

 1

Improving Computational Capabilities for

Addressing Volume Constraints in Forest

Harvest Scheduling Problems

Juan Pablo Vielma*

 Departamento de Ingeniería Matemática, Universidad de Chile,

Blanco Encalada Nº 2120, 5º piso, Santiago,�Chile

 (Email: jvielma@dim.uchile.cl)

Alan T. Murray

Department of Geography, The Ohio State University,

1036 Derby Hall, 154 North Oval Mall, Columbus, Ohio 43210, USA

(Email: murray.308@osu.edu)

David M. Ryan

Department of Engineering Science, University of Auckland,

Private Bag 92019, Auckland, New Zealand

(Email: d.ryan@auckland.ac.nz)

Andres Weintraub

Departamento de Ingeniería Industrial, Universidad de Chile,

Casilla 2777, Santiago, Chile

(Email: aweintra@dii.uchile.cl.)

* Corresponding author. Current Address: Juan Pablo Vielma (PhD Student), School of
Industrial and Systems Engineering, Georgia Institute of Technology,�765 Ferst Drive
NW Atlanta, GA 30332-0205, USA

 2

Abstract:

Forest Harvest Scheduling problems incorporating area-based restrictions have

been of great practical interest for several years, but only recently have advances been

made that allow them to be efficiently solved. One significant development has made use

of formulation strengthening using the Cluster Packing Problem. This improved

formulation has allowed medium sized problems to be easily solved, but when

restrictions on volume production over time are added, problem difficulty increases

substantially. In this paper we study the degrading effect of certain types of volume

constraints and propose methods for reducing this effect. Developed methods include the

use of constraint branching, the use of elastic constraints with dynamic penalty

adjustment and a simple integer allocation heuristic. Application results are presented to

illustrate the computational improvement afforded by the use of these methods.

Acknowledgements

Funding for Murray was provided by the National Science Foundation

(Geography and Regional Science Program and the Decision, Risk, and Management

Science Program) under grant BCS-0114362. Funding for Weintraub was provided by

Fondecyt under grants 1020317 and 1040520.

Keywords: Combinatorial Optimization, Branch and bound, Forest Planning, Elastic

Constraints, Constraint Branching.

 3

1 Introduction

The goal of the forest harvest scheduling problem is to select which areas of a forest

will be harvested in different time periods. The forest is typically divided into small basic

cells or management units, which are then selected for harvesting. This problem has been

frequently modeled as an integer programming problem whose objective is to maximize

profits generated by the harvest schedule. With the intention of minimizing the

environmental impact of these harvest schedules, regulations limiting the size of clear cut

areas have been incorporated into the planning process (Thompson et al.1973, Murray

1999, Bettinger and Sessions 2003). The restrictions imposing these conditions are

known as maximum area restrictions and basically limit the contiguous area that can be

harvested in a particular period or in a sequence of periods.

The basic cells delineating the forest are in general much smaller than the maximum

area restriction. For this reason some groups of basic cells can be harvested together,

creating many combinations of acceptable harvest schedules. One of the initial

formulations for this problem, known as the Unit Restriction Model (URM) (Murray

1999), simplifies the problem by aggregating basic cells into bigger cutting blocks. With

the aid of geographic information systems (GIS), cutting blocks are constructed by

adding adjacent basic cells until the combined area nears the maximum allowed. As a

result of this a priori blocking, harvesting one block precludes neighboring blocks from

being harvested in the same time period. Given this, a relatively straightforward

adjacency or node packing problem may be structured.

It has been shown that if cutting block construction is incorporated into the decision

process, then more profitable harvest schedules can be generated (Murray and Weintraub

2002). One model that incorporates this block construction process into the problem is

known as the Area Restriction Model (ARM) (Murray 1999). Unfortunately this model is

very difficult to solve computationally. Recently, a strengthened formulation of the

ARM, known as the Cluster Packing Problem, was developed in Goycoolea et al. (2004).

 4

This formulation incorporates the construction of cutting blocks by forming clusters of

basic cells. Environmental area restrictions are addressed by limiting the area of each

cluster and adding incompatibility restrictions. This approach leads to a set packing

problem, and can be strengthened using adjacency relationships between basic cells. This

formulation allows relatively large single period instances to be easily solved using

commercial integer programming solvers. Many properties of this formulation are

preserved for multi-period instances, but when volume production restrictions are added

only instances with a small number of periods can be readily solved. This is likely caused

by the fraction generating effect of typical volume constraints, which degrades the

inherent integrality properties of the Cluster Packing Problem.

In this paper we study several techniques to cope with this fraction generating effect.

We first present constraint branching as a way of minimizing the damaging effects of

strict volume constraints. We then discuss how strict volume constraints may not be the

best way of modeling volume production requirements and propose elastic versions of

these constraints as an alternative. This leads to the study of dynamic updating of

penalties and an integer allocation heuristic as a way of assuring the generation of

acceptable harvest schedules when elastic volume constraints are used. Finally,

application results are provided to demonstrate the performance characteristics of the

proposed approaches.

2 The Forest Harvest Scheduling Problem

 As mentioned previously, harvest schedules generated by the area restricted

model must comply with regulations that limit the contiguous area that can be harvested

in a particular period or in a sequence of periods. As harvested sections of the forest are

usually replanted immediately, the regeneration process dictates when subsequent

additional harvesting can occur. This length of time is usually referred to as green-up.

Although the Cluster Packing Problem can manage any length of green-up, one green-up

period is used here for illustrative purposes. Consistent with the harvest scheduling

literature, and forestry practice, when dealing with spatial harvesting decisions the

planning horizon is such that any area of the forest can be harvested at most once.

 5

The ARM can be structured using a graph representation of a forest region. In the

following sections we describe this representation, show how to enforce maximum area

limits and detail the Cluster Packing Problem approach for solving this problem.

2.1 Graph Representation of a Forest Region

Data for the forest harvest scheduling problem is generally obtained from a GIS,

where a forest is divided into basic cells as shown in Figure 1.

Figure 1 Forest region partitioned into basic cells.

For each cell we are given its area together with timber attributes, such as profit

and volume, associated with harvesting in a particular time period.

Cells and adjacency relationships can be encoded in a graph G(V,E) with node set

V and arc set E. In this graph each node is associated with a basic cell and an arc between

two cells reflects adjacency. We consider two cells to be adjacent if they share a common

border in the GIS. The graph associated with the forest shown in Figure 1 is given in

Figure 2.

Figure 2 Graph associated with forest region given in Figure 1.

