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Abstract

We consider the problem of fitting a continuous piecewise linear
function to a finite set of data points, modeled as a mathematical
program with convex objective. We review some fitting problems that
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to impose convexity on the best-fit function.
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1 Introduction

The problem of fitting a function of some prescribed form to a finite set of
data points is fundamental and has been studied for hundreds of years. In
one form or another, fitting has applications in areas as varied as statistics,
econometrics, forecasting, computer graphics and electrical engineering.

Within optimization, fitting problems are cast as convex norm mini-
mization models whose properties are well known (Boyd and Vandenberghe
(2004); see also Bot and Lorenz (2011); Williams (2007)). For example, the
classical least-squares linear fitting problem is an unconstrained quadratic
program with a closed-form solution obtained by setting the gradient of
the objective equal to zero. Similarly, more complex piecewise linear and
piecewise polynomial fitting models can be formulated as constrained convex
programs.

Continuous piecewise linear functions and their discontinuous extensions
are also extensively studied within discrete optimization and mixed-integer

programming (MIP), e.g. de Farias et al. (2008); Vielma et al. (2008, 2010);
Wilson (1998). However, most related work in this field concentrates on
the modeling of a given piecewise linear function and of the subsequent
incorporation of the function into a MIP or more general mathematical
program. Nonetheless, recent work in various areas of discrete optimization
motivates the issue of efficiently fitting a continuous piecewise linear function
to a set of points.

In approximate dynamic programming (ADP) (Bertsekas and Tsitsiklis,
1996; Novoa and Storer, 2009; Papadaki and Powell, 2002; Powell, 2007),
solutions to a dynamic or periodic model are generated by approximating
the value function of a state variable, and then optimizing single-period
subproblems with respect to this approximation. When the state space is
continuous, an approximate value function can be constructed by sequen-
tially sampling from the state space, observing the samples’ values, fitting
a function to the observations, and then repeating the process with the up-
dated value function. In Toriello et al. (2010), for example, a separable,
piecewise linear concave value function is constructed using an algorithm of
this type.

In mixed-integer nonlinear programming (MINLP), recent algorithmic
and software developments combine branch-and-bound frameworks common
in MIP with nonlinear and global optimization methodology, e.g. Abhishek
et al. (2010); Belotti et al. (2009); Bonami et al. (2008); Geißler et al. (2011);
Leyffer et al. (2008). The algorithms construct and refine polyhedral ap-
proximations of nonlinear, possibly non-convex constraints. Efficient fitting
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models could be used inside this framework to expedite the construction of
the approximations.

Our main contribution is the introduction of mixed-binary models that
solve continuous piecewise linear fitting problems under various conditions.
We also devote attention to the additional constraints required to make the
best-fit function convex. The continuous models we present encompass sim-
pler cases where the function domain’s partition is predetermined, and are
extensions of known models (Boyd and Vandenberghe, 2004). Conversely,
the mixed-binary models we introduce allow for more general fitting prob-
lems where the domain partition may be partially or wholly determined
along with the best-fit function. We believe the use of integer programming
for this type of problem is new, and the only similar work we are aware
of is Bertsimas and Shioda (2007), where the authors apply MIP modeling
techniques to classification problems.

The paper is organized as follows. Section 2 introduces our general fitting
problem, reviews related work and covers continuous models. Section 3 in-
troduces mixed-binary models for more complex fitting problems, where the
additional difficulty comes from adding variability to the regions that define
the best-fit function. Section 4 has computational examples that highlight
the benefit of considering variable regions. Section 5 gives conclusions and
indicates some directions for further research.

We follow standard MIP notation and terminology as much as possi-
ble; see, e.g. Nemhauser and Wolsey (1999). Our disjunctive programming
notation follows Balas (1998).

2 Problem Definition

Suppose we are given a finite set of data points (xi, yi) ∈ Rn × R, i =
1, . . . ,m ∈ N. We are interested in the problem

min �w − y�q (2.1a)

s.t. wi = f(xi), ∀ i = 1, . . . ,m (2.1b)

f ∈ F , (2.1c)

where F defines a set of continuous piecewise linear functions over a common
domain that contains all points xi, and �·�q is the �q-norm in Rm. In other
words, we would like the function f∗ ∈ F that best fits the data set according
to the measure �·�q.

