µ).

Consider i > i′ and let (xi, yi) ∈ ΓLBP (µ̂ni) be the solution used for LBP-based exploration for

n ∈ [ni, ni+1 − 1]. In what follows, with abuse of notation, we use the event {Sn ∈ ΓLBP (µ̂n)} to

denote the LBP-based exploration. We have that

RLBP
1 (F,N) ≤ ni′∆

µ
max +

d(lnN)1+εe∑
i=i′

ni+1−1∑
n=ni

E
{
1{Tni(a)≥ γ(i− 1) ∀a∈A, Sn ∈ ΓLBP (µ̂n)}∆µ

Sn

}
≤ ni′∆µ

max +

d(lnN)1+εe∑
i=i′

ni+1−1∑
n=ni

E
{
1{Tni(a)≥ γ(i− 1), |µ̂n(a)−µ(a)|< δ/(2s),∀a∈A,Sn ∈ ΓLBP (µ̂n)}∆µ

Sn

}
+

d(lnN)1+εe∑
i=i′

ni+1−1∑
n=ni

E
{
1{Tni(a)≥ γ(i− 1),∀a∈A,∪a∈A {|µ̂n(a)−µ(a)| ≥ δ/(2s)} , Sn ∈ ΓLBP (µ̂n)}∆µ

Sn

}
≤ ni′∆

µ
max +

d(lnN)1+εe∑
i=i′

(1 + %) z∗LBP (µ)

+
∞∑
i=i′

(ni+1−ni)∆µ
max

∑
a∈A

P{|µ̂n(a)−µ(a)| ≥ δ/(2s), Tni(a)≥ γ(i− 1)} . (A-13)

Using Proposition 4 to bound the probability in (A-13), we have that

RLBP
1 (F,N)≤ ni′∆µ

max + (lnN)
1+ε

(1 + %) z∗LBP (µ) +
∞∑
i=i′

e(i+1)1/(ε+1)

∆µ
max2 |A| exp

{
−δ

2 γ(i− 1)

2s2L2

}
.

Because (i+ 1)1/(1+ε) < i δ2γ
2s2L2 for i large enough, we conclude that

RLBP
1 (F,N)≤ (lnN)

1+ε
(1 + %) z∗LBP (µ) +C3
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for a positive finite constant C3, independent of N . Putting all the above together, we conclude

that

Rπ∗(F,N)≤ ((1 + %)z∗LBP (µ) + γ z∗Cover(µ)) (lnN)
1+ε

+C4,

for a finite positive constant C4, independent of N .

We finally note that the optimal solutions to the Cover(µ̂ni) and LBP (µ̂ni) problems converge

a.s. to optimal and %-optimal solutions to Cover(µ) and LBP (µ), respectively. For this, note that

Proposition 4, (A-11) and (A-13) imply (via Borel-Cantelli) that P{Ei ∈ ΓCover(µ) eventually}= 1

and

P{(x%i , y
%
i ) is a %-optimal solution to LBP (µ) eventually}= 1.

The result follows from noting that one can choose % arbitrarily small.

A.1.4. Adjoint Formulation for Tighter Upper Bound

The following formulation is a variation of LBP that is robust with respect to changes in the

mean cost of elements that are not “covered” by its optimal solution. For that, we introduce an

additional variable w(a) indicating whether one would impose additional exploration (beyond that

required in the lower bound result – the parameter γ indicates the frequency of such exploration)

on a ground element a∈A, and variable r(a) indicates the degree at which element a∈A is covered

in a solution. For a vector r := (r(a) : a∈A), we define

z(r) := min
y′∈R|S|+

{∑
S∈S

∆
(ν∧l)({a∈A: r(a)=0})
S y′(S) : r(a)≤

∑
S∈S:a∈S

y′(S), a∈A

}
,

where we recall that for a set D, (ν ∧ l) (D) = (ν(a)1{a /∈D}+ l(a)1{a∈D} : a∈A). The variable

z(r) computes the minimum cost attainable if one were to change the mean cost of an unexplored

ground element. The following adjoint formulation imposes that the optimal cost is not greater

than such an alternative minimum cost.

z∗R(ν, γ) := min
∑
S∈S

∆ν
S y(S)

s.t.
∑
S∈S

∆ν
S y(S)≤ z(r)

r(a)≤
∑

S∈S:a∈S

y(S), a∈A

r(a) = x(a) + γ w(a), a∈A

max{x(a) : a∈D} ≥KD(ν), D ∈D(ν)

x(a) = 1, ∀a∈ S,∀S ∈ S∗(ν)

w(a)∈ {0,1} , x(a), r(a), y(S)∈R+, a∈A, S ∈ S.
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A.2. Omitted Proofs and Material from Section 5

A.2.1. Equivalence of LBP and OCP

Lemma 1. An optimal solution to a linear relaxation of OCP (µ) when one relaxes the integrality

constraints over y(S) variables is also optimal to formulation LBP (µ) when one replaces KD(µ)

by 1 for all D ∈D(µ).

Proof of Lemma 1. Let R-OCP (µ) denote the linear relaxation of OCP (µ) where the

integrality constraints over y(S) variables are replaced by those of non-negativity. We prove Lemma

1 by showing that a feasible solution to R-OCP (µ) is also feasible to LBP (µ) and vice versa. We

prove each feasibility result by contradiction.

We first note that when KD(µ) = 1 for all D ∈D(µ), one can restrict attention only to feasible

solutions to LBP (µ) with binary x. Let (x, y) be a feasible solution to R-OCP (µ) and suppose

that (x, y) is not feasible to LBP (µ), i.e., there exists a D ∈D(µ) such that max{x(a) : a∈D}= 0

which implies that x(a) = 0 for all a∈D. Thus, for S∗ ∈ S∗((µ∧ l) (D)), we have that

z∗Comb((µ∧ l) (D)) =
∑

a∈S∗\D

µ(a) +
∑
a∈D

l(a)

(a)

≥
∑
a∈S∗

(l(a)(1−x(a)) +µ(a)x(a))

(b)

≥ z∗Comb(µ),

where (a) follows from the fact that l(a) = (l(a)(1−x(a)) +µ(a)x(a)) as x(a) = 0 for a ∈D, and

µ(a) ≥ (l(a)(1−x(a)) +µ(a)x(a)) for a /∈ D, and (b) follows from the fact that (x, y) satisfies

constraints (8c) (because it is feasible to R-OCP (µ)). However, by the definition of D(µ), one has

that z∗Comb((µ∧ l) (D))< z∗Comb(µ), which is contradicted by the last inequality above, thus we have

that max{x(a) : a∈D}= 1 for all D ∈D(µ), therefore (x, y) is feasible to LBP (µ).