For each node u (or equivalently basic cell u), denote ua� the area of cell u. Similarly,

for each time period t denote ,u tc� and ,u tv� the profit and volume, respectively, of timber

obtained if cell u is harvested in period t.

2.2 Feasible Clusters and Area Restrictions

 6

As mentioned earlier, a restriction that is typically incorporated in harvest

scheduling is the maximum area restriction. This restriction limits the size of contiguous

clear cut areas to a maximum of Amax.

In most instances the area of a cell u (ua�) is smaller than the maximum area (Amax).

Typical cell sizes range between 5 and 20 ha, with an associated maximum area of

around 49 ha (Goycoolea et al. 2004). This means that some sets of contiguous cells may

be harvested together, provided their combined area does not exceed Amax. A feasible

cluster is a set of contiguous cells that comply with the maximum area restriction. In

other words, S V⊆ will be a feasible cluster if:

1. S induces a connected sub-graph in G(V,E)

2. maxu
u S

a A
∈

≤� �

For example, if in Figure 3 5 6 maxa a A+ ≤� � , then { 5,6} is a feasible cluster.

Associated with each cluster there is information on area, profit and volume:

• S u
u S

a a
∈

=� �

• , ,S t u t
u S

c c
∈

=� �

• , ,S t u t
u S

v v
∈

=� �

Two clusters are compatible if they are not adjacent and they do not share a

common cell. For example, if given the feasible clusters in Figure 3 of { 2,5} , { 3,7} and

{ 10} , then they are all compatible because no common cell or adjacency condition exists

among these sets. However, given sets { 1} and { 2,5} , an adjacency condition would

prohibit simultaneously harvesting these two sets. Thus, they are incompatible.

 7

Figure 3 Three compatible clusters

Because a green-up of one period is assumed, to comply with area restrictions we

only need to forbid incompatible clusters from being harvested in the same period . The

restrictions needed to enforce such conditions are denoted cluster incompatibility

restrictions.

2.3 The Cluster Packing Problem

The Cluster Packing Problem (CPP) is used here to maximize the net present value

associated with selecting compatible clusters to be harvested. The CPP is modeled as a

set packing formulation in which binary variables indicate whether a cluster is harvested

in a particular period. This formulation is given as follows using simple cluster

incompatibility restrictions:

Cluster Packing Problem 1 (CPP1)

Maximize�
tS

tStS xc
,

,,

(1)

subject to

, ', 1S t S tx x+ ≤ for each pair of incompatible clusters S, S’ and for each period t (2)

�
∈

≤
SutS

tSx
 ,

, 1 for each cell u (3)

{ }, 0,1S tx ∈ for each cluster S and for each period t (4)

where:

• , 1S tx = if cluster S is harvested in period t

 8

• ,S tc is Net Present Value of cluster S for period t.

The objective (1) of the CPP1 is to maximize the net present value of the selected

forest harvest schedule. Constraints (2) are cluster incompatibility restrictions that make

sure the maximum area limits are maintained. Constraints (3) enforce that each cell can

only be harvested once in the planning horizon by allowing at most one cluster that

contains a particular cell to be harvested in the planning horizon. Note that constraints (3)

are the only part of the CPP1 model where basic cells are specifically considered as the

model does not contain variables associated with basic cells, except for the particular case

were a cluster consists of only one cell, i.e. when some cluster S is such that { }S u= for

some basic cell u . Finally, variables are required to be binary in constraints (4).

This formulation was proposed in Goycoolea et al. (2004) and the cluster

incompatibility restrictions were strengthened using maximal cliques to give the problem

better integrality properties. A clique is a complete sub-graph. For the forest graph a

clique is a set of basic cells that are mutually adjacent to each other. A maximal clique is

a clique that is not strictly contained in another clique. A strengthened version of CPP1

replaces Constraints (2) with the following:

1
)(

, ≤�
ΚΛ∈S

tSx for each maximal clique K in graph G(V,E) for each period t (5)

where ()KΛ is the set of all clusters that intersect maximal clique K. For more details

regarding these constraints and the maximal cliques they are based on see Goycoolea et

al. (2004).

Thus, CPP2 (Cluster Packing Problem 2) involves objective (1) subject to constraints (3),

(4) and (5).

 9

3 Temporal Volume Constraints

Because of economic and legal reasons it is usually required that a “ forest produces a

non-declining even flow of timber” (Buongiorno and Gilless, 2003, p. 70) or a

“ reasonable yield pattern”(Ware and Clutter, 1971, page 436). Depending on the

relationship between the discount rate applied and the growth rate of the forest, these

requirements are difficult to address with certainty. For example, if the discount rate is

much bigger than the growth rate of the forest and the profit per volume of timber before

applying the discount rate is constant, the maximization of profits will generate a harvest

schedule that will almost never give a non-declining flow of timber. The optimal

schedule will harvest as much as allowed by the area restrictions in the first period and

then harvest whatever is left as soon as allowed by the area restrictions in successive

period. This will usually generate a declining flow of timber, where no timber is available

for harvest in later periods. Because of this behavior, non-declining flow requirements

are typically modeled as linear constraints added to the harvest scheduling problem in

order to ensure a consistent availability of timber. As the ARM is a harvest scheduling

model, the previous discussion applies directly to the model we are studying, and hence

these volume flow requirements must be included in some way. In this section we will

introduce a typical strict volume constraint, show some results for the Cluster Packing

Problem incorporating these constraints and examine why these constraints make the

problem difficult to solve.

3.1 Strict Volume Constraint

The non-declining requirement is added to ensure that timber flow is even or

smooth. For this reason volume requirements are generally modeled as linear constraints

that impose an overall non-declining pattern but do not enforce the non-declining

requirement between periods. These volume constraints require that the volume of timber

harvested in a period is within a deviation of the volume harvested in the previous

period:

 10

() (), 1 , 1 , , , 1 , 11 1S t S t S t S t S t S t

S S S

v x v x v x− − − −− ∆ ≤ ≤ + ∆� � �

(6)

Note that these constraints are strict in the sense that the allowed deviation is

fixed, so any violation would be infeasible. If we add these strict volume constraints to

the Cluster Packing Problem we get the following formulation:

CPP2-V (Cluster Packing Problem 2 - Volume)

Maximize�
tS

tStS xc
,

,,

(7)

subject to

1
)(

, ≤�
ΚΛ∈S

tSx for each maximal clique K in graph (8)

 G(V,E) and for each period t

�
∈

≤
SutS

tSx
 ,

, 1 for each cell u (9)

() , 1 , 1 , ,1 0S t S t S t S t
S S

v x v x− −− ∆ − ≤� � for each period t>1 (10)

(), , , 1 , 1 1 0S t S t S t S t
S S

v x v x− −− + ∆ ≤� � for each period t>1 (11)

{ }, 0,1S tx ∈ for each cluster S and for each (12)

period t

This problem can be solved reasonably well for a very small number of periods

(Goycoolea et al 2004), but it is much harder to solve when many periods are considered.