For our purposes, a piecewise linear function is a continuous function f
with domain

�
P∈P P , where P is finite, each P ∈ P is a full-dimensional
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polytope, the interiors of any two P,Q ∈ P are disjoint, and f is affine when
restricted to any P ∈ P. Although not strictly necessary, we also make
the common sense assumption that for distinct P,Q ∈ P, P ∩ Q is a face
(possibly ∅) of both P and Q. Finally, when fitting convex functions we
assume that

�
P∈P P is convex.

Although fitting models have been studied for general values of q (Gonin
and Money, 1989), we focus on the cases q ∈ {1, 2}. For q < ∞, (2.1) is
equivalent to

min
m�

i=1

|f(xi)− yi|q (2.2a)

s.t. f ∈ F . (2.2b)

In the sequel, we treat (2.2) as our generic model. However, the extension
to the �∞-norm case is achieved by simply replacing the summation with a
maximum over all absolute differences.

From a fitting perspective, the models we study are either parametric
or non-parametric. Parametric models construct a function by estimating
the parameters (i.e. slopes and intercepts) that define it. Non-parametric

models define function values at a predetermined set of points. The func-
tion’s value for a general point is then calculated as a linear interpolation
or extrapolation of the function values for a subset of the predetermined
set. In MIP modeling terms, parametric fitting problems result in functions
easily modeled in amultiple choice model, while non-parametric fitting prob-
lems yield functions that fit in a convex combination or disagreggated convex

combination model (cf. Vielma et al. (2010)). In either case, however, if the
function is convex or concave, it may be possible to model it in a purely
linear model.

2.1 Literature Review

Fitting problems of various kinds arise in many different areas, and even
when restricting to the piecewise linear case, we cannot hope to provide
an exhaustive list of references. We instead give examples of papers that
study (2.1) and related problems from different points of view. A thorough
treatment of convex optimization models used in fitting, approximation and
interpolation is Chapter 6 of Boyd and Vandenberghe (2004). A recent text
on statistical techniques used for problems related to (2.1) is Ruppert et al.
(2003).

The one-dimensional case (n = 1) of (2.1) has been extensively stud-
ied, e.g. in econometrics and forecasting. For instance, Strikholm (2006)
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attempts to determine the number of breaks in a one-dimensional piecewise
linear function using statistical inference methods. The computer graphics
and visualization community has concentrated on the two-dimensional case.
Pottmann et al. (2000) address the issue of choosing an optimal partition of
the domain of a quadratic function so the resulting implied piecewise linear
interpolation’s error is below an accepted tolerance. For general n, an im-
portant case of (2.1) is when the union of polyhedra P is not predetermined
and must be chosen as part of the fitting problem. Some variants of this
problem are studied as extensions of classification and clustering problems,
e.g. Bertsimas and Shioda (2007); Lau et al. (1999); Pardalos and Kundak-
cioglu (2009). Ferrari-Trecate et al. (2001) use neural network methodology
for a problem of this kind, where the best-fit piecewise linear function is
allowed to be discontinuous. Holmes and Mallick (1999) enforce continuity
and allow |P| to vary by assuming a probability distribution exists for all
unknowns (including |P|,) and updating the distribution based on observa-
tions; this approach is known as Bayesian regression. Magnani and Boyd
(2009) introduce the convex piecewise linear fitting problem with undeter-
mined P that we study in Section 3.2, and use a Gauss-Newton heuristic
related to the k-means clustering algorithm. Bertsimas and Shioda (2007)
use integer programming models for classification and discontinuous piece-
wise linear fitting. This paper is the most closely related to our work.