Now, let (x, y) be a feasible solution to LBP (µ) such that x(a) ∈ {0,1} for all a ∈A, and that

x(a) = 1 and y(S∗) = 1 for all a ∈ S∗ and S∗ ∈ S∗(µ) (because ∆µ
S∗ = 0 for all S∗ ∈ S∗(µ), this

extra requirement does not affect the optimal solution to LBP (µ)). Suppose (x, y) is not feasible

to R-OCP (µ), i.e., there exists some S ∈ S such that

∑
a∈S

(l(a)(1−x(a)) +µ(a)x(a))< z∗Comb(µ). (A-15)

Let S0 be one such S that additionally minimizes the left-hand side in (A-15) (in case of ties

we pick any minimizing solution S0 with smallest value of |{a∈ S0 : x(a) = 0}|). Then D :=

{a∈ S0 : x(a) = 0} (or a subset of D) belongs to D(µ). This contradicts the feasibility of (x, y) to

 Electronic copy available at: https://ssrn.com/abstract=3041893 
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LBP (µ), because if (x, y) is feasible to LBP (µ), then we must have max{x(a) : a∈D} ≥ 1 for all

D ∈D(µ). Thus, we conclude that (x, y) is feasible to R-OCP (µ).

Summarizing, when KD(µ) = 1 for all D ∈D(µ), feasible solutions to R-OCP (µ) are feasible to

LBP (µ), and feasible solutions to LBP (µ) that cover all optimal elements in A are feasible to

R-OCP (µ). The result follows from noting that there always exists an optimal solution to LBP (µ)

such that x is binary, and x(a) = 1 and y(S∗) = 1 for all a∈ S∗ and S∗ ∈ S∗(µ).

A.2.2. Modified OCP-Based Policy

The modified OCP-based policy π′OCP (γ, ε, %) is detailed in Algorithm 3. This policy closely

follows the structure of the LBP-based policy in Algorithm 1, but solves the OCP problem instead

of LBP . As in Algorithm 1, we define the cycles as n1 = 1 and ni := max{bei1/(1+ε)c, ni−1 + 1} for

all i≥ 2, given a tuning parameter ε > 0. Moreover, as in Algorithm 1, γ is a tuning parameter that

controls the cover-based exploration frequency. Finally, the parameter % in Algorithm 3 allows the

policy to converge to an optimal solution to OCP (µ) – because there might exist multiple optimal

solutions, the “Update OCP-exploration set” step ensures that the policy settles on one of them.

Algorithm 3 Modified OCP-based policy π′OCP (γ, ε, %)

Set i= 0, C =A, E a minimal cover of A, G = E , and draw (b1(a) : a∈A) randomly from B

for n= 1 to N do

if n= ni then

Set i= i+ 1

Set S∗ ∈ S∗ (µ̂n) [Update exploitation set]

Set E ∈ ΓCover (µ̂n) [Update Cover-exploration set]

if (C,G) is not a %-optimal solution to OCP (µ̂n) then

Set (C,G)∈ ΓOCP (µ̂n) [Update OCP-exploration set]

end if

end if

if Tn(a)<γ i for some a∈A then

Set Sn = S for any S ∈ E such that a∈ S [Cover-based exploration]

else if γ < 1 and Tn(a)< i for some a∈C then

Set Sn = S for any S ∈ G such that a∈ S [OCP-based exploration]

else

Set Sn = S∗ [Exploitation]

end if

end for
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Next, under Assumption 2, we prove a performance bound for the modified OCP-based policy.

Theorem 3. Consider γ ∈ (0,1), % > 0, and ε > 0 arbitrary. We then have that for % sufficiently

small

lim
N→∞

Rπ′OCP (γ,ε,%)(F,N)

(lnN)
1+ε ≤ z∗OCP (µ) + γ z∗Cover (µ) .

Proof of Theorem 3. As in the case of the LBP-based policy π∗, the regret of policy π′OCP

(we again ignore the dependence of the policy on γ, ε, and % to simplify the notation) stems from

three sources: Cover-based and OCP-based exploration efforts, and exploitation errors. That is,

Rπ′OCP (F,N) =RCover
1 (F,N) +ROCP

1 (F,N) +R2(F,N), (A-16)

where RCover
1 (F,N) is the Cover-based exploration regret, i.e., that incurred at period n during

cycle i if Tn(a)< γ i for some a ∈ A, ROCP
1 (F,N) is the OCP-based exploration regret, i.e., that

incurred at period n during cycle i if Tn(a)< i for some a ∈C, and R2(F,N) is the exploitation-

based regret, i.e., that incurred when exploration conditions are met and one implements solution

Sn = S∗ with S∗ ∈ S∗(µ̂n).

We prove the result by bounding each term in (A-16) separately. It turns out that the bounds

for RCover
1 (F,N) and R2(F,N) in Step 1 and Step 2.1 in the proof of Theorem 2 apply to this

setting unmodified, thus we omit them here. Next, we bound the OCP-based exploration regret

ROCP
1 (F,N).

As in the proof of the LBP-based policy, in the remainder of this proof, E and P denote expec-

tation and probability when costs are distributed according to F and policy π′OCP is implemented.

Step 2.2’ (OCP-based exploration regret).