For example, Goycoolea et al. (2004) obtained an optimal solution for a single period

problem with 1363 cells in 5 seconds. When the problem extended to 3 periods, 4 hours

was needed to achieve a gap of 2.3%.

.

 11

3.2 Computational Results for Model With Strict Volume

Constraints

Computational experiments were run using a forest in Northern California called El

Dorado. Treatment periods were established at 10 years per period. Details for this region

are given in Goycoolea et al. (2004), but the number of basic cells is 1363, the number of

feasible clusters is 21,412, the number of maximal cliques is 2105, and the total number

of constraints and variables for 15 periods (without volume constraints) are 32,938 and

321,180 respectively. Area and volume information are known and a fixed profit per

volume of timber was assumed. Multiple-period instances of 12 and 15 periods with

annual discount rates of 3%, 6% and 8% were evaluated, assuming a green-up duration of

one planning period. The runs were made on a Pentium 4 2 Ghz PC with 2 Gb of RAM

running Linux. Cplex 8.1 (Ilog, 2002) was used as the mixed integer programming (MIP)

solver. Problem generation and additional programming was implemented using C++.

Our base test consisted of trying to solve the Cluster Packing Problem without

volume constraints and with strict volume constraints using Cplex 8.1 directly. Table 1

gives computational results for the Cluster Packing Problem with strict volume

constraints using =0.15 and =0.10. A time limit of 4 hours was imposed. The first two

columns of Table 1 provide problem instance characteristics. The next two columns show

allowable volume deviation and the number of branch-and-bound nodes processed. The

next two columns present the time the best solution was found and the associated gap.

The remaining columns provide solution attribute information.

 12

Map / Discount
Rate

Time
Periods �

B&B
Nodes

Best
Solution
Time [s]

GAP
[%]

1st sol
under 1%
GAP [s]

1st
Feasible
Time [s]

1st
Feasible

GAP

El Dorado / 3% 12 0.15 951 - - - - -
El Dorado / 3% 15 0.15 696 - - - - -
El Dorado / 6% 12 0.15 664 - - - - -
El Dorado / 6% 15 0.15 754 - - - - -
El Dorado / 8% 12 0.15 689 - - - - -
El Dorado / 8% 15 0.15 1153 - - - - -
El Dorado / 3% 12 0.10 764 - - - - -
El Dorado / 3% 15 0.10 800 - - - - -
El Dorado / 6% 12 0.10 699 - - - - -
El Dorado / 6% 15 0.10 669 - - - - -
El Dorado / 8% 12 0.10 0 - - - - -
El Dorado / 8% 15 0.10 0 - - - - -

Table 1 Results for the Cluster Packing Problem with strict volume constraints.

Table 2 gives computational results for the Cluster Packing Problem without

volume constraints. A time limit of 4 hours was imposed. The only difference between

Tables 1 and 2 is the volume deviation in Table 1. In Table 2 the first two problem

instances were able to be optimally solved using Cplex within the allotted 4 hours of

processing. All other instances in Table 2 terminated with optimality gaps.

Map / Discount
Rate

Time
Periods

B&B
Nodes

Best
Solution
Time [s] GAP [%]

1st sol
under 1%
GAP [s]

1st
Feasible
Time [s]

1st
Feasible

GAP

El Dorado / 3% 12 3825 9983 Optimal 249 89 7.64
El Dorado / 3% 15 5190 10937 Optimal 308 136 7.66
El Dorado / 6% 12 3235 12841 0.28 1552 187 25.96
El Dorado / 6% 15 3373 13715 0.25 659 207 25.29
El Dorado / 8% 12 2696 7042 0.22 613 188 31.35
El Dorado / 8% 15 2372 14141 0.21 713 190 31.37

Table 2 Results for the Cluster Packing Problem without volume constraints.

Table 1 shows that Cplex was not able to find integer feasible solutions for any

problem instance when strict volume constraints are imposed. Alternatively, when the

strict volume constraints are removed, all 6 instances could be solved, either optimally or

close to optimal, within the 4 hour time limit. Furthermore, the first feasible solutions

were found in minutes and solutions with an optimality gap (GAP) of less that 1% were

found in less that 30 minutes for all instances without volume constraints. These results

suggest that difficulty arises when strict volume constraints are imposed. This damaging

 13

effect is caused by the fractional generating influence the strict volume constraints have

on the Cluster Packing Problem. As discussed previously, these constraints are added to

ensure timber flow requirements. For this reason methods are needed for effectively

dealing with these types of conditions.

4 Addressing Volume Constraints

The fractional generating effect of the strict volume constraints is explained by

observing that the objective of maximizing net present value will generate optimal

solutions to the linear relaxation at which about half of the volume constraints will be

active. For example, if the discount rate applied to the objective function is bigger than

the forest’s growth rate, almost all of constraints (10) will be active to prevent the

maximization of the objective function from harvesting as much as possible in the first

period(s). As the coefficients of volume constraints contain many unrelated coefficients,

it is very unlikely that volume constraints will be active for any integer solution. This

behaviour causes the optimal solution to the relaxed model to usually have many

fractions. In branch-and-bound, where fractions are being resolved, the optimization will

continue to generate fractional solutions just to keep the volume constraints active in

order to maximize the objective. This behavior will make it very difficult to find integer

solutions with a linear relaxation based branch- and-bound procedure. Furthermore, the

fact that there are many variables in a volume restriction (twice as many as there are

feasible clusters) makes the generation of cover inequalities (Nemhauser and Wolsey

1988), based on the knapsack interpretation of the volume restrictions, impractical. This

fact also makes variable branching quite ineffective for finding integer solutions, as many

0-branches (fixing a variable to 0) are needed to obtain integer solutions. We will

elaborate on this later in the paper.

To eliminate some of the problems associated with strict volume constraints, we can

either minimize their negative effect in branching or avoid compliance with them at

equality. In this section we study techniques that try to accomplish these objectives.