2.2 Known Continuous Models

We first consider the case when F is the set of piecewise linear functions
defined over a predetermined union of polytopes P. Let V (P ) be the set of
vertices of P ∈ P and let V(P) =

�
P∈P V (P ). Also, for each v ∈ V(P) let

Pv be the set of polytopes that contain v, and for each i let Pi ∈ P be a
polytope that contains xi. See Figure 1 for a two-dimensional example.

Since we explicitly consider each polytope P ∈ P, practical fitting prob-
lems must restrict themselves to a fairly low dimension n, especially because
|P| tends to depend exponentially on n.

In a parametric model, any f ∈ F can be given by

f(x) = cPx+ dP , for x ∈ P , (2.3)

where (cP , dP ) ∈ Rn+1, ∀ P ∈ P , cPx denotes the inner product between
cP , x ∈ Rn, and the requirement that f is continuous implies

cPx+ dP = cQx+ dQ, ∀ x ∈ P ∩Q. (2.4)
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Figure 1: Domain example with n = 2. In this example, V (P2) =
{v1, v3, v4}, Pv2 = {P1, P3} and Pi = P4.

Then (2.2) becomes

min
m�

i=1

|cPixi + dPi − yi|q (2.5a)

s.t. cP v + dP = cQv + dQ, ∀ P,Q ∈ Pv, ∀ v ∈ V(P) (2.5b)

cP ∈ Rn, dP ∈ R, ∀ P ∈ P. (2.5c)

Note that constraints (2.5b) enforce the continuity equation (2.4) by requir-
ing that f(x) be continuous at every vertex v ∈ V(P).

To restrict F to convex functions, we make use of the following result.

Proposition 2.1. (Carnicer and Floater, 1996, Proposition 2.4) Any f ∈ F
is convex if and only if its restriction to any two polytopes from P that share

a facet is convex.

LetW (P ) be the set of facets of P that are also facets of another polytope
in P, and letW(P) =

�
P∈P W (P ). For any facet ω ∈ W(P), let Pω, Qω ∈ P

be the unique pair of polytopes that satisfies Pω ∩Qω = ω. Choose rω ∈ ω
and δω ∈ Rn \ {0} to satisfy rω + δω ∈ Pω \ ω and rω − δω ∈ Qω \ ω. To
restrict problem (2.5) to convex functions, we add the constraints

1

2
(cPω(rω + δω) + dPω + cQω(rω − δω) + dQω)

≥ cPωrω + dPω , ∀ ω ∈ W(P).
(2.6)
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v0

v2

v3 = v1 + 2v2 − 2v0

v4 = 3v1 + v2 − 3v0

v1

x = v1 + v2 − v0

Figure 2: Non-parametric example in two dimensions with V +(P ) =
{v0, v1, v2}. Even though P has five vertices, only three are necessary to ex-
press any point as an affine combination. For this example, λP,v1

x = λP,v2
x = 1

and λP,v0
x = −1.

Observe that rω is the midpoint of rω + δω and rω − δω, so constraint (2.6)
simply requires the midpoint convexity of f along the segment [rω−δω, rω+
δω], implying convexity because the defining functions are affine.

For the non-parametric case, let V +(P ) for each P ∈ P be a set of n+1
affinely independent vertices of P . For any x ∈ P , let λP,v

x , v ∈ V +(P ) be
the set of barycentric coordinates (Rockafellar, 1970) of x with respect to
V +(P ); that is, the unique set of affine multipliers that expresses x as an
affine combination of the elements of V +(P ). (Figure 2 shows an example
for n = 2.) Then any f ∈ F can be expressed as

f(x) =
�

v∈V +(P )

λP,v
x fv, for x ∈ P , (2.7)

where fv = f(v), ∀ v ∈ V(P).
For each xi, define λPi,v

i , v ∈ V +(Pi) analogously to λP,v
x . The model

then becomes

min
m�

i=1

����
�

v∈V +(Pi)

λPi,v
i fv − yi

����
q

(2.8a)

s.t. fv =
�

u∈V +(P )

λP,u
v fu, ∀ P ∈ Pv, ∀ v ∈ V(P) (2.8b)

fv ∈ R, ∀ v ∈ V(P). (2.8c)
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Constraints (2.8b) are the non-parametric analogues of constraints (2.5b)
from the previous model. They are necessary because function values within
each P are expressed as affine combinations of the function values from
V +(P ), and vertex function values must match from one polytope to each
adjacent one. However, if P is a triangulation or its higher-dimensional
generalization, then V +(P ) = V (P ), ∀ P ∈ P . In this case, constraints
(2.8b) are implicitly satisfied, which means they can be removed and (2.8)
goes back to a classical unconstrained linear fitting problem.