Following the arguments in Step 2.2 of the proof of Theorem 2, we first define the minimum

precision threshold on the accuracy of mean cost estimates necessary to reconstruct the solution

to OCP (µ). For that, we define ∆D := min{∆µ
min,∆

D
2 ,∆

D
3 ,∆

D
4 }/(8sc), where

∆D2 := min
{

min
{

∆
(µ∧l)(D)
S : S /∈ S∗ ((µ∧ l) (D))

}
:D⊆A \H, S∗ (µ) = S∗ ((µ∧ l) (D))

}
,

∆D3 := min{z∗Comb(µ)− z∗Comb ((µ∧ l) (D)) : D⊆A \H, S∗ (µ) 6= S∗ ((µ∧ l) (D))} ,

∆D4 := min

{(∑
S∈G

∆µ
S

)
− z∗OCP (µ) : (C,G)∈G \ΓOCP (µ)

}
,

and G denotes the set of all feasible solutions (C,G) to OCP (µ) problem. Note that as in the

proof of Theorem 2, ∆µ
min = min{∆µ

S : S ∈ S \S∗ (µ)}, s= max{|S| : S ∈ S}, c= max{|E| : E ∈C},

i.e., the maximum size of a minimal cover of A, and H =
⋃
S∗∈S∗(µ)

⋃
a∈S∗ {a}. Also note that ∆D4
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denotes the minimum optimality gap of problem OCP (µ). Note that thresholds ∆µ
min, ∆D2 and

∆D4 are always positive, while ∆D3 > 0 by Assumption 2.

We now check that having mean cost estimates with enough precision allows us to reconstruct

the feasible set G. Consider (x, y) satisfying (8b) and (8d). We first note that as discussed in Step

1 of the proof of Theorem 2, {‖µ̂n−µ‖∞ <∆µ
min/(2s)} ensures that {S∗(µ̂n)⊆S∗(µ)}. One then

has that

{
‖µ̂n−µ‖∞ <∆D

}
⊆

{∣∣∣∣∣∑
a∈S

x(a) (µ̂n(a)−µ(a))

∣∣∣∣∣<∆Ds, ∀S ∈ S

}
∩
{
|z∗Comb(µ̂n)− z∗Comb(µ)|<∆Ds

}
⊆

{∣∣∣∣∣
(∑
a∈S

(x(a)µ̂n(a) + (1−x(a))l(a))− z∗Comb(µ̂n)

)
−

(∑
a∈S

(x(a)µ(a) + (1−x(a))l(a))− z∗Comb(µ)

)∣∣∣∣∣< 2∆Ds, ∀S ∈ S

}
.

We conclude that, because 2∆Ds <∆D2 ∧∆D3 ,

∑
a∈S

(x(a)µ(a) + (1−x(a))l(a))≥ z∗Comb(µ) iff
∑
a∈S

(x(a)µ̂n(a) + (1−x(a))l(a))≥ z∗Comb(µ̂n).

Having the same feasible region for both OCP (µ) and OCP (µ̂n) problems, we now show that

%-optimal solutions to the latter problem corresponds to an optimal solution to the former. Indeed,

we have that

{
‖µ̂n−µ‖∞ <∆D

}
⊆
{∣∣∣∆µ̂n

S −∆µ
S

∣∣∣< ∆D4
4c

, ∀S ∈ S
}

⊆

{∣∣∣∣∣∑
S∈G

(
∆µ̂n
S −∆µ

S

)∣∣∣∣∣< ∆D4
4
, ∀(C,G)∈G

}

⊆

{∑
S∈G

∆µ̂n
S >∆D4 /2 +

∑
S∈G∗

∆µ̂n
S , ∀(C∗,G∗)∈ ΓOCP (µ) , (C,G)∈G \ΓOCP (µ)

}
.

The above not only implies that ΓOCP (µ̂n) ⊆ ΓOCP (µ), but also that %-optimal solutions to

OCP (µ̂n) are also optimal to OCP (µ), as long as % < ∆D4 /2. Letting Γ%OCP (ν) denote the set of

%-optimal solutions to OCP (ν), the above implies that for %<∆D4 /2,

{
‖µ̂n−µ‖∞ <∆D

}
⊆ {Γ%OCP (µ̂n)⊆ ΓOCP (µ)} .

We are now ready to provide a bound on ROCP
1 (F,N). Similar to the proof of Theorem 2, let

i′ be a finite upper bound on a cycle in which one is sure to conduct all OCP-based explorations

(e.g., i′ := 1 + inf {i∈N, i≥ 2 : ni+1−ni > i |A|}). Fix i > i′ and let (Ci,Gi) denote the OCP-based

 Electronic copy available at: https://ssrn.com/abstract=3041893 
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exploration set for any period n ∈ [ni, ni+1− 1]. Define the events Ξ1
i := {(Ci,Gi)∈ ΓOCP (µ)} and

Ξ2
i := {Gi = Gi−1}. We then have that

ROCP
1 (F,N) ≤ ni′+1∆µ

max +

d(lnN)1+εe∑
i=i′+1

E

{
1
{
Tni−1

(a)≥ γ(i− 2) , ∀a∈A,
(
Ξ1
i ∩Ξ2

i

)}∑
S∈Gi

∆µ
S

}

+

d(lnN)1+εe∑
i=i′+1

i E

{
1
{
Tni−1

(a)≥ γ(i− 2) , ∀a∈A,
(
Ξ1
i ∩Ξ2

i

)c}∑
S∈Gi

∆µ
S

}
≤ ni′+1∆µ

max +
(

(lnN)
1+ε

+ 1
)
z∗OCP (µ)

+∆µ
max c

∞∑
i=i′+1

i P
{
Tni−1

(a)≥ γ(i− 2) , ∀a∈A,
(
Ξ1
i ∩Ξ2

i

)c}
, (A-17)

where (Ξ1
i ∩Ξ2

i )
c

denotes the complement of the event (Ξ1
i ∩Ξ2

i ). Next, we bound the probability

inside the sum in (A-17). For that, observe that

{
‖µ̂ni−1

−µ‖∞ ∨‖µ̂ni −µ‖∞ <∆D
}
⊆
{

Γ%OCP (µ̂ni−1
)⊆ ΓOCP (µ)

}
∩ {ΓOCP (µ)⊆ Γ%OCP (µ̂ni)}

⊆
(
Ξ1
i ∩Ξ2

i

)
.

