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Abstract: 

 

Forest Harvest Scheduling problems incorporating area-based restrictions have 

been of great practical interest for several years, but only recently have advances been 

made that allow them to be efficiently solved. One significant development has made use 

of formulation strengthening using the Cluster Packing Problem. This improved 

formulation has allowed medium sized problems to be easily solved, but when 

restrictions on volume production over time are added, problem difficulty increases 

substantially. In this paper we study the degrading effect of certain types of volume 

constraints and propose methods for reducing this effect. Developed methods include the 

use of constraint branching, the use of elastic constraints with dynamic penalty 

adjustment and a simple integer allocation heuristic. Application results are presented to 

illustrate the computational improvement afforded by the use of these methods. 
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1 Introduction 

 

The goal of the forest harvest scheduling problem is to select which areas of a forest 

will be harvested in different time periods. The forest is typically divided into small basic 

cells or management units, which are then selected for harvesting. This problem has been 

frequently modeled as an integer programming problem whose objective is to maximize 

profits generated by the harvest schedule. With the intention of minimizing the 

environmental impact of these harvest schedules, regulations limiting the size of clear cut 

areas have been incorporated into the planning process (Thompson et al.1973, Murray 

1999, Bettinger and Sessions 2003). The restrictions imposing these conditions are 

known as maximum area restrictions and basically limit the contiguous area that can be 

harvested in a particular period or in a sequence of periods.  

 

The basic cells delineating the forest are in general much smaller than the maximum 

area restriction. For this reason some groups of basic cells can be harvested together, 

creating many combinations of acceptable harvest schedules. One of the initial 

formulations for this problem, known as the Unit Restriction Model (URM) (Murray 

1999), simplifies the problem by aggregating basic cells into bigger cutting blocks. With 

the aid of geographic information systems (GIS), cutting blocks are constructed by 

adding adjacent basic cells until the combined area nears the maximum allowed. As a 

result of this a priori blocking, harvesting one block precludes neighboring blocks from 

being harvested in the same time period. Given this, a relatively straightforward 

adjacency or node packing problem may be structured.  

 

It has been shown that if cutting block construction is incorporated into the decision 

process, then more profitable harvest schedules can be generated (Murray and Weintraub 

2002). One model that incorporates this block construction process into the problem is 

known as the Area Restriction Model (ARM) (Murray 1999). Unfortunately this model is 

very difficult to solve computationally. Recently, a strengthened formulation of the 

ARM, known as the Cluster Packing Problem, was developed in Goycoolea et al. (2004). 
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This formulation incorporates the construction of cutting blocks by forming clusters of 

basic cells. Environmental area restrictions are addressed by limiting the area of each 

cluster and adding incompatibility restrictions. This approach leads to a set packing 

problem, and can be strengthened using adjacency relationships between basic cells. This 

formulation allows relatively large single period instances to be easily solved using 

commercial integer programming solvers. Many properties of this formulation are 

preserved for multi-period instances, but when volume production restrictions are added 

only instances with a small number of periods can be readily solved. This is likely caused 

by the fraction generating effect of typical volume constraints, which degrades the 

inherent integrality properties of the Cluster Packing Problem. 

 

In this paper we study several techniques to cope with this fraction generating effect. 

We first present constraint branching as a way of minimizing the damaging effects of 

strict volume constraints. We then discuss how strict volume constraints may not be the 

best way of modeling volume production requirements and propose elastic versions of 

these constraints as an alternative. This leads to the study of dynamic updating of 

penalties and an integer allocation heuristic as a way of assuring the generation of 

acceptable harvest schedules when elastic volume constraints are used. Finally, 

application results are provided to demonstrate the performance characteristics of the 

proposed approaches. 

2 The Forest Harvest Scheduling Problem 

 As mentioned previously, harvest schedules generated by the area restricted 

model must comply with regulations that limit the contiguous area that can be harvested 

in a particular period or in a sequence of periods. As harvested sections of the forest are 

usually replanted immediately, the regeneration process dictates when subsequent 

additional harvesting can occur. This length of time is usually referred to as green-up. 

Although the Cluster Packing Problem can manage any length of green-up, one green-up 

period is used here for illustrative purposes. Consistent with the harvest scheduling 

literature, and forestry practice, when dealing with spatial harvesting decisions the 

planning horizon is such that any area of the forest can be harvested at most once.  
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The ARM can be structured using a graph representation of a forest region. In the 

following sections we describe this representation, show how to enforce maximum area 

limits and detail the Cluster Packing Problem approach for solving this problem.  

2.1 Graph Representation of a Forest Region  

Data for the forest harvest scheduling problem is generally obtained from a GIS, 

where a forest is divided into basic cells as shown in Figure 1.  

 

 

Figure 1 Forest region partitioned into basic cells. 

 

For each cell we are given its area together with timber attributes, such as profit 

and volume, associated with harvesting in a particular time period. 

 

Cells and adjacency relationships can be encoded in a graph G(V,E) with node set 

V and arc set E. In this graph each node is associated with a basic cell and an arc between 

two cells reflects adjacency. We consider two cells to be adjacent if they share a common 

border in the GIS. The graph associated with the forest shown in Figure 1 is given in 

Figure 2. 

 

Figure 2 Graph associated with forest region given in Figure 1. 

 

For each node u (or equivalently basic cell u), denote ua� the area of cell u. Similarly, 

for each time period t denote ,u tc�  and ,u tv�  the profit and volume, respectively, of timber 

obtained if cell u is harvested in period t. 

2.2 Feasible Clusters and Area Restrictions 
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As mentioned earlier, a restriction that is typically incorporated in harvest 

scheduling is the maximum area restriction. This restriction limits the size of contiguous 

clear cut areas to a maximum of Amax. 

 

In most instances the area of a cell u ( ua� ) is smaller than the maximum area (Amax). 

Typical cell sizes range between 5 and 20 ha, with an associated maximum area of 

around 49 ha (Goycoolea et al. 2004). This means that some sets of contiguous cells may 

be harvested together, provided their combined area does not exceed Amax. A feasible 

cluster is a set of contiguous cells that comply with the maximum area restriction. In 

other words, S V⊆  will be a feasible cluster if: 

  

1. S  induces a connected sub-graph in G(V,E) 

2. maxu
u S

a A
∈

≤� �  

 

For example, if in Figure 3 5 6 maxa a A+ ≤� � , then { 5,6}  is a feasible cluster.  