To enforce convexity of the best-fit function, we again use Proposition
2.1. For every ω ∈ W(P), let λPω ,v

ω+ , λPω ,v
ω , ∀ v ∈ V +(Pω) and λQω ,v

ω− , ∀ v ∈
V +(Qω) respectively define the sets of affine multipliers for rω + δω, rω and
rω − δω. The convexity enforcing constraints are

1

2

� �

v∈V +(Pω)

λPω ,v
ω+ fv +

�

v∈V +(Qω)

λQω ,v
ω− fv

�

≥
�

v∈V +(Pω)

λPω ,v
ω fv, ∀ ω ∈ W(P).

(2.9)

As in the parametric case, these constraints simply enforce midpoint con-
vexity along the segment between the points rω ± δω.

Note that even though both the parametric and non-parametric models
have equally many decision variables and constraints, the non-parametric
model requires substantially more pre-processing, because the affine multi-
pliers λ must be calculated for every vertex v ∈ V(P) and every xi. For
both models, the number of decision variables is Θ(n|P|), and the number
of constraints is Θ(|V(P)|maxv|Pv|).

3 Mixed-Binary Models for Fitting over Variable
Regions

3.1 Adding Variability to the Regions in Two Dimensions

We next generalize Section 2.2’s non-parametric model to include some vari-
ability in P. We concentrate on the two-dimensional case, which is already
of significant interest, although the model may in theory be extended to any
dimension. A similar but more general problem was studied by Pottmann
et al. (2000) to approximate two-dimensional quadratic functions.

Following our previously introduced notation, let (xi, yi) ∈ R2×R, ∀ i =
1, . . . ,m, and assume in addition that yi ∈ [0, U ], ∀ i. This assumption
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can be made without loss of generality by adding an appropriate positive
constant to every yi. Let 0 < b1j < · · · < bpj for p ∈ N, j = 1, 2 with

bpj > xij , ∀ i, j be a partition of the function domain into p2 rectangles.
(The case when the number of breakpoints varies by dimension is a simple
extension.)

Let R = [bk1−1
1 , bk11 ] × [bk2−1

2 , bk22 ] be any rectangle in the grid, and let
v0, v1, v2 and v3 be its four vertices (see Figure 3.) R may be triangulated

in one of two ways: If we choose to divide R along segment v1v2, we obtain
triangles v0v1v2 and v1v2v3, whereas if we choose segment v0v3, we obtain
triangles v0v1v3 and v0v2v3. Instead of fixing the triangulation beforehand
(as we would do in Section 2.2), our next model adds the choice of two
possible triangulations for each rectangle. The partition P is then one of
the 2p

2
possible triangulations of the domain.

v0 v1

v3v2

x

Figure 3: Two possible triangulations of rectangle R.

Let x ∈ R and assume x lies both in v0v1v2 and in v0v1v3. It may
therefore be expressed as a convex combination of the vertices of either
triangle. Let λ0,v

x , v ∈ {v0, . . . , v3} be the convex multipliers for x with
respect to v0v1v2 (with λ0,v3

x = 0,) and define λ1,v
x analogously with respect

to v0v1v3. Letting fv = f(v), we have the natural disjunction

f(x) = λ0,v0
x fv0+λ0,v1

x fv1+λ0,v2
x fv2 ∨ f(x) = λ1,v0

x fv0+λ1,v1
x fv1+λ1,v3

x fv3 ,

expressed more generically as

f(x) =
�

v∈{v0,...,v3}

λ0,v
x fv ∨ f(x) =

�

v∈{v0,...,v3}

λ1,v
x fv. (3.1)

