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1 Introduction 
 
Mathematical modeling has been frequently used for harvest schedule planning. This 
has allowed several regulations and requirement to be incorporated in the planning 
process. These regulations are generally incorporated as restrictions to a Linear Integer 
Programming model and often make the problem more difficult to solve.  
 
Regulations limiting spatial disturbances have lead to restrictions typically know as 
maximum area restrictions, which limit the size of clear cut areas (Thompson et al.1973, 
Murray 1999). Several models using these restrictions have been proposed over the 
years, but the model known as the Area Restriction Model (ARM) has been shown to 
deliver the most profitable harvest schedules (Murray and Weintraub 2002). 
Unfortunately the ARM has proven to be very difficult to solve computationally. 
Although several heuristics to solve this model have been proposed (Hokans 1983, 
Lockwood and Moore 1993, Barrett et al. 1998, Clark et al. 1999, Richards and Gunn 
2000, Boston and Bettinger 2001), exact methods have only recently been able to solve 
small and medium sized instances of this problem. One such method is that developed 
in Goycoolea et. al. (2003), who focused on a strengthened formulation know as the 
Cluster Packing Problem. They were able to solve modest sized problems using a 
commercial integer programming solver for a single period instance. 
 
The model’s solvability properties are generally preserved for multi-period instances, 
but by only adding volume production restrictions the problem becomes very difficult to 
solve. 
 
In this work we present an alternative way of structuring volume restrictions in order to 
restore most of the favorable properties of the single period Cluster Packing Problem.  
Application results are presented which demonstrate that near optimal solutions can be 
obtained quickly using the developed modeling approach. 
 
2 Cluster Packing Harvest Scheduling Model 
 
2.1 Single and Multi-Period Model without volume constraints 
 
Forest information is generally obtained from GIS generated maps. These maps 
partition a forest region into small units for which area, volume and harvest profit 
information is available. 
 
The area of each unit is generally smaller that the maximum clear cut size specified for 
the Maximum Area Restrictions, so some groups of adjacent units may be harvested 
together.  
 
We will define the set of Feasible Clusters (Λ) as all groups of adjacent units whose 
combined area doesn’t exceed the maximum clear cut size. For this definition we will 
generally consider two units to be adjacent if they share an edge in the forest map.  
 



We will say that two clusters are incompatible is they share a unit or if they are adjacent. 
Forbidding the simultaneous harvesting of incompatible clusters will assure compliance 
with the maximum clear cut restrictions. For this definition we will generally consider 
two clusters to be adjacent if they share an edge or a vertex in the forest map.  
 
With these definitions, to comply with the Maximum Area Restrictions we only need to 
forbid two incompatible clusters to be harvested at the same time. This restriction is 
strengthened further in Goycoolea et. al. (2003) by replacing it by restrictions based on 
maximal cliques in the forest map. These restrictions give the formulation integrality 
properties that make it very easy to solve. Almost all instances of the single period 
problem are solved to optimality in the root Branch & Bound (B&B) node by CPLEX 
8.1.  
 
The multi-period version of the model allows harvesting over several periods, but only 
allows each unit to be harvested once in the planning horizon.  
 
The following formulation shows the multi-period model with the strengthened 
incompatible cluster restrictions.  
 

Indices 
  s = Feasible Clusters: 1,…,|Λ|. 

 t = Time Periods: 1,…,T. 
 
Index Sets 
 Λ(K) = Clusters that intersect clique K. 
 Λ(u) = Clusters that intersect unit u. 
 
Parameters 
 cst = net present value of profit obtained if cluster s is harvested in period t. 
 
Decision variables 
 xst = 1 if cluster S is harvested in period t. 
 
Model CPPT 
 1) Minimise ∑Τt=1 ∑|

Λ|
s=1 cst xst.. 

 2) ∑s in Λ(K)  xst ≤ 1 for t =1,…,T. 
 3) ∑Τt=1 ∑s in Λ(u)  xst ≤ 1. 
 4) xst in {0,1}. 
 