 14

4.1 Constraint Branching

The biggest problem with variable branching in the case of strict constraints is that

many 0-branches are needed to get an integer solution. The fact that 0-branches will

always be necessary to get an integer solution comes from the active volume constraints,

as the LP relaxation will always comply with them exactly by fractionally harvesting

some clusters. On the other hand, the fact that many 0-branches are needed comes from

the weakness of a 0-branch, especially when many similar variables can take positive

values. After most of the variables have been fixed by 1-branches, there will usually still

be some volume of timber that can be harvested in a particular period while complying

with the strict volume constraints. If this volume slack is smaller than the volume of any

particular cluster, the LP relaxation will comply with the volume constraints exactly by

fractionally harvesting some cluster. A 1-branch at this point in that particular cluster will

make the problem infeasible so the only option for resolving that fraction is to follow the

0-branch. The problem is that there are many different clusters that can be harvested

fractionally to use the volume slack, all of which will need to be fixed by 0-branches.

One of the main advantages of constraint branching is that it generates a much

more balanced branch-and-bound tree, and hence does not generate weak branches (Ryan

and Foster 1981). Because of this behavior, constraint branching has frequently been used

in cases where variable branching proved ineffective.

Constraint branching for the Cluster Packing Problem is based on the fact that any

fractional solution must have at least one basic cell that is harvested fractionally in at

least one of three ways: the cell is harvested partially over several periods; the cell is

harvested by multiple clusters in a particular period; or, the cell is harvested partially in

one period and only by one cluster. By eliminating these three sources of fraction

induction, integrality can be guaranteed.

In the following sub-sections we describe three constraint branching approaches

that eliminate each of the three possible fractions. They are referred to as Cell/Time

 15

branch, Cell/Cell branch and Cell-Slack branch. The latter can actually be viewed as a

variable branching involving a slack variable.

4.1.1 Cell/Time Constraint Branching

One way that a cell can be fractionally harvested is by being harvested partially

over several periods. The Cell/Time constraint branch will eliminate this source of

fractionallity by forcing a particular cell to be harvested either before or after a given

time period.

Let �
�
� �� be a solution to the linear relaxation of any of the CPP models at a given

node in the branch-and-bound tree. If a cell �� is being harvested partially over several

periods, then there must be a period �� such that:

0

0

,
0 ()

ˆ0 1
t

S t
t S u

x
= ∈Λ

< <� � (13)

where � 	�Λ is the set of all clusters that contain cell� .

For any �� that complies with (13), a constraint branch that will eliminate this

fraction is to force cell �� to be harvested fully or not at all before period �� . In other

words, to force:

0

0

,
0 ()

1
t

S t
t S u

x
= ∈Λ

=� �

in one branch and:

0

0

,
0 ()

0
t

S t
t S u

x
= ∈Λ

=� �

in the other. Rather than viewing the implementation of each branch as the addition of

the extra constraint, it is much better to implement the branch by removing the set of

variables (i.e., assigning them a zero upper bound) which violate the constraint branch.

 16

That is, remove all variables harvesting cell u0 after period t0 in the first case and all

those variables harvesting cell u0 in periods up to and including t0 in the second case.

Notice that if the branching is implemented by removing variables the possibility

of cell �� not being harvested at all is included in both branches.

4.1.2 Cell/Cell Constraint Branching

Another way in which a cell can be fractionally harvested is by being harvested

by multiple clusters in a particular period. The Cell/Cell constraint branch will eliminate

this source of fractionallity by forcing two cells to be harvested either together or

separately in a particular time period. Let �
�
� �� be a solution to the linear relaxation of any

of the CPP models at a given node in the branch-and-bound tree. Suppose that cell �� is

being harvested partially in period �� by two different clusters,
� and �� . In other words

�
 �� � �∈ ∩ and

 � � �� �

� ��� � �� � � �� �> ∧ > . Given that
� and �� are two different clusters

and that cell �� belongs to both, there must be another cell � �
 �≠ such that �
 belongs

only to one of the clusters. Without loss of generality, suppose that �
 only belongs to
�

(i.e. �
 ��
 � �∈). Then, a constraint branch that will eliminate this fraction is to forbid

cells �� and �
 from being harvested together in one branch and apart in the other. In

other words, if � 	�Λ is the set of all clusters that contain cell� , then the first branch

would be to force:

0

0 0

,
() ()

0
∈Λ ∩Λ

=� S t
S u v

x

(14)

and the second would be to force:

0

0 0 0 0

,
(() ())\(() ())

0
∈ Λ ∪Λ Λ ∩Λ

=� S t
S u v u v

x

(15)

 17

Again, it is better to implement these branches by fixing the corresponding

variables to zero instead of explicitly adding the constraints.

4.1.3 Cell/Slack Constraint Branching

In rare occasions, with strict or elastic volume constraints, it might happen that a

cell will be harvested partially only in one period and by only one cluster. For this reason

we add an extra constraint branch to make sure that we can eliminate all possible

fractions. This is called a Cell/Slack constraint branch.

Let �
�
� �� be a solution to the linear relaxation of any of the CPP models at a given

node in the branch-and-bound tree. Suppose that cell �� is being harvested partially only

in period �� and only by one cluster. In other words,

0

,
()

ˆ0 1S t
t S u

x
∈Λ

< <� � (16)

and no Cell/Time or Cell/Cell branch can be found.

In this case, the simple constraint branch forcing cell �� to be harvested fully or

not at all would eliminate the fraction. More specifically the constraint branch would fix:

0

,
()

1S t
t S u

x
∈Λ

=� � (17)

in one branch and:

0

,
()

0S t
t S u

x
∈Λ

=� � (18)

in the other.

 18

Notice that this constraint branch can be seen as a variable branch over the slack

variable of the following restriction:

�

�
� ��

� �
� � � �

�
∈

≤�

(19)

Because of this fact, both branches can easily be implemented by fixing the

corresponding slack to zero in the first branch and to one in the second.

4.2 Elastic Volume Constraints

As mentioned in section 3.1, strict volume constraints (10) and (11) try to model

the requirement that timber flows should be non-declining overall, but that this non-

declining requirement does not need to be strictly enforced between all adjacent periods.

Given this reasoning, if volume constraints are violated slightly they would still

adequately model the smooth production requirement as long as these violations are not

too big. Given that small violations are conceptually and theoretically valid, we could use

elastic constraints to minimize the fraction generating effect of volume constraints.

Elastic constraints have been used successfully in problems with similar fractional

properties (Ehrgott and Ryan 2003) and basically allow small violations to strict

constraints while penalizing these violations in the objective function.

To implement elastic volume constraints in this harvesting problem we simply add

continuous variables , 0t tl u ≥ that allow restrictions (10) and (11) to be violated:

 () , 1 , 1 , ,1 S t S t S t S t t
S S

v x v x l− −− ∆ − ≤� �

(20)

 (), , , 1 , 11S t S t S t S t t
S S

v x v x u− −− + ∆ ≤� �

(21)

These violations are then penalized in the objective function:

 19

> >

− −� �

� � ��
� �

� � � �

(22)

where penalties ≥� ���
� � are to be determined.