Similarly, for every xi ∈ R, let λ0,v
i , ∀ v ∈ {v0, . . . , v3} be the convex

multipliers of xi when we triangulate R along v1v2, and define λ1,v
i similarly

for the triangulation along v0v3. Letting fi = f(xi), we have the aggregate
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disjunction
�
fi =

�

v∈{v0,...,v3}

λ0,v
i fv ∨ fi =

�

v∈{v0,...,v3}

λ1,v
i fv

�
, ∀ xi ∈ R, (3.2)

where the fi and fv’s are variables and the λ’s are constants. Unfortunately,
a disjunction of this type between two affine subspaces cannot be modeled
with standard MIP disjunction modeling techniques unless we can bound the
variables (Balas, 1998; Jeroslow and Lowe, 1984). Therefore, we make the
additional assumption that fv ∈ [0, U ], for every vertex v = (bk11 , bk22 ) in the
grid. In principle, this assumption can be made without loss of generality,
although care must be taken in choosing the bounds (that is, choosing the
positive constant to add to the yi’s and then choosing the subsequent upper
bound U > 0.) Note that even if yi ≥ 0, ∀ i, it is quite possible that the
optimal value of some fv could be negative. Similarly, it is possible for the
optimal value of some fv to be greater than maxi{yi}.

Let R be the set of rectangles defined by the grid breakpoints b. For
each R ∈ R, let V (R) be the four vertices that define it, and let V(R) =�

R∈R V (R). For each v ∈ V(R), let Rv ⊆ R be the set of rectangles that
contain v. Finally, for each i let Ri be a rectangle that contains xi. Then
(2.2) is given by

min
m�

i=1

|fi − yi|q (3.3a)

s.t. fi =
�

v∈V (Ri)

(λ0,v
i f0,Ri

v + λ1,v
i f1,Ri

v ), ∀ i = 1, . . . ,m (3.3b)

f0,R
v ≤ U(1− zR), ∀ v ∈ V (R), ∀ R ∈ R (3.3c)

f1,R
v ≤ UzR, ∀ v ∈ V (R), ∀ R ∈ R (3.3d)

f0,R
v + f1,R

v = f0,S
v + f1,S

v , ∀ R,S ∈ Rv, ∀ v ∈ V(R) (3.3e)

zR ∈ {0, 1}, ∀ R ∈ R (3.3f)

f0,R
v , f1,R

v ∈ [0, U ], ∀ R ∈ Rv, ∀ v ∈ V(R) (3.3g)

fi ∈ [0, U ], ∀ i = 1, . . . ,m. (3.3h)

In this model, the binary variable zR represents the triangulation choice
for rectangle R, and the continuous variable fk,R

v , k = 0, 1 represents the
value f(v) under triangulation k in rectangle R. The variable upper bound

constraints (3.3c) and (3.3d) allow exactly one value of fk,R
v per rectangle

to be positive, and the constraints (3.3e) make sure values of f(v) match
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e

A

B

C

Figure 4: Enforcing convexity across shared edges. The midpoint convexity
constraint for points A, B and C concerns the egde e.

from one rectangle to each intersecting one. Constraints (3.3b) along with
variable upper bounds (3.3c) and (3.3d) establish disjunction (3.2).

To enforce convexity in this model, we use a generalization of constraints
(2.9) and exploit the grid’s added structure. We must consider two classes
of constraints. The first concerns the edges of the grid R. Let E(R) be
the set of edges shared by two rectangles from R, and for each e ∈ E(R)
let Re, Se ∈ R be the unique pair of rectangles that satisfy Re ∩ Se = e.
Choose re ∈ e and δe ∈ R2 \ {0} so that re + δe ∈ Re lies in the intersection
of the two triangles in Re that contain e, and re − δe ∈ Se satisfies the
analogous condition in Se. As an example, in Figure 4 we have B = re,
A = re+ δe, and C = re− δe. Extending the previous section’s notation, let
λk,Re,v
e , ∀ v ∈ V (Re), k = 0, 1 be the set of convex multipliers for re in Re

under triangulation k, and define λk,Re,v
e+ and λk,Se,v

e− analogously for re± δe.
The constraints are then

1

2

� �

v∈V (Re)

