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AREA-BASED HARVEST SCHEDULING PROBLEMS
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INTRODUCTION

Mathematical modeling has been frequently used for
harvest schedule planning. This has allowed several regu-
lations and requirements to be incorporated in the planning
process. These regulations are generally incorporated as
restrictions to a Linear Integer Programming model and
often make the problem more difficult to solve. 

Regulations limiting spatial disturbances have led to
constraints, typically known as maximum area restrictions,
limiting the size of clear cut areas (Thompson et al.1973,
Murray 1999). Several models using these constraints have
been proposed over the years, but the model known as the
Area Restriction Model (ARM) has been shown to deliver
the most profitable harvest schedules (Murray and Weintraub
2002). Unfortunately the ARM has proven to be very diffi-
cult to solve computationally. Although several heuristics
to solve this model have been proposed (Hokans 1983,
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Lockwood and Moore 1993, Barrett et al. 1998, Clark et al.
1999, Richards and Gunn 2000, Boston and Bettinger 2001),
exact methods have only recently been able to solve small
and medium problem instances. One such method is that
developed in Goycoolea et al. (2003), focusing on a strength-
ened formulation known as the Cluster Packing Problem.
They were able to solve modest sized problems using a
commercial integer programming solver for single period
application instances. While solvability for multiple plan-
ning periods is possible, adding volume production restric-
tions creates significant complications for problem solution.

In this work we present an alternative way of stru- 
cturing volume restrictions in order to restore most of the
favorable properties of the single period Cluster Packing
Problem.  Application results are presented which demon-
strate that near optimal solutions can be obtained quickly
using the developed modeling approach.
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HARVEST SCHEDULING WITH 
SPATIAL CONSTRAINTS

The harvest scheduling problem consists of selecting
which areas of a forest will be harvested in different periods.
Different types of requirements can be added to the gener-
ated harvested schedules. One environmental constraint
that is generally enforced limits the contiguous area that
can be harvested in any period. These constraints are gen-
erally known as maximum area restrictions (Thompson et
al. 1973, Murray 1999). 

We will assume that the forest is divided into sectors
whose area is smaller than the maximum area that can be
harvested contiguously and we will solve the harvest sched-
uling model known as Area Restriction Model (ARM). We
will also assume a green-up time of one period. Finally we
assume that each sector of the forest can only be harvested
once during the planning horizon and that some kind of
smoothing constraints over the volume of timber produced
are desirable. Our base ARM formulation will be the Cluster
Packing Problem developed in Goycoolea et. al. (2003).

CLUSTER PACKING HARVEST
SCHEDULING MODEL

The Cluster Packing Problem uses geographic informa-
tion system (GIS) based data to model the harvest schedul-
ing model. This data partitions the forest into small units
for which area, volume and harvest profit information is
available. The area of each unit is generally smaller that the
maximum clear cut size specified for the Maximum Area
Restrictions, so some groups of adjacent units may be har-
vested together. 

We will define the set of Feasible Clusters (Λ) as all
groups of adjacent units whose combined area does not
exceed the maximum clear cut size. All of these clusters
will be generated a priori by enumeration. This can be done
efficiently as the maximum area restrictions generally limit
the number of units in a cluster to 4 or 5 (Goycoolea et al.
2003). We will say that two clusters are incompatible if they
share a unit or if they are adjacent. Forbidding the simulta-
neous harvesting of incompatible clusters will assure com-
pliance with the maximum clear cut restrictions. This
requirement is modeled by Goycoolea et al. (2003) using
maximal cliques to impose incompatabilities. These restric-
tions give the formulation integrality properties that make
it relatively easy to solve. Almost all instances of the single
period problem are solved to optimality in the root Branch
& Bound (B&B) node by CPLEX 8.1. 

The multi-period version of the model allows harvest-
ing over several periods, but only allows each cell to be
harvested once in the planning horizon. This model is pre-
sented in formulation 1. In this formulation variable xS,t is
1 if cluster S is harvested in period t and 0 otherwise. The
objective is to maximize the net present value of the profit
associated with the harvest schedule. The first set of con-
straints is a strengthened version of the constraints that
force compliance with the area restrictions by forbidding
two incompatible clusters from being harvested in the same
period. Finally the last two sets of constraints forbid units
from being harvested more that once in the planning hori-
zon and force the variables to be binary, respectively.

This formulation preserves most of the good properties
of the single period formulation and is easily solvable, as
the computational results will show. 

The multi-period model can be complemented with dif-
ferent kinds of restrictions on the volume harvested in each
period. The most common restrictions include the produc-
tion smoothing volume constraints and upper/lower bounds
over the volume production.

One typical restriction on the harvested volume is to
require total volume in a period to be within ±∆% of previ-
ous periods. This can be achieved by adding the following
restrictions to the multi-period model for each time period 
t >1:

∆ ∆(1 – 
100

)∑vS,t–1xS,t–1 ≤ ∑vS,t xS,t ≤ (1 + 
100

)∑vS,t–1xS,t–1
S S S

where vS,t the volume harvested if cluster S is selected to be
harvested in period t.
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Formulation 1—Multi-period period cluster packing problem. 
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Other restrictions that are frequently applied are mini-
mum and maximum harvested volumes. This can be
achieved by adding the following restrictions to the multi-
period model for each time period t:

L ≤ ∑vS,t xS,t ≤ U
S

where U and L are the maximum and minimum volume 
allowed to be harvested in each period.