 

Associated with each cluster there is information on area, profit and volume: 

 

• S u
u S

a a
∈

=� �  

• , ,S t u t
u S

c c
∈

=� �  

• , ,S t u t
u S

v v
∈

=� �  

 

Two clusters are compatible if they are not adjacent and they do not share a 

common cell. For example, if given the feasible clusters in Figure 3 of { 2,5} , { 3,7}  and 

{ 10} , then they are all compatible because no common cell or adjacency condition exists 

among these sets. However, given sets { 1}  and { 2,5} , an adjacency condition would 

prohibit simultaneously harvesting these two sets. Thus, they are incompatible.  
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Figure 3 Three compatible clusters 

 

Because a green-up of one period is assumed, to comply with area restrictions we 

only need to forbid incompatible clusters from being harvested in the same period . The 

restrictions needed to enforce such conditions are denoted cluster incompatibility 

restrictions. 

 

2.3 The Cluster Packing Problem 

 

The Cluster Packing Problem (CPP) is used here to maximize the net present value 

associated with selecting compatible clusters to be harvested. The CPP is modeled as a 

set packing formulation in which binary variables indicate whether a cluster is harvested 

in a particular period. This formulation is given as follows using simple cluster 

incompatibility restrictions: 

 

Cluster Packing Problem 1 (CPP1) 

 

Maximize�
tS

tStS xc
,

,,

         
(1) 

subject to 

 

, ', 1S t S tx x+ ≤   for each pair of incompatible clusters S, S’   and for each period t (2) 

 

�
∈

≤
SutS

tSx
  ,

, 1  for each cell u        (3) 

{ }, 0,1S tx ∈  for each cluster S  and for each period t    (4) 

 

where: 

• , 1S tx =  if cluster S is harvested in period t 
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• ,S tc  is Net Present Value of cluster S for period t. 

 

The objective (1) of the CPP1 is to maximize the net present value of the selected 

forest harvest schedule. Constraints (2) are cluster incompatibility restrictions that make 

sure the maximum area limits are maintained. Constraints (3) enforce that each cell can 

only be harvested once in the planning horizon by allowing at most one cluster that 

contains a particular cell to be harvested in the planning horizon. Note that constraints (3) 

are the only part of the CPP1 model where basic cells are specifically considered as the 

model does not contain variables associated with basic cells, except for the particular case 

were a cluster consists of only one cell, i.e. when some cluster S is such that { }S u= for 

some basic cell u . Finally, variables are required to be binary in constraints (4). 

 

This formulation was proposed in Goycoolea et al. (2004) and the cluster 

incompatibility restrictions were strengthened using maximal cliques to give the problem 

better integrality properties. A clique is a complete sub-graph. For the forest graph a 

clique is a set of basic cells that are mutually adjacent to each other. A maximal clique is 

a clique that is not strictly contained in another clique. A strengthened version of CPP1 

replaces Constraints (2) with the following: 

 

1
)(

, ≤�
ΚΛ∈S

tSx  for each maximal clique K in graph G(V,E) for each period t  (5) 

 

where ( )KΛ  is the set of all clusters that intersect maximal clique K. For more details 

regarding these constraints and the maximal cliques they are based on see Goycoolea et 

al. (2004). 

 

Thus, CPP2 (Cluster Packing Problem 2) involves objective (1) subject to constraints (3), 

(4)  and (5). 
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3 Temporal Volume Constraints 

 

Because of economic and legal reasons it is usually required that a “ forest produces a 

non-declining even flow of timber”  (Buongiorno and Gilless, 2003, p. 70) or a 

“ reasonable yield  pattern”(Ware and Clutter, 1971, page 436). Depending on the 

relationship between the discount rate applied and the growth rate of the forest, these 

requirements are difficult to address with certainty. For example, if the discount rate is 

much bigger than the growth rate of the forest and the profit per volume of timber before 

applying the discount rate is constant, the maximization of profits will generate a harvest 

schedule that will almost never give a non-declining flow of timber. The optimal 

schedule will harvest as much as allowed by the area restrictions in the first period and 

then harvest whatever is left as soon as allowed by the area restrictions in successive 

period. This will usually generate a declining flow of timber, where no timber is available 

for harvest in later periods.  Because of this behavior, non-declining flow requirements 

are typically modeled as linear constraints added to the harvest scheduling problem in 

order to ensure a consistent availability of timber. As the ARM is a harvest scheduling 

model, the previous discussion applies directly to the model we are studying, and hence 

these volume flow requirements must be included in some way.  In this section we will 

introduce a typical strict volume constraint, show some results for the Cluster Packing 

Problem incorporating these constraints and examine why these constraints make the 

problem difficult to solve. 

 

3.1 Strict Volume Constraint 

 

The non-declining requirement is added to ensure that timber flow is even or 

smooth. For this reason volume requirements are generally modeled as linear constraints 

that impose an overall non-declining pattern but do not enforce the non-declining 

requirement between periods. These volume constraints require that the volume of timber 

harvested in a period is within a  deviation of the volume harvested in the previous 

period: 
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( ) ( ), 1 , 1 , , , 1 , 11 1S t S t S t S t S t S t

S S S

v x v x v x− − − −− ∆ ≤ ≤ + ∆� � �
 

(6)  

 

Note that these constraints are strict in the sense that the allowed  deviation is 

fixed, so any violation would be infeasible.  If we add these strict volume constraints to 

the Cluster Packing Problem we get the following formulation:  

 

CPP2-V (Cluster Packing Problem 2 - Volume) 

 

Maximize�
tS

tStS xc
,

,,

         
(7) 

subject to 

 

1
)(

, ≤�
ΚΛ∈S

tSx  for each maximal clique K in graph  (8) 

  G(V,E) and for each period t  
 

�
∈

≤
SutS

tSx
  ,

, 1  for each cell u     (9) 

( ) , 1 , 1 , ,1 0S t S t S t S t
S S

v x v x− −− ∆ − ≤� �   for each period t>1     (10) 

( ), , , 1 , 1  1 0S t S t S t S t
S S

v x v x− −− + ∆ ≤� �   for each period t>1     (11) 

{ }, 0,1S tx ∈  for each cluster S  and for each   (12) 

  
period t 

 

This problem can be solved reasonably well for a very small number of periods 

(Goycoolea et al 2004), but it is much harder to solve when many periods are considered. 

For example, Goycoolea et al. (2004) obtained an optimal solution for a single period 

problem with 1363 cells in 5 seconds. When the problem extended to 3 periods, 4 hours 

was needed to achieve a gap of 2.3%. 