(λ0,Re,v
e+ f0,Re

v +λ1,Re,v
e+ f1,Re

v )+
�

v∈V (Se)

(λ0,Se,v
e− f0,Se

v +λ1,Se,v
e− f1,Se

v )

�

≥
�

v∈V (Re)

(λ0,Re,v
e f0,Re

v + λ1,Re,v
e f1,Re

v ), ∀ e ∈ E(R). (3.4)

The second type of convexity enforcing constraint concerns each individ-
ual rectangle R ∈ R, and in this case convexity can be enforced directly on
the fv variables, without multipliers. Referring again to Figure 3, a trian-
gulation along v1v2 means that convexity is enforced if fv0 +fv3 ≥ fv1 +fv2 ,
since the function value of the rectangle’s center would be the average
of fv1 and fv2 . Similarly, the opposite triangulation yields the constraint
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fv1 + fv2 ≥ fv0 + fv3 (see Figure 5.) Generalizing to (3.3), we get

f0,R
vR0

+ f0,R
vR3

≥ f0,R
vR1

+ f0,R
vR2

f1,R
vR0

+ f1,R
vR3

≤ f1,R
vR1

+ f1,R
vR2

, ∀ R ∈ R,
(3.5)

where we use the notation vR0 , v
R
1 , v

R
2 , v

R
3 to identify the four vertices of

rectangle R according to Figure 3.

Figure 5: Enforcing convexity under two different triangulations. In the left-
hand side triangulation, the sum of the top-right and bottom-left function
values must be at least the sum of the top-left and bottom-right function
values. The converse holds in the right-hand side triangulation.

Proposition 3.1. Constraints (3.4) and (3.5) restrict the feasible region of

(3.3) to convex functions.

Proof. Constraints (3.4) enforce midpoint convexity under any of the four
triangulation possibilities of Re and Se. Note that λ0,Re,v

e = λ1,Re,v
e , ∀ v ∈

V (Re), because re only has positive convex multipliers for e’s two endpoints,
and these multipliers are equal under either triangulation.

For (3.5), only one of the two constraints applies to every R, but the
variable upper bounds (3.3c) and (3.3d) force the inactive triangulation’s
variables to zero, thus satisfying that constraint trivially. �

Because we have fixed n = 2, the model (3.3) has Θ(|R|) = Θ(p2)
continuous variables, as many binary variables, and Θ(m+ |R|) = Θ(m+p2)
constraints. However, if we were to generalize the model for any n, the
constants that multiply all of these quantities would grow exponentially
with n.
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3.1.1 A Swapping Heuristic

Algorithm 1 presents a swapping local search heuristic to find a solution to
(3.3). The heuristic is based on a simple swapping idea used, for example, in
calculating Delaunay triangulations or convex interpolants (cf. Carnicer and
Floater (1996).) In the heuristic, a swap of R ∈ R simply means replacing

Algorithm 1 Swapping heuristic for (3.3)

randomly choose a triangulation of R
solve (2.8) over this fixed triangulation
while swapping some R ∈ R and re-solving improves the objective in
(2.8) do
update the triangulation by swapping R

end while

return the last triangulation and the corresponding solution to (2.8)

the existing triangulation of R by the opposite one. The triangulation swap
changes the convex multipliers that interpolate each data point xi ∈ R (i.e.
the λi values in (3.3),) and thus also changes the objective (3.3a). Since
the swaps always improve the objective value, the heuristic is guaranteed to
terminate in finitely many steps. Although we do not consider it here, the
heuristic can also be generalized to a k-opt local search by simultaneously
considering k rectangles for swapping.