Using above and Proposition 4, we conclude that

P
{
Tni−1

(a)≥ γ(i− 2) , ∀a∈A,
(
Ξ1
i ∩Ξ2

i

)c}≤ 4 |A| exp

{
−2(∆D)

2
γ(i− 2)

L2

}
. (A-18)

Using the above and (A-17), we have that

ROCP
1 (F,N)≤ (lnN)

1+ε
z∗OCP (µ) +C5,

for a finite positive constant C5, independent of N . Putting the results from Steps 1 and 2.1 (from

the proof of Theorem 2), and Step 2.2’ together, we conclude that

Rπ′OCP (F,N)≤ (z∗OCP (µ) + γ z∗Cover(µ)) (lnN)
1+ε

+C6,

for a finite positive constant C6, independent of N .

We finally note that the optimal solutions to the Cover(µ̂ni) and OCP (µ̂ni) problems converge

a.s. to optimal solutions to Cover(µ) and OCP (µ), respectively. For this, note that Proposition 4,
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(A-11) and (A-18) imply (via Borel-Cantelli) that P{Ei ∈ ΓCover(µ) eventually}= 1 and

P{(Ci,Gi)∈ ΓOCP (µ) eventually}= 1.

A.3. Appendix for Section 6

A.3.1. General Complexity of OCP

To prove Theorem 4 and Proposition 2, we will use the following lemma.

Lemma 3. We may restrict the OCP or Cover problems to have at most |A| non-zero y(S) vari-

ables without changing the problems.

Proof of Lemma 3. For the OCP problem, the result follows from noting that any critical

set C can be covered by at most |A| solutions (i.e., by a solution-cover G of at most size |A|). Hence,

if an optimal solution for OCP has |G|> |A|, we may remove one solution from it while preserving

feasibility. If the removed solution is suboptimal for Comb, we would obtain a solution with lower

objective value contradicting the optimality for OCP . If the removed solution is optimal for Comb,

we obtain an alternate optimal solution for OCP .

For the Cover problem, the result follows by noting that A can be covered by at most |A|

solutions.

�

Theorem 4. If Comb is in P, then OCP is in NP.

Proof of Theorem 4. By Lemma 3, optimal solutions to OCP and Cover have sizes that are

polynomial in |A| and their objective function can be evaluated in polynomial time. Checking the

feasibility of these solutions for OCP can be achieved in polynomial time, because checking (8c) can

be achieved by solving Comb(νx) where νx := (νx(a) : a∈A) for νx(a) := l(a)(1−x(a)) + ν(a)x(a).

This problem is polynomially solvable by assumption.

�

Note that the proof of Theorem 4 also shows that if Comb is in P, then Cover is in NP.

A.3.2. Critical Sets for Matroids

Lemma 4. Let Comb(ν) be a weighted basis or independent set matroid minimization problem.

Then there exists a unique critical set that can be found in polynomial time.

Proof of Lemma 4. To simplify the exposition, we assume that S∗ (ν) = {S∗} is a singleton.

Also, for S ∈ S, we let eS denote the incidence vector associated with S (i.e., eS := (eS(a) : a ∈A)

with eS(a)∈ {0,1}, a∈A, such that eS(a) = 1 if a∈ S and eS(a) = 0 otherwise).
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Let P := conv
(
{eS}S∈S

)
⊆R|A| be the independent set (base) polytope of S. Then, for a feasible

cost vector ν, we have that S∗ ∈ S∗ (ν) if and only if
∑

a∈S∗ ν(a)≤
∑

a∈S ν(a) for any S ∈ S such

that eS
∗

and eS are adjacent vertices in P . Furthermore, each adjacent vertex to eS
∗

can be obtained

from S∗ by: removing (denoted by “R”), adding (denoted by “A”), or exchanging (denoted by “E”)

a single element of S∗ (Schrijver 2003, Theorem 40.6). Thus, we construct the critical set C so that

S∗ is always optimal if and only if the cost of all elements of C are at their expected value. The

construction procedure starts with C = S∗. In some steps we distinguish between S corresponding

to independent sets or bases.

R. (for the independent set case) From the optimality of S∗, removing an element never leads to

optimality.

A. (for the independent set case) For each a∈A \S∗ such that S∗ ∪{a} is an independent set, if

l(a)< 0, then add a to C.

E. (for both cases) For each a∈A \S∗, add a to C if

l(a)<max{ν(a′) : a′ ∈ S∗, S∗ ∪{a} \ {a′} is an independent set (base)} .

By construction, covering all elements in C guarantees optimality of S∗, and not covering some

guarantees that S∗ is no longer optimal. Note that the set C is unique. For the case of multiple

optimal solutions we simply repeat this procedure for each one. Finally, the only computationally

non-trivial step in the construction of C is checking that this set is an independent set or a base,

which can be done in polynomial time.

A.3.3. Basic MIP Formulation for OCP

Proposition 2. Let yS ∈ {0,1}|A| be the incidence vector of S ∈ S, M ∈ Rm×|A|, and d ∈ Rm be

such that {yS}S∈S =
{
y ∈ {0,1}|A| :My≤ d

}
and conv

(
{yS}S∈S

)
=
{
y ∈ [0,1]|A| :My≤ d

}
. Then

a MIP formulation of OCP (ν) is given by

min
∑
i∈A

(∑
a∈A

ν(a)yi(a)− z∗Comb(ν)

)
(9a)

s.t. x(a)≤
∑
i∈A

yi(a), a∈A (9b)

Myi ≤ d, i∈A (9c)

MTw≤ diag(l)(1−x) + diag(ν)x (9d)

dTw≥ z∗Comb (ν) (9e)

x(a), yi(a)∈ {0,1} ,w ∈Rm, a, i∈A, (9f)
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where x= (x(a) : a∈A), yi = (yi(a) : a∈A), and 1 is a vector of ones.