For both types of restrictions it is common that one of
the inequalities is active, and hence acts as a fractional
generating cut on the LP polytope. This fractional generat-
ing effect causes solutions to the LP relaxation to have
many fractions. Furthermore, these fractions are difficult to
eliminate by variable fixing. As the computational results
will show, this makes the problem very difficult to solve.

ELASTIC VOLUME CONSTRAINT MODEL

One technique that can be used to minimize the frac-
tional generating effects of volume constraints is to use an
elastic version of the constraints. An elastic constraint
allows a violation of the restriction, but penalizes this vio-
lation in the objective function. In this manner the volume
constraints will no longer act as strong cuts, and hence
,will generate almost no new fractional extreme points to
the LP polytope. This will restore practically all the inte-
grality properties of the multi-period model without vol-
ume constraints.  Elastic constraints have been successfully
used in similar problems (see Ehrgott and Ryan 2003).

It is very difficult to find penalties that will lead to inte-
ger solutions that do not violate volume restrictions. For
this reason it is a good idea to start penalizing before the
restrictions are really violated. So, for example, if we wanted
to solve the problem with ±15% production smoothing
volume constraints5, we could add a ±14% production
smoothing volume constraint6, allow violations to these
constraints, and penalize their violation in the objective
function. In this way, if we just keep the violations con-
trolled (below 1%), we will be complying with our target
15% volume constraint.

In the following section we will describe the elastic
constraints for the production smoothing volume constraints.
The corresponding relaxations for the upper/lower bound
volume constraints are analogous.

If we add elastic volume constraints to the multi-period
model, we obtain the following formulation:

SHAPE  \* MERGEFORMAT
Formulation 2. Multi-period period cluster packing prob-
lem with elastic volume constraints

INTEGER ALLOCATION

Although penalties can be easily adjusted to control
volume constraint violations for the root B&B node, it
might be very difficult to do this and get integer solutions.
General purpose LP based heuristics tend to have problems
generating solutions with small volume constraint viola-
tions. For this reason a custom integer allocation heuristic
was developed. The heuristic fixes variables and re-solves
the linear relaxation of the model while trying to account
for any violations that are too big. 

The elastic volume constraints are crucial for the per-
formance of the heuristic. The fractional generating effect
of the volume constraints makes it very difficult to develop
an LP based heuristic for the strict volume constraint model.
Fixing some fractional variables to integrality in this model
generally ends in the appearance of an alternate set of frac-
tional variables, making the integer allocation process very
slow. This does not happen with the elastic constraint model
as the fractional generating effect of the strict volume con-
straints is not present. On the other hand, if the penalties
are big enough, the violations will probably be reasonably
controlled. Some corrections of the violations are still nec-
essary, but they are very few due to the penalties.

5 i.e. with  ∆=15% in the original model
6 i.e. with  ∆E=14% in the elastic model

Formulation 2—Multi-period period cluster packing problem with elastic
volume constraints



COMPUTATIONAL RESULTS

Computational tests were run over two instances: a real
forest in Northern California called El Dorado and a ran-
domly generated square grid with 144 units. Table 1 shows
a summary of the problem characteristics.

Multi-period applications containing 12 and 15 periods
where tested for both instances. The runs were made on a
Pentium 4 2.0Ghz PC with 2.0 Gb of RAM running Linux.
CPLEX 8.1 was used as the MIP solver and problem gen-
eration and heuristics were programmed in C++.

Multi-period model without volume constraints
Table 2 shows computational results for the multi-period

model without volume constraints. A time limit of 4 hours
was imposed, but for all instances it was possible to declare
optimality long before that time limit. The first two columns
show the instances characteristics. Columns 3 and 4 show
the time and B&B nodes needed to declare optimality.
Finally the last three columns show information regarding
integer feasible solutions found before declaring optimality.
Column 5 shows when the first solution with an LP gap7 of
under 1% was found and columns 6 and 7 show the time
the first feasible solution was found and its LP gap. 

The integrality properties of this model help CPLEX
8.1 find feasible solutions very quickly and also declare
optimality in little time. 

Production smoothing volume constraint model
Table 3 shows the results for the production smoothing

volume constraint model as solved directly by CPLEX 8.1.
All tests for this table were run for 8 hours. The format of
table 3 is similar to that of table 2. Additionally column 3
shows the level used for the volume constraints. As opti-
mality could not be declared, columns 5 and 6 show the
time the best feasible solution was found and its LP gap.
Finally column 4 shows the total number of B&B nodes
processed in the allotted time. A dash (-) indicates that a
feasible solution with the required characteristics was not
found. 

It can be seen that CPLEX has a lot of trouble finding
integer solutions. Although eventually it does find good
solutions for El Dorado, computational effort is significant.
No integer solutions are found for the grid instances. 