. 
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3.2 Computational Results for Model With Strict Volume 

Constraints 

Computational experiments were run using a forest in Northern California called El 

Dorado. Treatment periods were established at 10 years per period. Details for this region 

are given in Goycoolea et al. (2004), but the number of basic cells is 1363, the number of 

feasible clusters is 21,412, the number of maximal cliques is 2105, and the total number 

of constraints and variables for 15 periods (without volume constraints) are 32,938 and 

321,180 respectively. Area and volume information are known and a fixed profit per 

volume of timber was assumed. Multiple-period instances of 12 and 15 periods with 

annual discount rates of 3%, 6% and 8% were evaluated, assuming a green-up duration of 

one planning period. The runs were made on a Pentium 4 2 Ghz PC with 2 Gb of RAM 

running Linux. Cplex 8.1 (Ilog, 2002) was used as the mixed integer programming (MIP) 

solver. Problem generation and additional programming was implemented using C++. 

 

Our base test consisted of trying to solve the Cluster Packing Problem without 

volume constraints and with strict volume constraints using Cplex 8.1 directly. Table 1 

gives computational results for the Cluster Packing Problem with strict volume 

constraints using =0.15 and =0.10. A time limit of 4 hours was imposed. The first two 

columns of Table 1 provide problem instance characteristics. The next two columns show 

allowable volume deviation and the number of branch-and-bound nodes processed. The 

next two columns present the time the best solution was found and the associated gap. 

The remaining columns provide solution attribute information. 
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Map / Discount 
Rate

Time 
Periods �

B&B 
Nodes

Best 
Solution 
Time [s]

GAP 
[%]

1st sol 
under 1% 
GAP [s]

1st 
Feasible 
Time [s]

1st 
Feasible 

GAP

El Dorado / 3% 12 0.15 951 - - - - -
El Dorado / 3% 15 0.15 696 - - - - -
El Dorado / 6% 12 0.15 664 - - - - -
El Dorado / 6% 15 0.15 754 - - - - -
El Dorado / 8% 12 0.15 689 - - - - -
El Dorado / 8% 15 0.15 1153 - - - - -
El Dorado / 3% 12 0.10 764 - - - - -
El Dorado / 3% 15 0.10 800 - - - - -
El Dorado / 6% 12 0.10 699 - - - - -
El Dorado / 6% 15 0.10 669 - - - - -
El Dorado / 8% 12 0.10 0 - - - - -
El Dorado / 8% 15 0.10 0 - - - - -  

Table 1 Results for the Cluster Packing Problem with strict volume constraints. 

 

Table 2 gives computational results for the Cluster Packing Problem without 

volume constraints. A time limit of 4 hours was imposed. The only difference between 

Tables 1 and 2 is the volume deviation in Table 1. In Table 2 the first two problem 

instances were able to be optimally solved using Cplex within the allotted 4 hours of 

processing. All other instances in Table 2 terminated with optimality gaps. 

 

Map / Discount 
Rate

Time 
Periods

B&B 
Nodes

Best 
Solution 
Time [s] GAP [%]

1st sol 
under 1% 
GAP [s]

1st 
Feasible 
Time [s]

1st 
Feasible 

GAP

El Dorado / 3% 12 3825 9983 Optimal 249 89 7.64
El Dorado / 3% 15 5190 10937 Optimal 308 136 7.66
El Dorado / 6% 12 3235 12841 0.28 1552 187 25.96
El Dorado / 6% 15 3373 13715 0.25 659 207 25.29
El Dorado / 8% 12 2696 7042 0.22 613 188 31.35
El Dorado / 8% 15 2372 14141 0.21 713 190 31.37  

Table 2 Results for the Cluster Packing Problem without volume constraints. 

 

Table 1 shows that Cplex was not able to find integer feasible solutions for any 

problem instance when strict volume constraints are imposed. Alternatively, when the 

strict volume constraints are removed, all 6 instances could be solved, either optimally or 

close to optimal, within the 4 hour time limit. Furthermore, the first feasible solutions 

were found in minutes and solutions with an optimality gap (GAP) of less that 1% were 

found in less that 30 minutes for all instances without volume constraints. These results 

suggest that difficulty arises when strict volume constraints are imposed. This damaging 
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effect is caused by the fractional generating influence the strict volume constraints have 

on the Cluster Packing Problem. As discussed previously, these constraints are added to 

ensure timber flow requirements. For this reason methods are needed for effectively 

dealing with these types of conditions.   

 

4 Addressing Volume Constraints 

 

The fractional generating effect of the strict volume constraints is explained by 

observing that the objective of maximizing net present value will generate optimal 

solutions to the linear relaxation at which about half of the volume constraints will be 

active. For example, if the discount rate applied to the objective function is bigger than 

the forest’s growth rate, almost all of constraints (10) will be active to prevent the 

maximization of the objective function from harvesting as much as possible in the first 

period(s). As the coefficients of volume constraints contain many unrelated coefficients, 

it is very unlikely that volume constraints will be active for any integer solution. This 

behaviour causes the optimal solution to the relaxed model to usually have many 

fractions. In branch-and-bound, where fractions are being resolved, the optimization will 

continue to generate fractional solutions just to keep the volume constraints active in 

order to maximize the objective. This behavior will make it very difficult to find integer 

solutions with a linear relaxation based branch- and-bound procedure. Furthermore, the 

fact that there are many variables in a volume restriction (twice as many as there are 

feasible clusters) makes the generation of cover inequalities (Nemhauser and Wolsey 

1988), based on the knapsack interpretation of the volume restrictions, impractical. This 

fact also makes variable branching quite ineffective for finding integer solutions, as many 

0-branches (fixing a variable to 0) are needed to obtain integer solutions. We will 

elaborate on this later in the paper. 

 

To eliminate some of the problems associated with strict volume constraints, we can 

either minimize their negative effect in branching or avoid compliance with them at 

equality. In this section we study techniques that try to accomplish these objectives.  
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4.1 Constraint Branching 

 

The biggest problem with variable branching in the case of strict constraints is that 

many 0-branches are needed to get an integer solution. The fact that 0-branches will 

always be necessary to get an integer solution comes from the active volume constraints, 

as the LP relaxation will always comply with them exactly by fractionally harvesting 

some clusters. On the other hand, the fact that many 0-branches are needed comes from 

the weakness of a 0-branch, especially when many similar variables can take positive 

values. After most of the variables have been fixed by 1-branches, there will usually still 

be some volume of timber that can be harvested in a particular period while complying 

with the strict volume constraints. If this volume slack is smaller than the volume of any 

particular cluster, the LP relaxation will comply with the volume constraints exactly by 

fractionally harvesting some cluster. A 1-branch at this point in that particular cluster will 

make the problem infeasible so the only option for resolving that fraction is to follow the 

0-branch. The problem is that there are many different clusters that can be harvested 

fractionally to use the volume slack, all of which will need to be fixed by 0-branches.  