Proof of Proposition 2. For any feasible solution (x, y) to (9), we have that x is the incidence

vector of a critical set. This, because (9d) enforces dual feasibility of w when elements with x(a) = 0

are not covered, and (9e) forces the objective value of the dual of Comb(ν ′) to be greater than or

equal to z∗Comb(ν), where ν ′ = diag(l)(1− x) + diag(ν)x. With this, the optimal objective value of

Comb(ν ′) is greater than or equal to z∗Comb(ν). On the other hand, any yi is the incidence vector of

some S ∈ S because of (9c) and the assumptions on M and d. Finally, (9b) ensures that the critical

set is covered by the solution-cover (i.e., yi’s) induced by OCP . Lemma 3 ensures that the |A|

variables yi are sufficient for an optimal solution to OCP . If less than |A| solutions are needed for

the cover, then the optimization problem can pick the additional yi variables to be the incidence

vector of an optimal solution to Comb(ν) so that they do not increase the objective function value.

�

We note that Proposition 2 can be easily extended to obtain a formulation for Cover(B) by

setting xa = 1 for all a∈A and removing (9d)–(9e).

A.3.4. IP Formulation for OCP when Comb(ν) Admits a Compact IP Formulation

Suppose Comb(ν) admits a compact IP formulation such that {yS}S∈S =
{
y ∈ {0,1}|A| :My≤ d

}
for some M ∈Rm×|A| and d ∈Rm, where yS denotes the incidence vector of S ∈ S. For simplicity,

we assume that A= {1, . . . , |A|}. Then an IP formulation of OCP (ν) is given by

min
∑
i∈A

(∑
a∈A

ν(a)yi(a)− z∗Comb(ν)

)
(A-19a)

s.t. x(a)≤
∑
i∈A

yi(a), a∈A (A-19b)

Myi ≤ d, i∈A (A-19c)∑
a∈S

(l(a)(1−x(a)) + ν(a)x(a))≥ z∗Comb(ν), S ∈ S (A-19d)

x(a), yi(a)∈ {0,1} , a, i∈A. (A-19e)

As in formulation (9), a feasible solution (x, y) to (A-19) is such that x is the incidence vector

of a critical set (this is enforced by (A-19d)), and the yi’s are a cover of such set, due to (A-19b),

(A-19c), and the assumptions on M and d. Note that an efficient cover includes at most |A| solutions

(the optimization can pick the additional yi to be the incidence vector of an optimal solution).

Formulation (A-19) has a polynomial number of variables, but the number of constraints

described by (A-19d) is in general exponential. However, the computational burden of separating

these constraints is the same as solving Comb(ν) (finding a violated inequality (A-19d) or showing
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that it satisfies all these inequalities can be done by solving Comb (ν ′) for ν ′(a) = l(a)(1−x(a)) +

ν(a)x(a)). Hence, if we can solve Comb(ν) sufficiently fast (e.g., when the problem is in P, or it

is a practically solvable NP-hard problem) we should be able to effectively solve (A-19) with a

branch-and-cut algorithm that dynamically adds constraints (A-19d) as needed. Finally, note that

a formulation for Cover is obtained by setting x(a) = 1 for all a∈A and removing (A-19d).

A.3.5. Linear-sized Formulation for OCP for the Shortest Path Problem

Let Comb(ν) correspond to a shortest s− t path problem in a digraph G= (V,A). Define Â=

A∪{(t, s)} and let δ̂out and δ̂in denote the outbound and inbound arcs in digraph Ĝ= (V, Â). An

optimal solution (x,p,w) to

min

(∑
a∈A

ν(a)p(a)

)
− z∗Comb(ν)p ((t, s)) (A-20a)

s.t. x(a)≤ p(a), a∈A (A-20b)∑
a∈δ̂out(v)

p(a)−
∑

a∈δ̂in(v)

p(a) = 0, v ∈ V (A-20c)

w(u)−w(v)≤ l ((u, v)) (1−x ((u, v))) + ν ((u, v))x ((u, v)) , (u, v)∈A (A-20d)

w(s)−w(t)≥ z∗Comb(ν) (A-20e)

p(a)∈Z+, a∈ Â (A-20f)

x(a)∈ {0,1} , w(v)∈R, a∈A, v ∈ V, (A-20g)

is such that (C,G) is an optimal solution to OCP (ν), where C = {a∈A : x(a) = 1} and G ⊆ S is

a set of paths for which p(a) = |{S ∈ G : a∈ S}|. Such a set G can be constructed from p in time

O(|A||V |).

The first difference between formulations (A-20) and (9) is the specialization of the LP duality

constraints to the shortest path setting. The second one is the fact that the paths in cover G

are aggregated into an integer circulation in augmented graph Ĝ, which is encoded in variables

p. Indeed, using known properties of circulations (Schrijver 2003, pp. 170-171), we have that p=∑
S∈G y

Ŝ, where yŜ is the incidence vector of the circulation obtained by adding (t, s) to each path

S. Furthermore, given a feasible p we can recover the paths in G in time O(|A||V |). To obtain a

formulation for Cover, we simply set x(a) = 1 for all a∈A and remove (A-20d)–(A-20e).

It is possible to construct similar formulations for other problems with the well-known integer

decomposition property (Schrijver 2003).
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A.3.6. A Time-Constrained Asynchronous Policy

Depending on the application, real-time implementation might require choosing a solution Sn ∈ S
prior to the exogenous arrival of the cost vector Bn. However, the solution times for the problems

OCP (·) or even Comb(·) could be longer than the time available to the executing policy. For

example, most index-based policies must solve an instance of Comb(·) at each period, which might

not be possible in practice. Fortunately, a key feature of our proposed OCP-based policies is that

the frequency at which the problems Comb(·) and OCP (·) need to be solved decreases exponentially

over time. Indeed, such problems are solved at the beginning of each cycle and the length of cycle i

is Θ(exp (i/H)) for a fixed tuning parameter H > 0. Hence, as cycles elapse, there will be eventually

enough time to solve these problems.

Nonetheless, the policy cannot proceed until the problems Comb(·) and OCP (·) are solved.

However, one can easily modify the policy so that it begins solving Comb(·) and OCP (·) at the

beginning of a cycle, but continues to implement incumbent solutions while these problems are

being solved (such solutions might be computed either upfront or in previous cycles). Solutions to

these problems update incumbent solutions as they become available, which for long cycles would

be at the beginning of the next one. Algorithm 4 presents one such possible modification for the

OCP-based policy.