Production smoothing elastic volume constraint method
Table 4 shows the results for the elastic constraint

method. This method is essentially B&B over the multiple
penalties elastic constraint model with constraint branching
plus the integer allocation heuristic. 
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7 gap=(obj_best_lp – obj_ip)/obj_ip*100, where obj_best_lp is the greatest linear relaxation optimal value among the B&B nodes to be processed.
obj_ip is the objective value of the particular integer feasible solution.

Table 1—Characteristic features.

Total # of restrictions Total # of variables for
# of for 15 period model 15 period model

# of Feasible without volume without volume
Instance cells clusters constraints constraints

El Dorado 1363 21412 32938 321180
rand 12 by 12 t15 144 2056 1959 30840

Table 2—Multi-period model without volume constraints results

IP 1st sol 1st 1st

Time time B&B under 1% feasible feasible
Map periods [s] nodes time [s] time [s] gap [%]

El Dorado 15 12 720 30 448 173 6.58
El Dorado 15 15 147 0 101 77 3.02
ran 12 by 12 12 501 789 24 14 33.61
ran 12 by 12 15 524 732 32 19 38.32
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The format of table 4 is the same as table 3 with the
exception of the meaning of ∆ and how the gaps are calcu-
lated. ∆ corresponds to the strict volume constraint we are
trying to comply with. Again we use ∆E=(∆-1)% and allow
only 1% violation to solve the exact volume constraint with
level ∆%. LP gaps are calculated with respect to the LP
solution of the corresponding exact ∆% volume constraint
model, so they can be compared to the gaps reported in
table 3.

Penalties for each constraint are set independently so
that the root LP has less than 1% violation, but they are
then kept fixed in the B&B tree. A time limit of only 4
hours, instead of 8, was used for these tests. 

Although with this method fewer B&B nodes are pro-
cessed, we can get good solutions quickly for El Dorado

and we can also get integer solutions for the grid instances
quickly. However, their quality is not good. It should be
noted though that the grids where purposefully generated
so that it is very difficult to get integer solutions that com-
ply with the volume constraints tightly. Thus, large gaps
between the IP and LP solutions for the grid cases are
expected. If we compare these results with table 3, we see
that the elastic constraint method is much faster than the
strict volume constraint model. Integer feasible solutions
with similar objective values are found up to 150 times
faster8 with this method.

CONCLUSIONS

By eliminating the fractional generating effect of the
strict volume constraints, it is much easier to obtain integer
feasible solutions. For this reason the elastic constraint
method allows good solutions to be obtained much earlier

Table 3—Volume Constraint Model Results

Best 1st sol 1st 1st

Time B&B solution Gap under 1% feasible feasible
Map periods ∆ nodes time [s] [%] gap [s] time [s] gap

El Dorado 15 12 10% 2133 18606 1.47 — 18606 1.47
El Dorado 15 15 10% 1575 18315 0.83 10839 10839 1.00
ran 12 by 12 12 10% 388 — — — — —
ran 12 by 12 15 10% 388 — — — — —
El Dorado 15 12 15% 2087 11211 0.50 10719 2323 1.51
El Dorado 15 15 15% 2067 20733 0.59 20274 20274 0.77
ran 12 by 12 12 15% 634 — — — — —
ran 12 by 12 15 15% 342 — — — — —

Table 4—Elastic Volume Constraint Method Results

Best 1st sol 1st 1st

Time B&B solution Gap under 1% feasible feasible
Map periods ∆ nodes time [s] [%] gap [s] time [s] gap

El Dorado 15 12 10% 23 5555 0.41 1706 1706 0.43
El Dorado 15 15 10% 13 12541 0.44 4307 4307 0.45
ran 12 by 12 12 10% 75 5059 3.43 — 663 8.70
ran 12 by 12 15 10% 25 13856 4.52 — 614 14.42
El Dorado 15 12 15% 18 12216 0.30 1160 1160 0.33
El Dorado 15 15 15% 13 9916 0.29 2387 2387 0.34
ran 12 by 12 12 15% 199 9684 2.29 — 312 5.07
ran 12 by 12 15 15% 20 9124 4.97 — 504 7.99

8 CPLEX was run for 24 hours for the strict volume constraint model for the ran12by12 instance with 15 periods. Only one solution with a 9% gap
was found after 22 hours. 



than when solving the strict volume constraint model
directly.

It should be noted also that restrictions on harvested
volume are generally guides instead of strict requirements,
so small violations would likely be acceptable. It is clear
that allowing these small violations (for example by allow-
ing violations slightly over 1% of the 14% volume con-
straint) will give superior results. This provides yet another
reason for not using strict volume constraints. 

During the computational analysis, it was found that the
integer allocation heuristic worked better when the initial
LP had little or no violations of the target volume constraints.
Because of this, it might be useful to adjust penalties each
time a volume restriction is violated in the B&B tree. This
would also guarantee that integer solutions found in leafs
of the B&B tree would comply with the target volume 
constraints. We are currently implementing this dynamic
adjustment of penalties to be added to the B&B based inte-
ger allocation method.
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