 

One of the main advantages of constraint branching is that it generates a much 

more balanced branch-and-bound tree, and hence does not generate weak branches (Ryan 

and Foster 1981). Because of this behavior, constraint branching has frequently been used 

in cases where variable branching proved ineffective.  

 

Constraint branching for the Cluster Packing Problem is based on the fact that any 

fractional solution must have at least one basic cell that is harvested fractionally in at 

least one of three ways: the cell is harvested partially over several periods; the cell is 

harvested by multiple clusters in a particular period; or, the cell is harvested partially in 

one period and only by one cluster. By eliminating these three sources of fraction 

induction, integrality can be guaranteed. 

 

In the following sub-sections we describe three constraint branching approaches 

that eliminate each of the three possible fractions. They are referred to as Cell/Time 
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branch, Cell/Cell branch and Cell-Slack branch. The latter can actually be viewed as a 

variable branching involving a slack variable.  

4.1.1 Cell/Time Constraint Branching 

 

One way that a cell can be fractionally harvested is by being harvested partially 

over several periods. The Cell/Time constraint branch will eliminate this source of 

fractionallity by forcing a particular cell to be harvested either before or after a given 

time period. 

 

Let �
�
� ��  be a solution to the linear relaxation of any of the CPP models at a given 

node in the branch-and-bound tree. If a cell �� is being harvested partially over several 

periods, then there must be a period �� such that:  

  

 
0

0

,
0 ( )

ˆ0 1
t

S t
t S u

x
= ∈Λ

< <� �  (13) 

 

where � 	�Λ  is the set of all clusters that contain cell� . 

 

For any �� that complies with (13), a constraint branch that will eliminate this 

fraction is to force cell �� to be harvested fully or not at all before period �� . In other 

words, to force: 

 
0

0

,
0 ( )

1
t

S t
t S u

x
= ∈Λ

=� �  

in one branch and: 

 
0

0

,
0 ( )

0
t

S t
t S u

x
= ∈Λ

=� �  

in the other.  Rather than viewing the implementation of each branch as the addition of 

the extra constraint, it is much better to implement the branch by removing the set of 

variables (i.e., assigning them a zero upper bound) which violate the constraint branch.  
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That is, remove all variables harvesting cell u0  after period t0 in the first case and all 

those variables harvesting cell u0 in periods up to and including t0 in the second case. 

 

Notice that if the branching is implemented by removing variables the possibility 

of cell ��  not being harvested at all is included in both branches.  

4.1.2 Cell/Cell Constraint Branching 

 

Another way in which a cell can be fractionally harvested is by being harvested 

by multiple clusters in a particular period. The Cell/Cell constraint branch will eliminate 

this source of fractionallity by forcing two cells to be harvested either together or 

separately in a particular time period. Let �
�
� ��  be a solution to the linear relaxation of any 

of the CPP models at a given node in the branch-and-bound tree. Suppose that cell �� is 

being harvested partially in period �� by two different clusters, 
�  and �� . In other words 

� 
 �� � �∈ ∩  and 

 � � �� �

� ��� � �� � � �� �> ∧ > . Given that 
�  and ��  are two different clusters 

and that cell �� belongs to both, there must be another cell � �
 �≠ such that �
  belongs 

only to one of the clusters. Without loss of generality, suppose that �
  only belongs to 
�  

(i.e. � 
 ��
 � �∈ ). Then, a constraint branch that will eliminate this fraction is to forbid 

cells ��  and �
  from being harvested together in one branch and apart in the other. In 

other words, if � 	�Λ  is the set of all clusters that contain cell� , then the first branch 

would be to force: 

 

 
0

0 0

,
( ) ( )

0
∈Λ ∩Λ

=� S t
S u v

x
 

(14) 

and the second would be to force: 

  

 
0

0 0 0 0

,
( ( ) ( ))\( ( ) ( ))

0
∈ Λ ∪Λ Λ ∩Λ

=� S t
S u v u v

x

 

(15) 
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Again, it is better to implement these branches by fixing the corresponding 

variables to zero instead of explicitly adding the constraints. 

  

4.1.3 Cell/Slack Constraint Branching 

 

In rare occasions, with strict or elastic volume constraints, it might happen that a 

cell will be harvested partially only in one period and by only one cluster. For this reason 

we add an extra constraint branch to make sure that we can eliminate all possible 

fractions. This is called a Cell/Slack constraint branch. 

 

Let �
�
� ��  be a solution to the linear relaxation of any of the CPP models at a given 

node in the branch-and-bound tree. Suppose that cell �� is being harvested partially only 

in period ��  and only by one cluster. In other words,  

 

 
0

,
( )

ˆ0 1S t
t S u

x
∈Λ

< <� �  (16) 

 

and no Cell/Time or Cell/Cell branch can be found. 

 

In this case, the simple constraint branch forcing cell ��  to be harvested fully or 

not at all would eliminate the fraction. More specifically the constraint branch would fix: 

 

 
0

,
( )

1S t
t S u

x
∈Λ

=� �  (17) 

in one branch and: 

 
0

,
( )

0S t
t S u

x
∈Λ

=� �  (18) 

in the other. 
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Notice that this constraint branch can be seen as a variable branch over the slack 

variable of the following restriction: 

 

 
�

�
� ��


� �
� � � �

�
∈

≤�
 

(19) 

 

Because of this fact, both branches can easily be implemented by fixing the 

corresponding slack to zero in the first branch and to one in the second. 

4.2 Elastic Volume Constraints 

As mentioned in section 3.1, strict volume constraints (10) and (11) try to model 

the requirement that timber flows should be non-declining overall, but that this non-

declining requirement does not need to be strictly enforced between all adjacent periods.  

Given this reasoning, if volume constraints are violated slightly they would still 

adequately model the smooth production requirement as long as these violations are not 

too big. Given that small violations are conceptually and theoretically valid, we could use 

elastic constraints to minimize the fraction generating effect of volume constraints. 

Elastic constraints have been used successfully in problems with similar fractional 

properties (Ehrgott and Ryan 2003) and basically allow small violations to strict 

constraints while penalizing these violations in the objective function. 