A.3.7. Greedy Oracle Polynomial-Time Heuristic

To further illustrate the potential practicality of policies based on OCP , we develop a greedy

heuristic for solving OCP that only requires a polynomial number of queries to an oracle for

Comb(·) (plus a polynomial number of additional operations). This heuristic always returns a

solution that is equal and possibly arbitrarily better than a minimal cover of A.

We begin by describing the heuristic for solving OCP (ν) in Algorithm 5. Given a cost vector

ν, the heuristic first sets all costs to their lowest possible values, and successively solves instances

of Comb, each time incorporating the incumbent solution into the solution-cover G, adding its

ground elements to the (critical) set C, and updating the cost vector accordingly. The procedure

stops when the feedback from C suffices to guarantee the optimality of the best solution (i.e., when

z∗Comb(ν
′)≥ z∗Comb(ν)). To achieve efficiency of such a feedback, the heuristic then prunes elements

in C that are not required to guarantee sufficiency of the feedback.

Note that in each iteration of the first loop, Algorithm 5 calls an oracle for Comb and adds at

least one ground element to C. Similarly, in the second loop, the heuristic calls such an oracle once

for every element in C. Hence, the procedure calls such an oracle at most 2 |A| times. Thus, the

heuristic makes a linear number of calls to the oracle for Comb. In particular, if Comb is in P, then

the heuristic runs in polynomial time.

 Electronic copy available at: https://ssrn.com/abstract=3041893 



Modaresi, Sauré and Vielma: Learning in Combinatorial Optimization: What and How to Explore 59

Algorithm 4 Basic Time-Constrained Asynchronous OCP-based policy πAOCP (H)

Set i= 0, C =A, and G a minimal cover of A

Let S∗ ∈ S be an arbitrary solution and µ̂Comb = µ̂OCP be an initial cost estimate

Asynchronously begin solving Comb (µ̂Comb) and OCP (µ̂OCP )

for n= 1 to N do

if n= ni then

Set i= i+ 1

if Asynchronous solution to Comb (µ̂Comb) has finished then

Set S∗ ∈ S∗ (µ̂Comb) [Update exploitation set]

Set µ̂Comb = µ̂n

Asynchronously begin solving Comb (µ̂Comb)

end if

if Asynchronous solution to OCP (µ̂OCP ) has finished then

Set (C,G)∈ ΓOCP (µ̂OCP ) [Update OCP-exploration set]

Set µ̂OCP = µ̂n

Asynchronously begin solving OCP (µ̂OCP )

end if

end if

if Tn(a)< i for some a∈C then

Set Sn = S for any S ∈ G such that a∈ S [OCP-based exploration]

else

Set Sn = S∗ [Exploitation]

end if

end for

The performance of the heuristic ultimately depends on the specifics of a setting. For instance,

in the setting of Example 1, the heuristic returns, in the worst case, a solution with |G|= k, which

is of the order of a cover of A. In the setting of Example 2 on the other hand, the heuristic returns

a solution with |G| = 2 (in such a setting a cover of A is of order k). It is not hard to identify

settings where the heuristic performs arbitrarily better than any cover of A.

We finally note that the heuristic in Algorithm 5 can be modified as follows for solving the

Cover problem: the first loop should be implemented while A 6⊆C and the second loop is no longer

needed. The resulting set G provides a cover of A.
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Algorithm 5 Oracle Polynomial-Time Heuristic

Set ν ′ := (ν ′(a) : a∈A) = (l(a) : a∈A), G = ∅, C = ∅.

while z∗Comb (ν ′)< z∗Comb (ν) do

Select S ∈ S∗ (ν ′) and set ν ′(a) = ν(a) for all a∈ S

G ←G ∪{S} and C←C ∪S

end while

for a∈C do

if z∗Comb ((ν ′ ∧ l) ({a}))≥ z∗Comb (ν) then

C←C \ {a} and ν ′(a)← l(a)

end if

end for

A.4. Additional Computational Results

In this section we provide the computational results for Examples 1, 2 and 3. Figure 7 depicts the

average performance of different policies on Examples 1 (left), 2 (center) and 3 (right), respectively.
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Figure 7 Average performance of different policies on Examples 1 (left), 2 (center) and 3 (right).

On Example 1, the OCP-based and Greedy-Heuristic policies perform significantly better than

the benchmark policies. The situation is essentially the same on Example 2, only that this time

Extended UCB1+ outperforms the UCB1+ policy. There, the solution to OCP (µ) is only of size

2, which helps our policies achieve the best performance. (Note that for this setting, the Greedy-

Heuristic tends to find the actual optimal solution to OCP (µ) even with unreliable estimates.) On

Example 3, the heuristic solution to OCP coincides with the minimum-regret cover of S, thus the
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Greedy-Heuristic policy is outperformed by UCB1+ (note that this latter policy rarely uses the

arcs p2 and q2, since the costs of p1 and q1 are close to 0).

As discussed before, the lower bound in Theorem 1 is asymptotic, so it is not clear whether

the lower bound is meaningful in the finite time. However, we plot the lower bound for the three

shortest path examples in Figure 7. As can be noted from the graph, in Examples 1 and 2, the

lower bound is in fact meaningful and the regret of the OCP-based and Greedy-Heuristic policies

is much closer to the lower bound than the other benchmark policies. In Example 3, however, the

lower bound is not meaningful, that is, the lower bound is larger than the regret of all policies as

it only provides an asymptotic lower bound on regret.

In terms of efficient information collection, one can divide the set of ground elements (arcs)

into three classes: those that are part of the optimal solution (called the “Optimal arcs”), those

that are covered by at least one optimal solution to OCP (µ) (called the “Exploration arcs”),

and the rest (called the “Uninformative arcs”). Table 2 shows the average number of times that

each type of arc (shown in columns called “Opt.”, “Exp.”, and “Uninf.”, respectively) is tested

up to period N = 2000 by each policy. Note that the OCP-based and Greedy-Heuristic policies

spend significantly less time exploring uninformative arcs. Table 2 also shows the average length of

implemented solutions (i.e., the average number of arcs in the implemented solutions) for different

policies (the column called “Length”).