If we replace the strict volume constraints with these elastic versions, we get the

following Cluster Packing Problem:

CPP2-EV (Cluster Packing Problem 2 – Elastic Volume)

Maximize
> >

− −� � �� �
�

� � � � � � ��
� � � �

� � � � � �

(23)

subject to

1
)(

, ≤�
ΚΛ∈S

tSx for each maximal clique K in graph (24)

 G(V,E) and for each period t

�
∈

≤
SutS

tSx
 ,

, 1 for each cell u (25)

() , 1 , 1 , ,1 E S t S t S t S t t
S S

v x v x l− −− ∆ − ≤� � for each period t>1 (26)

(), , , 1 , 1 1S t S t E S t S t t
S S

v x v x u− −− + ∆ ≤� � for each period t>1 (27)

{ }, 0,1S tx ∈ for each cluster S and for each (28)

 period t

, 0t tl u ≥ for each period t (29)

The objective (23) of the CPP2-EV can now be interpreted as maximizing the net present

value of the selected forest harvest schedule while minimizing volume constraint

violations. These violations, tl and tu , are defined by constraints (26) and (27). Notice

that we have replaced by E in the volume constraints to differentiate between the

volume deviations used in strict and elastic versions of the constraints. The reason for this

 20

differentiation is that we might use different deviations for target strict volume

constraints and elastic constraints used to enforce them. We will discuss this in detail in

section 4.2.1.

It should be noted that this technique can also be directly applied to other versions

of volume constraints. For example, if instead of strict volume constraints (6) we used the

following strict lower/upper bound volume constraints:

 , ,S t S t
S

L v x U≤ ≤� (30)

we could use the following elastic constraints:

 , ,S t S t t

S

L v x l− ≤� (31)

 , ,S t S t t
S

v x U u− ≤� (32)

Although reformulating the problem to include elastic versions of the volume

constraints is straightforward, some technical details must be addressed for the procedure

to be effective.

4.2.1 Using Elastic Constraints to Comply With Strict Volume
Constraints

The main reason for using elastic constraints instead of strict volume constraints is that

relative consistency in flow is really what is desired. The maximum acceptable violation

will usually not be a fixed level and will probably need to be determined by practitioners

that use the model. This argument implies that compliance with a particular strict volume

constraint is not usually a main goal. Being able to fine tune parameters to keep

violations controlled is an important goal and it is not immediately clear that this can be

done while preserving the favorable properties of elastic constraints. A way to show that

violations can be controlled is to demonstrate that compliance with a particular strict

volume constraint can be achieved. We will do this in our computational results.

 21

If we want to assure compliance with strict volume constraints (equations (10) and (11))

with deviation by using elastic constraints (equations (26) and (27)) with deviation E

= , violations would need to be zero. This can be difficult to enforce and, as discussed in

the section 4.2.2, will destroy most of the favorable properties of elastic volume

constraints. For this reason the best way to comply with a particular strict volume

constraint with deviation is to use elastic constraints with deviation E < . In this way,

complying with the strict volume constraints only requires that violations are kept small,

but not necessarily equal to zero. This approach also has the advantage of penalizing

violations before they are unacceptable, which further helps to control them.

4.2.2 Penalty Value Selection and Control of Violations

Selecting penalties that minimize the fractional generating effect of volume

constraints while keeping the violations controlled may be very difficult. If big penalty

values that force violations to be zero are selected, then solutions will be as fractional as

they were using strict volume constraints. On the other hand, if small penalties are

selected, violations may be unacceptably large. Ideally, we would like to start with very

small penalties and slowly increase them to keep violations under control. To do this

effectively the increment should be done during LP convergence to assure that optimal

solutions to the LP relaxation will have controlled violations. Unfortunately most

commercial branch-and-bound solver do not allow this procedure. If we cannot

effectively adjust the penalties we are forced to use bigger initial penalties to control

violations. Fortunately, the fact that violations tend to increase as we descend in the

branch-and-bound tree might help us avoid the problems associated with relatively big

penalties. If we select the smallest penalties that will cause the root LP relaxation to have

no violations, we can expect the violations to be positive deep in the branch-and-bound

tree, where most of the integer solutions are found. Furthermore, if these violations do

not grow too fast we can expect that these integer solutions will have acceptable

violations. We shall see in the computational results that violations do usually remain

controlled; however this is not always the case.

 22

4.2.3 Dynamic Adjustment of Penalties Using Cuts

Most commercial branch-and-bound solvers do not allow the objective function to

be modified during the branch-and-bound process. This prevents us from increasing the

penalties after the LP relaxation has been solved.

Even though this is the case, we still have a way of dynamically updating

penalties. It is possible to add a cut to the problem that will have the same effect as

increasing a penalty. To do this penalty update through cuts, we just have to modify the

formulation slightly.

Suppose that for variables , 0s≥x we have an elastic constraint of the form:

 s≤v xT
 (33)

and that the objective function coefficient associated with s is ��− , where � �� > . If we

multiply inequality (33) by p>0 we obtain the following equivalent inequality:

 ()p p s⋅ ≤ ⋅v xT

(34)

Replacing the right hand product � �⋅ of (34) with a new variable 0λ ≥ we get

the following inequality:

 ()p λ⋅ ≤v xT (35)

If the objective coefficient associated with λ is equal to -1 then, in particular,

inequality (35) with �� �= will have the same effect over variables ���� as the original

inequality (33).

 23

If we include variableλ with objective coefficient -1 in the original formulation,

we can achieve the effect of an elastic constraint (33) with penalty level � by simply

adding the cut (35). In particular, if we want to increase the penalty to a new level >� �

we only need to add the following cut:

 ()q λ⋅ ≤v xT (36)

which will dominate the previous constraint when 0≥v xT . This does not restrict

generality, because when 0<v xT any version of the elastic constraints will be inactive,

i.e. the associated violation variable λ will be zero. Using this procedure we can modify

the elastic model as follows:

CPP2-EVC (Cluster Packing Problem 2 – Elastic Volume with Cut update)

Maximize
> >

− −� � �� �
�

� � � � � �
� � � �

� � � �

(37)

subject to

1
)(

, ≤�
ΚΛ∈S

tSx for each maximal clique K in (38)

 graph G(V,E), for each period t

�
∈

≤
SutS

tSx
 ,

, 1 for each cell u (39)

, 1 , 1 , ,(1)E S t S t S t S t tt
S S

p v x v x l− −
� �− ∆ − ≤� �
� �

� � for each period t>1 (40)

, , , 1 , 1 (1)t S t S t E S t S t t
S S

p v x v x u− −
� �− + ∆ ≤� �
� �
� � for each period t>1 (41)

{ }, 0,1S tx ∈ for each cluster S and for (42)

each period t

 24

, 0t tl u ≥ for each period t (43)

With this new formulation, increasing the penalties can be achieved by simply

adding new restrictions. For example, if we want to increase the penalty associated with

�� from
�

� to a new level >� �� � , the following restriction would be added as a cut:

 () , 1 , 1 , ,1 E S t S t S t S t tt
S S

q v x v x l− −
� �− ∆ − ≤� �
� �

� � (44)

The procedure to increase penalties associated with violations tu is analogous.