3.2 Convex Fitting over Variable Regions

In this section we examine the parametric model that occurs when F is the
set of convex piecewise linear functions defined as the maximum of p ∈ N
affine functions; this problem was first studied by Magnani and Boyd (2009).
Each function f ∈ F has the form

f(x) = max
k=1,...,p

{ckx+ dk}, (3.6)

where (ck, dk) ∈ Rn+1, ∀ k = 1, . . . , p. (Figure 6 has an example with n = 2.)
The partition P is implicitly defined by f , as each member polyhedron is
given by

Pk = {x ∈ Rn : ckx+ dk ≥ c�x+ d�, ∀ � �= k}, ∀ k = 1, . . . , p. (3.7)

Note that not all polyhedra Pk thus defined are bounded, but we can always
add bounds if necessary. The fitting problem (2.2) over functions (3.6) yields
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x2

x1

f

Figure 6: Bivariate convex piecewise linear function f(x) = max{1, x1, x2}.

the non-convex optimization model

min
m�

i=1

�� max
k=1,...,p

{ckxi + dk}− yi
��q

s.t. c ∈ Rn×p, d ∈ Rp.

(3.8)

Let x ∈ Rn
+; for given ck ∈ Rn, dk ∈ R, we cannot model the non-convex

relation (3.6) directly in a MIP. However, we can model f(x) disjunctively
as

f(x) ≥ ckx+ dk, ∀ k = 1, . . . , p (3.9)
p�

k=1

{f(x) ≤ ckx+ dk}. (3.10)

As in the previous section, the disjunction (3.10) cannot be modeled as
stated with MIP disjunctive techniques, because the polyhedra have different
recession cones (Balas, 1998; Jeroslow and Lowe, 1984). However, if we let
M > 0 be an appropriately large number, we can use a big-M approach (see
also Bertsimas and Shioda (2007)). Let zk ∈ {0, 1}, ∀ k be a binary variable
that indicates which affine function is maximal at x. Then (3.10) can be
expressed as

f(x) ≤ ckx+ dk +M(1− zk), ∀ k = 1, . . . , p (3.11a)
p�

k=1

zk = 1. (3.11b)
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Let fi = f(xi), and define zki ∈ {0, 1} analogously to zk with respect to
xi. Then (2.2) becomes

min
m�

i=1

|fi − yi|q (3.12a)

s.t. fi ≥ ckxi + dk, ∀ k = 1, . . . p, ∀ i = 1, . . . ,m (3.12b)

fi ≤ ckxi + dk +M(1− zki ), ∀ k = 1, . . . p, ∀ i = 1, . . . ,m (3.12c)
p�

k=1

zki = 1, ∀ i = 1, . . . ,m (3.12d)

z ∈ {0, 1}m×p (3.12e)

c ∈ Rn×p, d ∈ Rp (3.12f)

fi ∈ R, ∀ i = 1, . . . ,m. (3.12g)

Any permutation of the k-indices of a feasible solution (c, d) to (3.8)
would yield another feasible solution of equal objective, because the maxi-
mum operator is invariant under a permutation. This leads to substantial
symmetry in the formulation (3.12) and potential increases in computation
time. The following result addresses this issue.

Proposition 3.2. There is an optimal solution of (3.8) that satisfies the

constraints

c11 ≤ · · · ≤ cp1. (3.13)

Proof. Let (c̃, d̃) be any optimal solution of (3.8). Let π : {1, . . . , p} →
{1, . . . , p} be a permutation satisfying c̃π(1)1 ≤ · · · ≤ c̃π(p)1 . Define

ck∗j = c̃π(k)j , ∀ j = 1, . . . , n, ∀ k = 1, . . . , p

d∗k = d̃π(k), ∀ k = 1, . . . , p.

In words, (c∗, d∗) permutes the k-indices of (c̃, d̃) to order the resulting
solution by the first coordinate of the c variables. Since the maximum
operator is invariant under permutations, (c∗, d∗) is also optimal for (3.8).

�

By adding constraints (3.13) to (3.12), we impose an ordering on the
feasible region and remove solution symmetry.
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The LP relaxations of mixed-integer models with big-M constraints are
notoriously weak. The root cause of the problem is the definition of the
maximum operator and the use of constraints (3.11). However, as we have
pointed out, the big-M technique is in some way inescapable if we wish
to use MIP methodology. We attempt to mitigate the weakness of the LP
relaxation with the next set of constraints, for which we first establish a
technical result.