Example 1 Example 2 Example 3
Opt. Exp. Uninf. Length Opt. Exp. Unin. Length Opt. Exp. Unin. Length

OCP-based 1958.93 470.67 2.25 3.06 1858.25 548.12 4.55 1.19 140.03 214.50 1.00 4.72
Greedy-Heuristic 1951.62 472.18 3.38 3.07 1918.43 524.20 3.32 1.11 106.83 215.94 35.71 4.79

UCB1+ 1660.75 533.35 42.12 3.51 474.31 929.80 66.61 3.19 92.45 217.75 24.61 4.82
Ext. UCB1+ 791.31 684.36 364.72 4.81 870.88 795.78 53.76 2.67 14.87 219.02 151.79 4.97

Table 2 Average number of trials of different arcs up to period N = 2000, and also average solution size for

different policies on Examples 1, 2 and 3.

Figure 8 depicts box plots of the 100 different cumulative regrets at the final time period N =

2000 (i.e., sample path final regrets) for OCP-based, UCB1+ and Extended UCB1+ policies in

Examples 1, 2 and 3. We observe that the OCP-based policy significantly outperforms UCB1+

and Extended UCB1+ not only in terms of average regret, but also for (almost) all sample path

final regrets.
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Figure 8 Box plots of sample path regrets for OCP-based and benchmark policies on Examples 1 (left), 2 (center)

and 3 (right).

A.5. Short-Term Experiments

In this section we discuss the short-term experiments. In what follows, we first describe the bench-

mark policies and then discuss the studied settings and results.

A.5.1. Benchmark Policies and Implementation Details

Benchmark Policies. Our benchmark policies are adaptations of the Knowledge-Gradient (KG)

policy in Ryzhov et al. (2012) and the Gittins index approximation in Lai (1987) to our setting.

Both policies require prior knowledge of the time horizon N , and because of this, several runs of

the benchmark policies are necessary to construct their cumulative regret curves.

The KG policy requires a prior distribution for the cost and hyper-parameters. In our imple-

mentation, we use the Exponential-Gamma conjugate prior for each ground element. That is, the

algorithm assumes that for each a ∈ A, B(a) follows an exponential distribution with rate µ(a),

but this rate itself is random, and initially distributed according to a Gamma distribution with

parameters αa,0 and βa,0. At period n, the posterior distribution of µ(a) is a Gamma with param-

eters

αa,n = αa,0 +Tn(a), βa,n = βa,0 +
∑

m<n:a∈Sm

bm(a), a∈A.

Thus at period n, the KG algorithm implements solution SKGn , where

SKGn ∈ arg min
S∈S

{∑
a∈S

βa,n
αa,n− 1

− (N −n) EnS

{
min
S′∈S

{∑
a∈S′

βa,n
αa,n− 1

}
−min
S′∈S

{∑
a∈S′

βa,n+1

αa,n+1− 1

}}}
,

where the expectation is taken with respect to Bn. The expectation above corresponds to the

knowledge gradient term vKG,nS in the notation of Ryzhov et al. (2012). Unlike in that paper, there

is no closed-form expression for vKG,nS in our setting. Our plain vanilla implementation of the KG

algorithm computes such a term via Monte Carlo simulation, and performs the outer minimization

via enumeration. The complexity of the implementation limited the size of the settings we tested.
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Modaresi, Sauré and Vielma: Learning in Combinatorial Optimization: What and How to Explore 63

The second benchmark is an approximation based on the Gittins index rule which in the finite-

horizon undiscounted settings takes the form of an average productivity index (see Niño-Mora

(2011)), and although it is not optimal in general, it is still applied heuristically. Our implemen-

tation assigns an index to each ground element, and computes the index of a solution as the sum

of the indexes of the ground elements included in that solution. The policy requires a parametric

representation of the uncertainty. To mimic a setting where the functional form of the cost distribu-

tions is unknown, we consider the approximation in Lai (1987) based on normally distributed costs

and use Normal/Normal-Gamma conjugate priors (this is motivated by a central limit argument):

in our approximation, the index of a ground element a∈A at period n is given by

gan,N(µa,n, λa,n, αa,n, βa,n) =

(
µa,n−

√
βa,n

(αa,n− 1)λa,n
h

(
λa,n−λa,0

N −n+ 1 +λa,n−λa,0

))+

,

where µa,n and λa,n are the mean and variance of the normal posterior, respectively, αa,n and

βa,n are the hyper-parameters of the Gamma posterior, respectively, and h(·) approximates the

boundary of an underlying optimal stopping problem. The policy implements solution SGittn , where

SGittn ∈ arg min
S∈S

{∑
a∈S

gan,N(µa,n, λa,n, αa,n, βa,n)

}
.

Implementation Details. The implementation details are as in the long-term experiments in

Section 7.1. The average running time for a single replication ranged from around one second

for the OCP-based policy to around 2 seconds for Gittins to less than 10 minutes for KG. We

exclude the results for the UCB1+ and Extended UCB1+ policies, because they were consistently

outperformed by the OCP-based policy.

A.5.2. Settings and Results

We consider randomly generated (structure and costs) settings of shortest path, Steiner tree

and knapsack problems. We observed consistent performance of the policies across settings, and

show only a representative setting for each class of problems. There, the total number of periods

is selected so as to visualize the value at which the OCP-based policy begins outperforming the

benchmarks. In all settings, the benchmark policies initially provide a better performance compared

to the OCP-based policy, but the latter policy eventually surpasses the benchmarks for moderate

values of N . The same holds true for the case of the Greedy-Heuristic policy.

Shortest Path Problem. The left panel of Figure 9 depicts the average performances for a

shortest path problem in a layered graph with 5 layers, each with 4 nodes, and 2 connections
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between each inner layer. The representative setting is such that |A|= 40, |S|= 64, the minimum-

size cover is of size 9, and the solution-cover to OCP (µ) is of size 10 with an implied critical set of

size 23.