 

To implement elastic volume constraints in this harvesting problem we simply add 

continuous variables , 0t tl u ≥  that allow restrictions (10) and (11) to be violated: 

 

 ( ) , 1 , 1 , ,1 S t S t S t S t t
S S

v x v x l− −− ∆ − ≤� �
 

(20)  

 ( ), , , 1 , 11S t S t S t S t t
S S

v x v x u− −− + ∆ ≤� �
 

(21)   

    

These violations are then penalized in the objective function: 
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> >

− −� �

 


� � ��
� �

� � � �
 

(22)
 

  

where penalties ≥� ���
� � are to be determined. 

 

If we replace the strict volume constraints with these elastic versions, we get the 

following Cluster Packing Problem: 

 

CPP2-EV (Cluster Packing Problem 2 – Elastic Volume) 

 

Maximize
> >

− −� � �� �
� 
 


� � � � � � ��
� � � �

� � � � � �
      

(23) 

subject to 

 

1
)(

, ≤�
ΚΛ∈S

tSx  for each maximal clique K in graph   (24) 

  G(V,E) and for each period t  
 

�
∈

≤
SutS

tSx
  ,

, 1  for each cell u    (25) 

( ) , 1 , 1 , ,1 E S t S t S t S t t
S S

v x v x l− −− ∆ − ≤� �  for each period t>1    (26) 

( ), , , 1 , 1  1S t S t E S t S t t
S S

v x v x u− −− + ∆ ≤� �   for each period t>1   (27) 

{ }, 0,1S tx ∈  for each cluster S  and for each  (28) 

  period t 
 

, 0t tl u ≥  for each period t   (29) 

 

The objective (23) of the CPP2-EV can now be interpreted as maximizing the net present 

value of the selected forest harvest schedule while minimizing volume constraint 

violations. These violations, tl  and tu , are defined by constraints (26) and (27). Notice 

that we have replaced  by E in the volume constraints to differentiate between the 

volume deviations used in strict and elastic versions of the constraints. The reason for this 
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differentiation is that we might use different deviations for target strict volume 

constraints and elastic constraints used to enforce them. We will discuss this in detail in 

section 4.2.1.  

 

It should be noted that this technique can also be directly applied to other versions 

of volume constraints. For example, if instead of strict volume constraints (6) we used the 

following strict lower/upper bound volume constraints: 

 

 , ,S t S t
S

L v x U≤ ≤�  (30) 

 
we could use the following elastic constraints: 
 
 , ,S t S t t

S

L v x l− ≤�  (31) 

 , ,S t S t t
S

v x U u− ≤�  (32) 

 
Although reformulating the problem to include elastic versions of the volume 

constraints is straightforward, some technical details must be addressed for the procedure 

to be effective.  

4.2.1 Using Elastic Constraints to Comply With Strict Volume 
Constraints 

 
The main reason for using elastic constraints instead of strict volume constraints is that 

relative consistency in flow is really what is desired. The maximum acceptable violation 

will usually not be a fixed level and will probably need to be determined by practitioners 

that use the model. This argument implies that compliance with a particular strict volume 

constraint is not usually a main goal. Being able to fine tune parameters to keep 

violations controlled is an important goal and it is not immediately clear that this can be 

done while preserving the favorable properties of elastic constraints. A way to show that 

violations can be controlled is to demonstrate that compliance with a particular strict 

volume constraint can be achieved. We will do this in our computational results.  
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If we want to assure compliance with strict volume constraints (equations (10) and (11)) 

with deviation  by using elastic constraints (equations (26) and (27)) with deviation E 

= , violations would need to be zero. This can be difficult to enforce and, as discussed in 

the section 4.2.2, will destroy most of the favorable properties of elastic volume 

constraints. For this reason the best way to comply with a particular strict volume 

constraint with deviation  is to use elastic constraints with deviation E < . In this way, 

complying with the strict volume constraints only requires that violations are kept small, 

but not necessarily equal to zero. This approach also has the advantage of penalizing 

violations before they are unacceptable, which further helps to control them.  

 

4.2.2 Penalty Value Selection and Control of Violations 

 

Selecting penalties that minimize the fractional generating effect of volume 

constraints while keeping the violations controlled may be very difficult. If big penalty 

values that force violations to be zero are selected, then solutions will be as fractional as 

they were using strict volume constraints. On the other hand, if small penalties are 

selected, violations may be unacceptably large. Ideally, we would like to start with very 

small penalties and slowly increase them to keep violations under control. To do this 

effectively the increment should be done during LP convergence to assure that optimal 

solutions to the LP relaxation will have controlled violations. Unfortunately most 

commercial branch-and-bound solver do not allow this procedure. If we cannot 

effectively adjust the penalties we are forced to use bigger initial penalties to control 

violations. Fortunately, the fact that violations tend to increase as we descend in the 

branch-and-bound tree might help us avoid the problems associated with relatively big 

penalties. If we select the smallest penalties that will cause the root LP relaxation to have 

no violations, we can expect the violations to be positive deep in the branch-and-bound 

tree, where most of the integer solutions are found. Furthermore, if these violations do 

not grow too fast we can expect that these integer solutions will have acceptable 

violations. We shall see in the computational results that violations do usually remain 

controlled; however this is not always the case.  
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4.2.3 Dynamic Adjustment of Penalties Using Cuts 

 

Most commercial branch-and-bound solvers do not allow the objective function to 

be modified during the branch-and-bound process. This prevents us from increasing the 

penalties after the LP relaxation has been solved.  

 

Even though this is the case, we still have a way of dynamically updating 

penalties. It is possible to add a cut to the problem that will have the same effect as 

increasing a penalty. To do this penalty update through cuts, we just have to modify the 

formulation slightly. 