4.2.3.1 Fathoming Invalid Nodes

If we are using elastic constraints to solve a target strict volume constraint model,

fathoming by infeasibility has to be treated with care. The problem is that a branch-and-

bound node can be feasible for the elastic model and not for the target strict volume

constraint model. These nodes can cause trouble with the penalty updating procedure.

It is possible that at some nodes in the branch-and-bound tree increasing the

penalties will not be enough to control violations. This will happen when branching

decisions that generate that node cause it to not contain any solution with controlled

violations. In this case the node is actually infeasible for the target strict volume

constraint, and hence can be fathomed.

To detect this case we can check the feasibility explicitly or try to detect when

penalty increments do not affect the violations. A simpler way to fathom the nodes is to

use the optimal objective value of the LP relaxation at that node. Given that the violations

for this node will always be positive, increasing the penalties will eventually drive the

objective function below the best incumbent solution, causing the branch-and-bound

solver to automatically fathom the node. Of course, for this to work we have to assume

 25

that a feasible solution has already been found. In case it does not exist, we can simply

postpone the fathoming until a feasible solution is found.

4.2.4 Integer Allocation Heuristic

Integer Allocation or Dive-and-Fix heuristics (Wolsey, 1998) are generally very

effective when applied to set packing problems, like the Cluster Packing Problem without

volume constraints. Unfortunately, when strict volume constraints are added, this kind of

heuristic loses most of its effectiveness for the same reason that variable branching does.

The heuristic implemented is based on solutions to the LP relaxation of the elastic

constraint model and simply fixes fractional variables to integer values. This process is

repeated until all variables are integer. The heuristic also tries to keep the violations

controlled, and corrects any significant violations.

As mentioned previously, depending on the relationship between the discount rate

applied and the growth rate of the forest, either the first or last period will be the most

profitable. The integer allocation heuristic starts fixing variables in this most profitable

period first and then continues the variable fixing in adjacent periods. The heuristic only

proceeds to the next periods if all fractions in the current period have been resolved.

Further, before proceeding to the next period, the heuristic will conservatively try to

correct most of the unacceptable volume constraint violations. Finally, when all variables

have been fixed, the heuristic will aggressively correct unacceptable violations until there

are no violations left. Figure 4 contains the pseudo code describing the heuristic in detail.

In Figure 4 we assume that we are using elastic volume constraints model with E

deviation to solve the strict volume constraint with deviation and that E < as

described in section 4.2.1.

Figure 4 Integer Allocation Heuristic

 26

The performance of the heuristic depends on the elastic volume constraints. The

fractional generating effect of the strict volume constraints will likely require many 0-

branches in a branch-and-bound procedure to generate an integer solution. As integer

allocation heuristics are essentially the same as depth first search in the branch-and bound

tree, a heuristic of this kind will usually need to fix many small fractional variables to 0

when strict volume constraints are used. When elastic constraints are used instead, only a

few variables will likely need to be fixed to 0.

5 Computational Results

In this section we present computational results to illustrate how elastic constraints

can improve performance and how violations can be kept controlled. As discussed in

section 4.2.1, to show that violations can be kept controlled we will show that the

stronger requirement of always complying with a particular strict volume constraint can

be achieved. This approach will also allow us to compare solutions for models with strict

volume constraints and models with elastic volume constraint as all solutions will be

feasible for a target strict volume constraint model. This target model will be the strict

volume constraint model CPP2-V with a deviations equal to 0.10 and 0.15 for the

volume constraints. When using the elastic constraint model CPP2-EV only solutions

that comply with the corresponding strict volume constraint model with deviation will

be accepted. Further, when calculating optimality gaps (GAP) the objective function of

CPP2-V will be used, i.e. contributions by the penalties will not be considered, and the

gaps will be calculated with respect to the optimal value of the LP relaxation of CPP2-V

with the corresponding deviation. Elastic volume constraint deviations of E < will be

used. More specifically, elastic volume constraint deviations will always be set to E = -

0.005 where is the deviation of the corresponding target strict volume constraint model.

Only results for the techniques and combinations of techniques which provided the

best performance improvements for the Cluster Packing Problem are presented. In

particular, it should be noted that although the dynamic adjustment of penalties is

 27

theoretically straight forward, penalty updating cuts produce numerical instabilities that

caused them to perform poorly.

5.1 Strict Model Using Constraint Branching

Table 3 gives computational results for the Cluster Packing Problem with strict

volume constraints using =0.15 and =0.10 using constraint branching. A time limit of

4 hours was imposed. The first two columns of Table 3 define the problem instance

characteristics. Columns three and four show allowable volume deviation and the number

of branch-and-bound nodes processed. The next two columns, present the time the best

solution was found and the associated gap. Column seven shows the time it took to find a

feasible solution under 1% gap and the last two columns show the time required for

finding the first integer solution along with the optimality gap.

Map / Discount
Rate

Time
Periods �

B&B
Nodes

Best
Solution
Time [s]

GAP
[%]

1st sol
under 1%
GAP [s]

1st
Feasible
Time [s]

1st
Feasible

GAP

El Dorado / 3% 12 0.15 3491 10706 5.61 - 10706 5.61
El Dorado / 3% 15 0.15 2664 13850 14.19 - 13850 14.19
El Dorado / 6% 12 0.15 3307 10951 5.68 - 10951 5.68
El Dorado / 6% 15 0.15 2674 13965 14.96 - 13946 14.96
El Dorado / 8% 12 0.15 3468 10412 2.73 - 10412 2.73
El Dorado / 8% 15 0.15 2625 13751 11.34 - 13751 11.34
El Dorado / 3% 12 0.10 3654 10434 4.72 - 10434 4.72
El Dorado / 3% 15 0.10 3055 12547 10.73 - 12547 10.73
El Dorado / 6% 12 0.10 3969 10137 7.17 - 10133 7.17
El Dorado / 6% 15 0.10 2971 12411 7.51 - 12395 7.57
El Dorado / 8% 12 0.10 3627 10465 5.46 - 10465 5.46
El Dorado / 8% 15 0.10 2812 13329 12.00 - 13329 12.00

Table 3 Results for the Cluster Packing Problem with strict volume constraints (constraint

branching).