Explanation 
 1) Objective is to maximize net present value of profit 
 2) Cannot harvest two incompatible clusters in the same period. Modelled with               
           clique constraints . 
 3) Each unit u may only be harvested once. 
 4) Variables xst  are binary.   

 
This formulation preserves most of the good properties of the single period formulation 
and is easily solvable, as the computational results will show.  



 
2.2 Volume Restrictions 
 
The multi-period model can be complemented with different kinds of restrictions over 
the volume harvested in each period. 
 
One typical restriction over the harvested volume is to ask that the volume harvested in 
a period is within ±∆% of the volume harvested in the previous period. This can be 
achieved by adding the following restrictions to the multi-period model for each time 
period t>1: 
 

(1-(∆/100)) ∑|
Λ|

s=1 vs(t-1) xs(t-1)≤ ∑|
Λ|

s=1 vst xst ≤ (1+(∆/100)) ∑|
Λ|

s=1 vs(t-1) xs(t-1) 
 
Where vst the volume harvested if cluster s is selected to be harvested in period t. 
 
If we add these restrictions to model  CPPT we obtain the strict volume constraint 
model  CPPT-V. 
 
It is usual that one of the inequalities is active and hence acts as a fractional generating 
cut on the LP polytope. As the computational results will show this makes the problem 
very difficult to solve. 
 
3 Elastic Volume Constraint Method 
 
One technique that can be used to eliminate most of the fractional generating effects of 
the volume constraints is to use an elastic version of the constraints. The elastic 
constraint allows a violation of the restriction, but penalizes this violation in the 
objective function. In this manner the volume constraints will no longer act as cuts and 
hence will not generate new fractional extreme points to the LP polytope. This will 
restore practically all the integrality properties of the multi-period model without 
volume constraints.  Elastic constraints have been successfully used in similar problem 
like in Ehrgott and Ryan (2003). 
 
It is very difficult to find penalties that will lead to integer solutions that don’t violate 
the volume restrictions. For this reason it is a good idea to start penalizing before the 
restrictions are really violated. So, for example, if we wanted to solve the problem with 
±15% non-decreasing volume constraints (i.e. with  ∆=15% in the original model), we 
could add a ±14% non-decreasing volume constraint (i.e. with  ∆E=14% in the elastic 
models), allow violations to these ±14% constraints and penalize the violation in the 
objective function. In this way, if we just keep the violations controlled (bellow 1%) 
instead of non-existing we will be complying with our target 15% volume constraint. 
 
3.1 Elastic Volume Constraint Model 
 
In the following section we will describe the elastic type volume constraints. 
 

Indices 
  s = Feasible Clusters: 1,…,|Λ|. 

 t = Time Periods: 1,…,T. 



 
Index Sets 
 Λ(K) = Clusters that intersect clique K. 
 Λ(u) = Clusters that intersect unit u. 
 
Parameters 
 cst = net present value of profit obtained if cluster s is harvested in period t 

vst = the volume harvested if cluster s is selected to be harvested in period t. 
lt, ut = penalties for violating the volume restrictions. 

 
Decision variables 
 xst = 1 if cluster S is harvested in period t. 
 lt    = lower volume constraint violations. 
 ut   = upper volume constraint violations. 
Model CPPT-EV 
 1) Minimise ∑Τt=1 ∑|

Λ|
s=1 cst xst -∑Τt=2 ptlt -∑Τt=2 qtut. 

 2) ∑s in Λ(K)  xst ≤ 1 for t =1,…,T. 
 3) ∑Τt=1 ∑s in Λ(u)  xst ≤ 1. 

 4) (1-(∆E/100)) ∑|
Λ|

s=1 vs(t-1) xs(t-1)-∑|
Λ|

s=1 vst xst ≤ lt for t =2,…,T. 
 5) ∑|

Λ|
s=1 vst xst -(1+(∆E/100)) ∑|

Λ|
s=1 vs(t-1) xs(t-1) ≤ ut for t =2,…,T. 

 6) xst in {0,1}. 
 7)  lt, ut≥0. 
 