 

Suppose that for variables , 0s≥x we have an elastic constraint of the form: 

 

 s≤v xT
 (33)  

 

and that the objective function coefficient associated with s is ��−  , where � �� >  . If we 

multiply inequality (33) by p>0 we obtain the following equivalent inequality: 

 

     ( )p p s⋅ ≤ ⋅v xT

         
(34) 

 

Replacing the right hand product � �⋅  of (34) with a new variable 0λ ≥ we get 

the following inequality: 

 

 ( )p λ⋅ ≤v xT  (35)  

 

If the objective coefficient associated with λ  is equal to -1 then, in particular, 

inequality (35) with �� �=  will have the same effect over variables ����  as the original 

inequality (33). 
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If we include variableλ with objective coefficient -1 in the original formulation, 

we can achieve the effect of an elastic constraint (33) with penalty level �  by simply 

adding the cut (35). In particular, if we want to increase the penalty to a new level >� �  

we only need to add the following cut: 

 

 ( )q λ⋅ ≤v xT  (36)  

 

which will dominate the previous constraint when 0≥v xT . This does not restrict 

generality, because when 0<v xT  any version of the elastic constraints will be inactive, 

i.e. the associated violation variable λ  will be zero. Using this procedure we can modify 

the elastic model as follows: 

 

CPP2-EVC (Cluster Packing Problem 2 – Elastic Volume with Cut update) 

 

Maximize
> >

− −� � �� �
� 
 


� � � � � �
� � � �

� � � �
      

(37) 

subject to 

 

1
)(

, ≤�
ΚΛ∈S

tSx  for each maximal clique K in (38) 

  graph G(V,E), for each period t 
    

�
∈

≤
SutS

tSx
  ,

, 1  for each cell u    (39) 

, 1 , 1 , ,(1 )E S t S t S t S t tt
S S

p v x v x l− −
� �− ∆ − ≤� �
� �

� �   for each period t>1   (40) 

, , , 1 , 1 (1 )t S t S t E S t S t t
S S

p v x v x u− −
� �− + ∆ ≤� �
� �
� �   for each period t>1   (41) 

{ }, 0,1S tx ∈  for each cluster S  and for  (42) 

  
each period t 
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, 0t tl u ≥  for each period t   (43) 

 

With this new formulation, increasing the penalties can be achieved by simply 

adding new restrictions. For example, if we want to increase the penalty associated with 

��  from
�

�  to a new level >� �� �  , the following restriction would be added as a cut: 

 

 ( ) , 1 , 1 , ,1 E S t S t S t S t tt
S S

q v x v x l− −
� �− ∆ − ≤� �
� �

� �  (44) 

 

The procedure to increase penalties associated with violations tu  is analogous. 

4.2.3.1 Fathoming Invalid Nodes 

 

If we are using elastic constraints to solve a target strict volume constraint model, 

fathoming by infeasibility has to be treated with care. The problem is that a branch-and-

bound node can be feasible for the elastic model and not for the target strict volume 

constraint model. These nodes can cause trouble with the penalty updating procedure. 

 

It is possible that at some nodes in the branch-and-bound tree increasing the 

penalties will not be enough to control violations. This will happen when branching 

decisions that generate that node cause it to not contain any solution with controlled 

violations. In this case the node is actually infeasible for the target strict volume 

constraint, and hence can be fathomed. 

 

To detect this case we can check the feasibility explicitly or try to detect when 

penalty increments do not affect the violations. A simpler way to fathom the nodes is to 

use the optimal objective value of the LP relaxation at that node. Given that the violations 

for this node will always be positive, increasing the penalties will eventually drive the 

objective function below the best incumbent solution, causing the branch-and-bound 

solver to automatically fathom the node. Of course, for this to work we have to assume 
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that a feasible solution has already been found. In case it does not exist, we can simply 

postpone the fathoming until a feasible solution is found.  

  

4.2.4 Integer Allocation Heuristic 

 

Integer Allocation or Dive-and-Fix heuristics (Wolsey, 1998) are generally very 

effective when applied to set packing problems, like the Cluster Packing Problem without 

volume constraints. Unfortunately, when strict volume constraints are added, this kind of 

heuristic loses most of its effectiveness for the same reason that variable branching does. 

 

The heuristic implemented is based on solutions to the LP relaxation of the elastic 

constraint model and simply fixes fractional variables to integer values. This process is 

repeated until all variables are integer. The heuristic also tries to keep the violations 

controlled, and corrects any significant violations. 

 

As mentioned previously, depending on the relationship between the discount rate 

applied and the growth rate of the forest, either the first or last period will be the most 

profitable. The integer allocation heuristic starts fixing variables in this most profitable 

period first and then continues the variable fixing in adjacent periods. The heuristic only 

proceeds to the next periods if all fractions in the current period have been resolved. 

Further, before proceeding to the next period, the heuristic will conservatively try to 

correct most of the unacceptable volume constraint violations. Finally, when all variables 

have been fixed, the heuristic will aggressively correct unacceptable violations until there 

are no violations left. Figure 4 contains the pseudo code describing the heuristic in detail.  

In Figure 4 we assume that we are using elastic volume constraints model with E 

deviation to solve the strict volume constraint with  deviation and that E <  as 

described in section 4.2.1. 

 

Figure 4 Integer Allocation Heuristic 
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The performance of the heuristic depends on the elastic volume constraints. The 

fractional generating effect of the strict volume constraints will likely require many 0-

branches in a branch-and-bound procedure to generate an integer solution. As integer 

allocation heuristics are essentially the same as depth first search in the branch-and bound 

tree, a heuristic of this kind will usually need to fix many small fractional variables to 0 

when strict volume constraints are used. When elastic constraints are used instead, only a 

few variables will likely need to be fixed to 0. 

 

5 Computational Results 

 

In this section we present computational results to illustrate how elastic constraints 

can improve performance and how violations can be kept controlled. As discussed in 

section 4.2.1, to show that violations can be kept controlled we will show that the 

stronger requirement of always complying with a particular strict volume constraint can 

be achieved. This approach will also allow us to compare solutions for models with strict 

volume constraints and models with elastic volume constraint as all solutions will be 

feasible for a target strict volume constraint model. This target model will be the strict 

volume constraint model CPP2-V with a deviations  equal to 0.10 and 0.15 for the 

volume constraints.  When using the elastic constraint model CPP2-EV only solutions 

that comply with the corresponding strict volume constraint model with  deviation will 

be accepted. Further, when calculating optimality gaps (GAP) the objective function of 

CPP2-V will be used, i.e. contributions by the penalties will not be considered, and the 

gaps will be calculated with respect to the optimal value of the LP relaxation of CPP2-V 

with the corresponding  deviation. Elastic volume constraint deviations of E <  will be 

used. More specifically, elastic volume constraint deviations  will always be set to E = -

0.005 where  is the deviation of the corresponding target strict volume constraint model.  

Only results for the techniques and combinations of techniques which provided the 

best performance improvements for the Cluster Packing Problem are presented. In 

particular, it should be noted that although the dynamic adjustment of penalties is 
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theoretically straight forward, penalty updating cuts produce numerical instabilities that 

caused them to perform poorly.  