Constraint branching allows us to find either one or two very similar feasible

solutions for each instance in the allotted time. The reason for this is that constraint

branching can more effectively deal with the fractional properties of the strict volume

constraints. Although constraint branching helps in finding feasible solutions for all

instances, the quality of these solutions is not particularly good. This can probably be

 28

improved by a better selection between constraint branching alternatives or by a better

selection of the next branch-and-bound node that is processed.

5.2 Elastic Model With Fixed Penalties

Table 4 presents computational results for the elastic volume constraint model. Penalties

for the elastic constraints were simply set to a fixed value giving no violations in the root

LP relaxation. The only way in which we guaranteed compliance with the corresponding

strict volume constraint was by only accepting valid solutions (solutions that are feasible

for the corresponding target CPP2-V model). Constraint branching was not used in this

section. A time limit of 4 hours was imposed. The format of Table 4 is the same as Table

3.

Map / Discount
Rate

Time
Periods �

B&B
Nodes

Best
Solution
Time [s]

GAP
[%]

1st sol
under 1%
GAP [s]

1st
Feasible
Time [s]

1st
Feasible

GAP

El Dorado / 3% 12 0.15 942 2424 0.56 2424 2424 0.56
El Dorado / 3% 15 0.15 515 13683 0.97 13683 13683 0.97
El Dorado / 6% 12 0.15 604 6018 1.03 - 1075 32.09
El Dorado / 6% 15 0.15 507 - - - - -
El Dorado / 8% 12 0.15 634 2912 1.09 - 1128 1.14
El Dorado / 8% 15 0.15 800 - - - - -
El Dorado / 3% 12 0.10 687 3924 0.70 3924 3924 0.70
El Dorado / 3% 15 0.10 687 13621 1.13 - 13621 1.13
El Dorado / 6% 12 0.10 525 4683 1.03 - 4683 1.03
El Dorado / 6% 15 0.10 346 9988 1.37 - 9988 1.37
El Dorado / 8% 12 0.10 490 5699 1.32 - 5699 1.32
El Dorado / 8% 15 0.10 920 6239 1.51 - 2532 1.70

Table 4 Results for the Cluster Packing Problem with elastic volume constraints.

Using elastic constraints directly, it is possible to find good valid feasible

solutions for almost all instances. Still, in two cases it is not possible to find valid feasible

solutions at all.

Solutions presented in Table 4 are for valid solutions that comply with the strict

volume constraints, but many more feasible solutions were found. These were not

considered as they were only feasible to the elastic volume constraint model and not for

the target strict volume constraint model. In particular, for both instances in which no

 29

valid solutions were found, more than a hundred integer feasible solutions were found.

Taking this into account, elastic volume constraints make it possible to find integer

feasible solutions for all instances, but we cannot guarantee that all feasible solutions will

be valid. By using elastic constraints we have traded the difficulty of finding integer

feasible solutions for the difficulty of complying with the strict volume constraints. The

fact that complying with the strict volume constraints was a problem only for two

instances suggests this is a much smaller complication. Furthermore, the fact that for

these two instances several invalid, but integer feasible, solutions were found suggests

that we might be able to solve all instances if we can control the violations during the

branch-and-bound process. On the other hand, out of these hundreds of integer feasible

but invalid solutions, many almost complied with the target strict volume constraint

model, so likely would be acceptable in planning situations.

5.3 Elastic Model Using the Integer Allocation Heuristic and

Constraint Branching

Table 5 presents computational results for the elastic constraint model using the

integer allocation heuristic and constraint branching. Penalties for the elastic constraints

were simply set to a fixed value that resulted in no violations in the root LP relaxation

and the heuristic was executed at every node in the branch-and-bound tree.

Variable branching has the same effect as one step of the integer allocation heuristic,

so using both of them together would be rather redundant. Further, constraint branching

creates changes in the feasible space that are different to the variable fixings of the

integer allocation heuristic, and hence diversify its greedy nature. For this reason we

decided to use the constraint branching developed in section 4.1 as the branching method

in this section.

The heuristic always generates valid solutions (solutions that are feasible for the

corresponding target CPP2-V model), so no extra validation was needed. A time limit of

4 hours was imposed.

 30

Map / Discount
Rate

Time
Periods �

B&B
Nodes

Best
Solution
Time [s]

GAP
[%]

1st sol
under 1%
GAP [s]

1st
Feasible
Time [s]

1st
Feasible

GAP

El Dorado / 3% 12 0.15 12 2095 0.72 2095 2095 0.72
El Dorado / 3% 15 0.15 9 8998 0.82 7491 4443 1.25
El Dorado / 6% 12 0.15 12 12945 1.07 - 2454 1.34
El Dorado / 6% 15 0.15 9 5808 1.22 - 4206 1.58
El Dorado / 8% 12 0.15 17 4567 1.21 - 3255 1.27
El Dorado / 8% 15 0.15 10 4003 1.64 - 4003 1.64
El Dorado / 3% 12 0.10 11 2576 0.79 2576 2576 0.79
El Dorado / 3% 15 0.10 11 9622 1.26 - 3938 2.13
El Dorado / 6% 12 0.10 15 4252 1.26 - 3251 1.58
El Dorado / 6% 15 0.10 11 4193 1.55 - 4193 1.55
El Dorado / 8% 12 0.10 12 4494 1.43 - 3276 2.06
El Dorado / 8% 15 0.10 9 8193 1.82 - 3488 1.93

Table 5 Results for the Cluster Packing Problem with elastic volume constraints (integer allocation

heuristic).

It is clear in Table 5 that computational performance is better than using Cplex

directly for the elastic constraint model. We can now find good valid solutions for all

instances, even for the ones where Cplex applied directly to the elastic volume constraint

model was not previously successful. These results are very encouraging when compared

with our base case in which Cplex applied directly to the strict volume constraint model

was not able to find any feasible solutions. Also note that, although the improvement is

not large, the constraint branching does diversify the heuristic enough to get better

solutions after the initial feasible solution.