Minimum Steiner Tree Problem. The central panel of Figure 9 depicts the average perfor-

mances on a representative setting for the Steiner tree problem. The representative setting is such

that |A|= 9, |S|= 50, the minimum-size cover is of size 2, and the solution-cover to OCP (µ) is of

size 4 with an implied critical set of size 8.

Knapsack Problem. The right panel of Figure 9 depicts the average performances on a rep-

resentative setting for the knapsack problem. (Here we report on the average behavior over 500

replications so that the confidence intervals do not cross.) The representative setting is such that

|A|= 11, |S|= 50, the minimum-size cover is of size 7, and the solution-cover to OCP (µ) is of size

2 with an implied critical set of size 5.

N
40 100 160 220 280 340 400

R
eg

re
t

13

26

39

52

65

OCP-based

Gittins

KG

Greedy-Heuristic

N
10 30 50 70 90100

R
eg

re
t

1

2

3

Greedy-Heuristic

Gittins

KG

OCP-based

N
10 30 50 70 90 110

R
eg

re
t

4.5

5

5.5

OCP-based

Greedy-Heuristic

KG

Gittins

Figure 9 Average performance of different policies on the representative setting for the shortest path (left), Steiner

tree (center) and knapsack (right) problems – the vertical lines show the 95% confidence intervals.

A.6. Alternative Feedback Setting

The flexibility of the OCP-based policies allows them to be easily extended or combined with other

techniques that consider similar what-and-how-to-explore questions. For instance, the OCP-based

policy can be easily combined with the “barycentric spanner” of Awerbuch and Kleinberg (2004) to

extend our results from element-level observations to set- or solution-level observations as follows.

For a particular application, it might be the case that the decision-maker only has access, for

example, to the total cost incurred by implementing solution Sn. We begin by showing how a cover-

based policy (i.e., a policy that conducts exploration by implementing solutions in a cover) can be

adapted to this last setting. For a set of ground elements S ⊆A, let IS := (IS(a) : a∈A)∈ {0,1}|A|

denote the incidence vector of the ground set (so that S = {a : IS(a) = 1, a∈A}). We say that a
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solution set E recovers a set E ⊆A if for each a∈E, there exists a vector γ(a) := (γS(a), S ∈ E)∈R|E|

such that ∑
S∈E

γS(a)IS = I{a}. (A-21)

Without loss of generality, one can assume that each ground element is recovered by at least

one solution set. Let E be a solution set that recovers A, and let γ := (γ(a), a∈A) be such that∑
S∈E γS(a)IS = I{a}, for all a∈A. One can implement a cover-based policy with E playing the role

of a cover while using the estimate mean cost vector µ̂n = (µ̂n(a) : a∈A), where

µ̂n(a) :=
∑
S∈E

γS(a)

|m<n : Sm = S|
∑

m<n:Sm=S

∑
a∈S

bm(a), a∈A. (A-22)

The estimate above reconstructs the expected cost of each solution in E and uses (A-21) to translate

such estimates to the ground-element level. Implementing this modification requires precomputing

a solution set E recovering A. Such a set can be selected so that |E| ≤ |A|, and computed by solving

O(|A|) instances of Comb(·) (see e.g., the algorithm in Awerbuch and Kleinberg (2004)).

The idea above can also be used to extend the OCP-based policy to this new setting. For that

we could consider the estimates in (A-22) and (C,E) to be a solution to an alternative version of

OCP (ν), denoted by OCP ′(ν), where in addition to (8b)-(8d), one imposes that E recovers C,

that is, OCP ′(ν) is given by

min
∑
S∈S

∆ν
S y(S) (A-23a)

s.t.
∑
S∈S

γS(a)IS = x(a)I{a}, a∈A (A-23b)

γS(a)≤Q y(S), S ∈ S, a∈A (A-23c)

−γS(a)≤Q y(S), S ∈ S, a∈A (A-23d)∑
a∈S

(l(a)(1−x(a)) + b(a)x(a))≥ z∗Comb(ν), S ∈ S (A-23e)

x(a), y(S)∈ {0,1} , γS(a)∈R, a∈A,S ∈ S, (A-23f)

where Q is an instance-dependent constant, whose size is polynomial in the size of the instance.

The additional constraints(A-23b)-(A-23d) in OCP ′(ν) ensure that the solution-cover E recovers

the critical set C. Like OCP , the formulation above can be specialized to accommodate the com-

binatorial structure of Comb. The performance guarantee in Theorem 3 would remain valid with

the constants associated with OCP ′. We anticipate that the challenge of solving OCP ′ effectively

is comparable to that of solving OCP .
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A.7. Auxiliary Result for the Proof of Theorem 2 and Theorem 3

Proposition 4. For any fixed a∈A, n∈N, k ∈N, and ε > 0 we have that

P{|µ̂n(a)−µ(a)| ≥ ε,Tn(a)≥ k} ≤ 2exp

{
−2ε2k

L2

}
,

where L := max{u(a)− l(a) : a∈A}.

Proof of Proposition 4. For m ∈N, define tm(a) := inf {n∈N : Tn(a) =m}− 1. Indexed by

m, one has that Btm(a)(a)−µ(a) is a bounded martingale difference sequence, thus one has that

P{|µ̂n(a)−µ(a)| ≥ ε , Tn(a)≥ k} = P

{∣∣∣∣∣
Tn(a)∑
m=1

(
Btm(a)(a)−µ(a)

)∣∣∣∣∣≥ ε Tn(a) , Tn(a)≥ k

}

≤
∞∑
h=k

P

{∣∣∣∣∣
h∑

m=1

(
Btm(a)(a)−µ(a)

)∣∣∣∣∣≥ ε h , Tn(a) = h

}
(a)

≤ 2
∞∑
h=k

exp

{
−2 hε2

L2

}
P{Tn(a) = h}

≤ 2exp

{
−2 kε2

L2

}
,

where (a) follows from the Hoeffding-Azuma Inequality (see, for example, Lemma A.7 in Cesa-

Bianchi and Lugosi (2006)).
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