5.1 Strict Model Using Constraint Branching 

 

Table 3 gives computational results for the Cluster Packing Problem with strict 

volume constraints using =0.15 and =0.10 using constraint branching. A time limit of 

4 hours was imposed. The first two columns of Table 3 define the problem instance 

characteristics. Columns three and four show allowable volume deviation and the number 

of branch-and-bound nodes processed. The next two columns, present the time the best 

solution was found and the associated gap. Column seven shows the time it took to find a 

feasible solution under 1% gap and the last two columns show the time required for 

finding the first integer solution along with the optimality gap.  

 

Map / Discount 
Rate

Time 
Periods �

B&B 
Nodes

Best 
Solution 
Time [s]

GAP 
[%]

1st sol 
under 1% 
GAP [s]

1st 
Feasible 
Time [s]

1st 
Feasible 

GAP

El Dorado / 3% 12 0.15 3491 10706 5.61 - 10706 5.61
El Dorado / 3% 15 0.15 2664 13850 14.19 - 13850 14.19
El Dorado / 6% 12 0.15 3307 10951 5.68 - 10951 5.68
El Dorado / 6% 15 0.15 2674 13965 14.96 - 13946 14.96
El Dorado / 8% 12 0.15 3468 10412 2.73 - 10412 2.73
El Dorado / 8% 15 0.15 2625 13751 11.34 - 13751 11.34
El Dorado / 3% 12 0.10 3654 10434 4.72 - 10434 4.72
El Dorado / 3% 15 0.10 3055 12547 10.73 - 12547 10.73
El Dorado / 6% 12 0.10 3969 10137 7.17 - 10133 7.17
El Dorado / 6% 15 0.10 2971 12411 7.51 - 12395 7.57
El Dorado / 8% 12 0.10 3627 10465 5.46 - 10465 5.46
El Dorado / 8% 15 0.10 2812 13329 12.00 - 13329 12.00  

Table 3 Results for the Cluster Packing Problem with strict volume constraints (constraint 

branching). 

Constraint branching allows us to find either one or two very similar feasible 

solutions for each instance in the allotted time. The reason for this is that constraint 

branching can more effectively deal with the fractional properties of the strict volume 

constraints. Although constraint branching helps in finding feasible solutions for all 

instances, the quality of these solutions is not particularly good. This can probably be 
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improved by a better selection between constraint branching alternatives or by a better 

selection of the next branch-and-bound node that is processed. 

5.2 Elastic Model With Fixed Penalties 

 

Table 4 presents computational results for the elastic volume constraint model. Penalties 

for the elastic constraints were simply set to a fixed value giving no violations in the root 

LP relaxation. The only way in which we guaranteed compliance with the corresponding 

strict volume constraint was by only accepting valid solutions (solutions that are feasible 

for the corresponding target CPP2-V model). Constraint branching was not used in this 

section. A time limit of 4 hours was imposed. The format of Table 4 is the same as Table 

3.  

 

Map / Discount 
Rate

Time 
Periods �

B&B 
Nodes

Best 
Solution 
Time [s]

GAP 
[%]

1st sol 
under 1% 
GAP [s]

1st 
Feasible 
Time [s]

1st 
Feasible 

GAP

El Dorado / 3% 12 0.15 942 2424 0.56 2424 2424 0.56
El Dorado / 3% 15 0.15 515 13683 0.97 13683 13683 0.97
El Dorado / 6% 12 0.15 604 6018 1.03 - 1075 32.09
El Dorado / 6% 15 0.15 507 - - - - -
El Dorado / 8% 12 0.15 634 2912 1.09 - 1128 1.14
El Dorado / 8% 15 0.15 800 - - - - -
El Dorado / 3% 12 0.10 687 3924 0.70 3924 3924 0.70
El Dorado / 3% 15 0.10 687 13621 1.13 - 13621 1.13
El Dorado / 6% 12 0.10 525 4683 1.03 - 4683 1.03
El Dorado / 6% 15 0.10 346 9988 1.37 - 9988 1.37
El Dorado / 8% 12 0.10 490 5699 1.32 - 5699 1.32
El Dorado / 8% 15 0.10 920 6239 1.51 - 2532 1.70  

Table 4 Results for the Cluster Packing Problem with elastic volume constraints. 

Using elastic constraints directly, it is possible to find good valid feasible 

solutions for almost all instances. Still, in two cases it is not possible to find valid feasible 

solutions at all.   

 

Solutions presented in Table 4 are for valid solutions that comply with the strict 

volume constraints, but many more feasible solutions were found. These were not 

considered as they were only feasible to the elastic volume constraint model and not for 

the target strict volume constraint model. In particular, for both instances in which no 
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valid solutions were found, more than a hundred integer feasible solutions were found. 

Taking this into account, elastic volume constraints make it possible to find integer 

feasible solutions for all instances, but we cannot guarantee that all feasible solutions will 

be valid. By using elastic constraints we have traded the difficulty of finding integer 

feasible solutions for the difficulty of complying with the strict volume constraints. The 

fact that complying with the strict volume constraints was a problem only for two 

instances suggests this is a much smaller complication. Furthermore, the fact that for 

these two instances several invalid, but integer feasible, solutions were found suggests 

that we might be able to solve all instances if we can control the violations during the 

branch-and-bound process. On the other hand, out of these hundreds of integer feasible 

but invalid solutions, many almost complied with the target strict volume constraint 

model, so likely would be acceptable in planning situations. 

 

5.3 Elastic Model Using the Integer Allocation Heuristic and 

Constraint Branching 

 

Table 5 presents computational results for the elastic constraint model using the 

integer allocation heuristic and constraint branching. Penalties for the elastic constraints 

were simply set to a fixed value that resulted in no violations in the root LP relaxation 

and the heuristic was executed at every node in the branch-and-bound tree. 

Variable branching has the same effect as one step of the integer allocation heuristic, 

so using both of them together would be rather redundant. Further, constraint branching 

creates changes in the feasible space that are different to the variable fixings of the 

integer allocation heuristic, and hence diversify its greedy nature. For this reason we  

decided to use the constraint branching developed in section 4.1 as the branching method 

in this section. 