Explanation 
 1) Objective is to maximize net present value of profit minus the penalties for  

     violating volume constraints 
 2) Cannot harvest two incompatible clusters in the same period. Modelled with               
           clique constraints .   
 3) Each unit u may only be harvested once. 
  4) Variables  lt  will measure the lower volume constraint violations 

5) Variables  ut  will measure the upper volume constraint violations 
 6) Variables xst  are binary. 
 7) Variables lt, ut  are positive. 
 

3.2 Integer Allocation 
 
Although penalties can be easily adjusted to control volume constraint violations for the 
root B&B node it might be very difficult to do this for integer solutions. General 
purpose LP based heuristics tend to have problems generating solutions with small 
volume constraint violations. For this reason a custom integer allocation heuristic was 
developed.  
 
The heuristic simply fixes variables and re-solves the linear relaxation of the model 
while trying to correct any violations that are too big.  
 
The elastic volume constraints are crucial for the performance of the heuristic. The 
fractional generating effect of the volume constraints makes it very difficult to develop 
an LP based heuristic for the strict volume constraint model. Fixing some fractional 
variables to integrality in this model generally ends in the appearance of an alternate set 
of fractional variables, making the integer allocation process very slow. This doesn’t 
happen with the elastic constraint model as the fractional generating effect of the strict 



volume constraints is not present in this model. On the other hand, if the penalties are 
big enough the violations will probably be reasonably controlled. Some corrections of 
the violations are still necessary, but thanks to the penalties they are very few.  
 
4 Computational Results 
 
Computational tests were run over two instances. A real forest in Northern California 
called El dorado and a randomly generated square grid with 12 units in each side. Table 
1 shows a summary of the instances characteristics. 
 

Instance 
# of 
Cells

# of 
Feasible 
Clusters

# of Strangthened 
Adjacency 
Restrictions

Total # of restrictions 
for 15 period model 
withouth volume 
constraints

Total # of variables 
for 15 period model 
withouth volume 
constraints

Eldorado 1363 21412 2105 32938 321180
rand12by12t15 144 2056 121 1959 30840  

Table 1. Instance Characteristics 
 
Multi-period models for 12 and 15 periods where tested for both instances and the runs 
were made in a Pentium 4 2.0Ghz PC with 2.0 Gb of RAM with Linux. CPLEX 8.1 was 
used as a MIP solver and problem generation and heuristics were programmed in C++. 
 
4.1 Multi-period model without volume constraints 
 

Map
Time 

Periods

IP 
Time 

[s]

B&B 
Nodes

GAP 
[% ]

1st sol 
under 1%  
Time [s]

1st 
Feasible 
Time [s]

1st 
Feasible 

GAP [% ]

Eldorado15 12 720 30 Optimal 448 173 6.58
Eldorado15 15 147 0 Optimal 101 77 3.02
ran12by12 12 501 789 Optimal 24 14 33.61
ran12by12 15 524 732 Optimal 32 19 38.32
 

Table 2. Multi-period model without volume constraints results 
 
The integrality properties of this model help CPLEX 8.1 find solutions early and also to 
declare optimality very quickly.  
 
4.2 Non-decreasing volume constraint model 
 
Table 3 shows the results for the non-decreasing volume constraint model as solved 
directly by CPLEX 8.1. All tests for this table were run for 8 hours.  
 



Map
Time 

Periods ∆
LP 

Solution IP Time
B&B 
Nodes

Best 
Solution 
Time [s]

GAP 
[% ]

1st sol 
under 1%  

GAP [s]

1st 
Feasible 
Time [s]

1st 
Feasible 

GAP

Eldorado15 12 10% 6292354 28800 2133 18606 1.47 - 18606 1.47
Eldorado15 15 10% 6812231 28800 1575 18315 0.83 10839 10839 1.00
ran12by12 12 10% 17959328 28800 388 - - - - -
ran12by12 15 10% 23071854 28800 394 - - - - -
Eldorado15 12 15% 6413097 28800 2087 11211 0.50 10719 2323 1.51
Eldorado15 15 15% 6931024 28800 2067 20733 0.59 20274 20274 0.77
ran12by12 12 15% 18970483 28800 634 - - - - -
ran12by12 15 15% 25012357 28800 342 - - - - -  

Table 3 Volume Constraint Model Results 
 

It can bee seen that CPLEX has a lot of trouble finding integer solutions. Although 
eventually it does find good solutions for Eldorado it does take plenty of time, 
furthermore, no integer solutions are found for the grid.  
 