6 Conclusions

In this paper we have studied the effect of strict volume constraints in forest harvest

scheduling using the Cluster Packing Problem. We have seen that the fractional

generating effect of these strict volume constraints make the Cluster Packing Problem

very difficult to solve. Several techniques have been introduced to minimize the negative

effect of strict volume constraints: elastic versions of the volume constraints and

constraint branching. By replacing the strict volume constraints with elastic versions, it is

possible to find good feasible solutions for almost all problems, with some instances

requiring comparatively less processing time. Although this is already an improvement

 31

compared to not finding any feasible solution in 4 hours, there still might be some

problems associated with using elastic constraints directly. The main issue is how to

make sure that strict constraint violations are controlled. One way of accomplishing this

is by dynamically adjusting penalties associated with violations every time the violations

grow too much. We have presented a way of implementing the dynamic adjustment of

penalties that will work in most commercial branch-and-bound solvers. This

implementation is theoretically straightforward, but some technical details still require

further study. The main advantage of this approach is that implementation is not

dependent on the specific model being solved. Hence, it can be used with any model that

contains fractional generating constraints that could be slightly violated. Constraint

branching allowed us to find feasible solutions for all test instances, but the solution

quality was not very good. On the other hand, an interesting characteristic of constraint

branching is that validity is maintained when volume constraints are modified, if new

constraints are added or if the green up is increased. Furthermore, constraint branching is

able to generate feasible solutions even when strict volume constraints are used, so it may

be useful if we do not want to worry about controlling violations. The strategy that

proved most effective for finding integer feasible solutions with controlled violations was

the addition of an integer allocation heuristic to the branch-and-bound process. A simple

variable fixing heuristic that managed violations found feasible solutions within 2% of

optimality for all instances tested, with some instances within 1%. This comes a long way

from not being able to find any feasible solutions when the strict model is solved directly

and of course we can expect to get even better results if we are not forced do comply with

a target strict volume constraint model.

Further research is needed for the dynamic adjustment of penalties to be

computationally effective in all cases. In addition, it seems reasonable that the quality of

solutions obtained by constraint branching could also be improved.

References

Bettinger P., Sessions J., 2003, Spatial forest planning: To adopt, or not to adopt?,

Journal of Forestry, 101 (2), 24

 32

Buongiorno, J., Gilless, J. K., 2003, Decision Methods for Forest Resource Management,

Academic Press, Elsevier Science, San Diego, California

Ehrgott, M., Ryan D., 2003, The Method of Elastic Constraints for Multiobjective

Combinatorial Optimization and its Application in Airline Crew Scheduling, Multi-

Objective Programming and Goal Programming, Springer Verlag, Berlin. 117-122.

Ilog, 2002, ILOG CPLEX 8.0 Users Manual

Goycoolea M., Murray A., Barahona F., Epstein R., Weintraub A., 2005, Harvest

scheduling subject to maximum area restrictions: exploring exact approaches. Operations

Research 53, 490-500.

Martell D., Gunn E., Weintraub A., 1998, Forest management challenges for operational

researchers, European Journal of Operations Research 104, 1-17.

Murray A., 1999, Spatial Restrictions in Harvest Scheduling, Forest Science, 45 (1), 1-8.

Murray A., Weintraub A., 2002, Scale and unit specification influences in harvest

scheduling with maximum area restrictions, Forest Science, 48, 779-789.

Nemhauser, G.L., Wolsey L.A., 1988, Integer and Combinatorial Optimization, John

Wiley and Sons, Inc., New York.

Ryan D., Foster B, 1981, An Integer Programming Approach to Scheduling, Computer

Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, A. Wren,

(Ed.) North Holland, Amsterdam, 269-280

 33

Thompson, E.F., Halterman, B.G., Lyon, T.S., Miller R.L., 1973,

Integrating timber and wildlife management planning, Forestry Chronicle

47, 247-250.

Ware, G.O., Clutter J.L., 1971, A mathematical programming system for the management

of industrial forests, Forest Science, 17, 428-445.

Wolsey, L.A., 1998, Integer Programming, John Wiley and Sons, Inc., New York.

 34

1

10

6

2

5

8

97

4

3

1

10

6

2

5

8

97

4

3

Figure 1 Forest region partitioned into basic cells.

 35

10

6

2

5

8

97

4

1

3

10

6

2

5

8

97

4

1

3

Figure 2 Graph associated with forest region given in Figure 1.

 36

1

10

6

2

5

8

97

4

3

1

10

6

2

5

8

97

4

3

Figure 3 Three compatible clusters

 37

Variables:

,ˆS tx : value of variable ,S tx in the optimal solution to the last linear

relaxation solve

,ˆ:t S t
S

V x
∈Λ

=� : which is actualized every time ,ˆS tx is actualized after an LP

 solve or by variable fixing
 begin

Solve the linear relaxation of the elastic constraint model with E
deviation and get ,ˆS tx

for ˆ 1t = to T do
 Variable Fixing
 while ˆ,

ˆ, (0,1)S tS x∃ ∈ Λ ∈ do

 M:= ˆ,
ˆmax S tS
x

∈Λ

 if M>0.5 then
 For all S such that ˆ,

ˆ
S tx M ε≥ − fix ˆ,S tx to 1

 else if M<0.5 then
 Pick one S such that ˆ,

ˆ
S tx M= fix ˆ,S tx to 1

 else
Iteratively fix to 0 variables with ˆ,

ˆ 0.5S tx <

as long as ˆ ˆ1(1) t tV V−− ∆ ≤ and ˆ ˆ 1(1) t tV V ++ ∆ ≥

 Resolve the linear relaxation and get ,ˆS tx

 end while
 Conservative Volume Corrections
 if ˆ ˆ1 (1)t tV V+ < − ∆ or ˆ ˆ1(1) t tV V−+ ∆ < then

Iteratively fix variables ˆ,
ˆ

S tx to 0 until ˆ ˆ1 (1)t tV V+ ≥ − ∆ and

ˆ ˆ1(1) t tV V−+ ∆ ≥ as long as the fixing does not make

ˆ ˆ1(1) t tV V−− ∆ > or ˆ ˆ 1(1) t tV V ++ ∆ <

 end if
 For all S∈Λ fix ˆ,S tx at its current value

 end for
 Final Aggressive Volume Corrections
 while ˆ ˆ ˆ ˆ1 1

ˆ (1) (1)t t t tt V V or V V+ −∃ < − ∆ + ∆ < do

 Iteratively fix variables ˆ,
ˆ

S tx to 0 until ˆ ˆ1 (1)t tV V+ ≥ − ∆ and

ˆ ˆ1(1) t tV V−+ ∆ ≥
 end while

Figure 4 Integer Allocation Heuristic