The heuristic always generates valid solutions (solutions that are feasible for the 

corresponding target CPP2-V model), so no extra validation was needed. A time limit of 

4 hours was imposed. 
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Map / Discount 
Rate

Time 
Periods �

B&B 
Nodes

Best 
Solution 
Time [s]

GAP 
[%]

1st sol 
under 1% 
GAP [s]

1st 
Feasible 
Time [s]

1st 
Feasible 

GAP

El Dorado / 3% 12 0.15 12 2095 0.72 2095 2095 0.72
El Dorado / 3% 15 0.15 9 8998 0.82 7491 4443 1.25
El Dorado / 6% 12 0.15 12 12945 1.07 - 2454 1.34
El Dorado / 6% 15 0.15 9 5808 1.22 - 4206 1.58
El Dorado / 8% 12 0.15 17 4567 1.21 - 3255 1.27
El Dorado / 8% 15 0.15 10 4003 1.64 - 4003 1.64
El Dorado / 3% 12 0.10 11 2576 0.79 2576 2576 0.79
El Dorado / 3% 15 0.10 11 9622 1.26 - 3938 2.13
El Dorado / 6% 12 0.10 15 4252 1.26 - 3251 1.58
El Dorado / 6% 15 0.10 11 4193 1.55 - 4193 1.55
El Dorado / 8% 12 0.10 12 4494 1.43 - 3276 2.06
El Dorado / 8% 15 0.10 9 8193 1.82 - 3488 1.93  

Table 5 Results for the Cluster Packing Problem with elastic volume constraints (integer allocation 

heuristic). 

It is clear in Table 5 that computational performance is better than using Cplex 

directly for the elastic constraint model. We can now find good valid solutions for all 

instances, even for the ones where Cplex applied directly to the elastic volume constraint 

model was not previously successful. These results are very encouraging when compared 

with our base case in which Cplex applied directly to the strict volume constraint model 

was not able to find any feasible solutions. Also note that, although the improvement is 

not large, the constraint branching does diversify the heuristic enough to get better 

solutions after the initial feasible solution.  

 

6 Conclusions 

 

In this paper we have studied the effect of strict volume constraints in forest harvest 

scheduling using the Cluster Packing Problem. We have seen that the fractional 

generating effect of these strict volume constraints make the Cluster Packing Problem 

very difficult to solve. Several techniques have been introduced to minimize the negative 

effect of strict volume constraints: elastic versions of the volume constraints and 

constraint branching. By replacing the strict volume constraints with elastic versions, it is 

possible to find good feasible solutions for almost all problems, with some instances 

requiring comparatively less processing time. Although this is already an improvement 
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compared to not finding any feasible solution in 4 hours, there still might be some 

problems associated with using elastic constraints directly. The main issue is how to 

make sure that strict constraint violations are controlled. One way of accomplishing this 

is by dynamically adjusting penalties associated with violations every time the violations 

grow too much. We have presented a way of implementing the dynamic adjustment of 

penalties that will work in most commercial branch-and-bound solvers. This 

implementation is theoretically straightforward, but some technical details still require 

further study. The main advantage of this approach is that implementation is not 

dependent on the specific model being solved. Hence, it can be used with any model that 

contains fractional generating constraints that could be slightly violated. Constraint 

branching allowed us to find feasible solutions for all test instances, but the solution 

quality was not very good. On the other hand, an interesting characteristic of constraint 

branching is that validity is maintained when volume constraints are modified, if new 

constraints are added or if the green up is increased. Furthermore, constraint branching is 

able to generate feasible solutions even when strict volume constraints are used, so it may 

be useful if we do not want to worry about controlling violations. The strategy that 

proved most effective for finding integer feasible solutions with controlled violations was 

the addition of an integer allocation heuristic to the branch-and-bound process. A simple 

variable fixing heuristic that managed violations found feasible solutions within 2% of 

optimality for all instances tested, with some instances within 1%. This comes a long way 

from not being able to find any feasible solutions when the strict model is solved directly 

and of course we can expect to get even better results if we are not forced do comply with 

a target strict volume constraint model. 

 

Further research is needed for the dynamic adjustment of penalties to be 

computationally effective in all cases. In addition, it seems reasonable that the quality of 

solutions obtained by constraint branching could also be improved. 
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Figure 1 Forest region partitioned into basic cells. 
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Figure 2 Graph associated with forest region given in Figure 1. 
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Figure 3 Three compatible clusters 
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Variables: 

,ˆS tx : value of variable ,S tx  in the optimal solution to the last linear           

relaxation solve    

,ˆ:t S t
S

V x
∈Λ

=� : which is actualized every time ,ˆS tx  is actualized after an LP  

          solve or by variable fixing 
 begin 

Solve the linear relaxation of the elastic constraint model with E 
deviation and get ,ˆS tx  

for ˆ 1t =  to T  do 
 Variable Fixing 
 while ˆ,

ˆ, (0,1)S tS x∃ ∈ Λ ∈  do 

  M:= ˆ,
ˆmax S tS
x

∈Λ
 

  if M>0.5 then 
   For all S such that ˆ,

ˆ
S tx M ε≥ −  fix ˆ,S tx  to 1 

  else if  M<0.5 then 
   Pick one S  such that ˆ,

ˆ
S tx M= fix ˆ,S tx  to 1 

  else 
Iteratively fix to 0 variables with ˆ,

ˆ 0.5S tx <    

as long as ˆ ˆ1(1 ) t tV V−− ∆ ≤  and ˆ ˆ 1(1 ) t tV V ++ ∆ ≥  

  Resolve the linear relaxation and get ,ˆS tx   

   end while 
   Conservative Volume Corrections 
   if  ˆ ˆ1 (1 )t tV V+ < − ∆  or ˆ ˆ1(1 ) t tV V−+ ∆ <  then 

Iteratively fix variables ˆ,
ˆ

S tx  to 0 until ˆ ˆ1 (1 )t tV V+ ≥ − ∆  and 

ˆ ˆ1(1 ) t tV V−+ ∆ ≥  as long as the fixing does not make 

ˆ ˆ1(1 ) t tV V−− ∆ >  or ˆ ˆ 1(1 ) t tV V ++ ∆ <  

   end if 
   For all S∈Λ  fix ˆ,S tx  at its current value 

  end for 
  Final Aggressive Volume Corrections 
  while ˆ ˆ ˆ ˆ1 1

ˆ (1 ) (1 )t t t tt V V or V V+ −∃ < − ∆ + ∆ <  do 

   Iteratively fix variables ˆ,
ˆ

S tx  to 0 until ˆ ˆ1 (1 )t tV V+ ≥ − ∆  and  

ˆ ˆ1(1 ) t tV V−+ ∆ ≥  
  end while 
   

Figure 4 Integer Allocation Heuristic 

 