4.3 Non-decreasing elastic volume constraint method 
 
Table 4 shows the results for the elastic constraint based method. This method is 
essentially B&B over the multiple penalties elastic constraint model with constraint 
branching plus the integer allocation heuristic ran on each B&B node. Penalties for each 
constraint are set independently so that the root LP has less than 1% violation (again we 
use ∆E=14% and allow only 1% of violation to solve the exact volume constraint with 
∆=15%), but they are then kept fixed along the B&B tree. The GAP’s are calculated 
with respect to the LP solution of the corresponding exact ∆% volume constraint model, 
so they can be compared to the GAP’s in table 3. Solutions for ∆=10% using ∆E=9% are 
also presented.  
 
 

Map
Time 
Periods ∆ IP Time

B&B 
Nodes

Best 
Solution 
Time [s]

GAP 
[% ]

1st sol 
under 1%  

GAP [s]

1st 
Feasible 
Time [s]

1st 
Feasible 

GAP
Eldorado15 12 0.10 14400 23 5555 0.41 1706 1706 0.43
Eldorado15 15 0.10 14400 13 12541 0.44 4307 4307 0.45
ran12by12 12 0.10 14400 75 5059 3.43 - 663 8.70
ran12by12 15 0.10 14400 25 13856 4.52 - 614 14.42
Eldorado15 12 0.15 14400 18 12216 0.30 1160 1160 0.33
Eldorado15 15 0.15 14400 13 9916 0.29 2387 2387 0.34
ran12by12 12 0.15 14400 199 9684 2.29 - 312 5.07
ran12by12 15 0.15 14400 20 9124 4.97 - 504 7.99  

Table 4 Elastic Volume Constraint Method Results 
 
With these methods we can get good solutions fast for Eldorado and we can also get 
integer solutions for the grid quickly, although their quality is not that good. It should be 
noted though, that the grids where purposefully generated so that it was very difficult to 
get integer solutions that comply with the volume constraints tightly, so the are very 
strong suspicions that there is a big GAP between the IP and LP solutions to the grids.  



If we compare these results with Table 3 we can see that the elastic constraint method is 
much faster than CPLEX over the strict volume constraint model. Integer feasible 
solutions with similar objective values are found up to 150 times faster with this method 
(CPLEX was run for 24 hours over the strict volume constraint model for the ran12by12 
instance with 15 periods. Only one solution with 9% GAP was found after 22 hours). 
 
5 Conclusions 
 
By eliminating the fractional generating effect of the strict volume constraints it is much 
easier to obtain integer feasible solutions from solutions to the lineal relaxation of the 
model. For this reason the elastic constraint method allows good solutions to be 
obtained much earlier than when solving the strict volume constraint model directly.  
 
It should be noted tough that restrictions over the harvested volume are generally guides 
instead of strict requirements, so small violations would be acceptable. It is clear that 
allowing these small violations (for example by allowing violations slightly over 1% of 
the 14% volume constraint in the computational results) will give even better results. 
This leads to a double reason for not using strict volume constraints, namely that they 
make the problem very difficult and that it is not necessary for them to be strict.  
 
During the computational results it was found that the integer allocation heuristic 
worked better when the initial LP solved had little or no violations of the target volume 
constraints. Because of this, it might be useful to adjust penalties each time a volume 
restriction is violated along the B&B tree. This would also guaranty that integer 
solutions found in leafs of the B&B tree would comply with the target volume 
constraints. We are currently implementing this dynamic adjustment of penalties to be 
added to the B&B based integer allocation method.   
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