Lemma 3.3. For each k = 1, . . . , p, define the set

Sk = {f ∈ R, g ∈ Rp
+ : f = gk; f ≥ g�, ∀ � �= k},

and define also the set

S =

�
f ∈ R, g ∈ Rp

+ : f ≤
p�

k=1

gk; f ≥ gk, ∀ k = 1, . . . , p

�
.

Then S = conv
��

k Sk

�
.

Proof. Both S and Sk, ∀ k are pointed polyhedral cones contained in the
positive orthant. Let ek ∈ Rp be the k-th unit vector. For each Sk, a
complete set of extreme rays is

(f, g) =

�
1, ek +

�

�∈T
e�

�
, ∀ T ⊆ {1, . . . , p} \ {k}.

This can be verified by noting that at any extreme ray, exactly one of the
pair of constraints f ≥ g� and g� ≥ 0 can be binding for each � �= k. (Both
are binding only at the origin.)

Similarly, a complete set of extreme rays of S is

(f, g) =

�
1,
�

k∈T
ek

�
, ∀ T ⊆ {1, . . . , p}, T �= ∅.

As in the previous case, at any extreme ray exactly one of f ≥ gk and gk ≥ 0
can be binding for each k. The constraint f ≤

�
k gk ensures that at least

one of the former is always binding.
The union over all k of the sets of extreme rays of Sk gives the set of

rays for S, which proves the result. �

The lemma gives a polyhedral description of the convex hull of a union of
polyhedra with differing recession cones (see also Theorem 1 in Queyranne
and Wang (1992)). Using gk = ckxi + dk, the next result applies our lemma
to (3.12).
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Proposition 3.4. Suppose some optimal solution of (3.8) satisfies

ckxi + dk ≥ 0, ∀ k = 1, . . . , p, ∀ i = 1, . . . ,m. (3.14)

Then the following constraints are valid for (3.12):

fi ≤
p�

k=1

ckxi + dk, ∀ i = 1, . . . ,m (3.15)

Constraints (3.14) and (3.15) may be added to (3.12) without loss of
generality if we add a large positive constant to each yi, thus guaranteeing
that (3.14) holds for some optimal solution.

Model (3.12) has Θ(mp) binary variables, Θ(m + np) continuous vari-
ables, and Θ(mp) constraints. Because of the relatively large number of
binary variables, the model may only be computationally tractable for small-
to-medium data sets. This computational difficulty would be especially
apparent when q = 2 and (3.12) becomes a MIP with convex quadratic
objective.

3.2.1 Concave Data and Heuristic Performance

Magnani and Boyd (2009) developed a Gauss-Newton heuristic for (3.8).
For convenience, we reproduce it here in Algorithm 2 with our notation.
The heuristic is fast and often finds a high-quality solution if repeated from
several different random initial partitions; the interested reader may consult
the same article for details.

Algorithm 2 Clustering Gauss-Newton heuristic for (3.8)

randomly partition {xi}mi=1 into p non-empty sets with pairwise non-
intersecting convex hulls
repeat

for k = 1, . . . , p do

solve linear fitting problem for points in set k to obtain best-fit affine
function (ck, dk)

end for

set f(x) ← maxk{ckx+ dk}
partition {xi}mi=1 into p sets according to (3.7), breaking ties arbitrarily

until partition is unchanged
return f

However, as the authors point out, the heuristic may cycle indefinitely
even with a tiny data set. In addition, if the heuristic terminates or is cut
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off after a maximum number of iterations, the resulting function may be far
from an optimal fit. Consider the following example: Fix m ∈ N, and for
i = ±1, . . . ,±m, define

(xi, yi) =

�
(i, i), i < 0

(i,−i), i ≥ 0.

Claim. Let m ≥ 2, p = 2. For any j ∈ {−m+ 2, . . . ,m− 1}, if we initialize
Algorithm 2 by partitioning the points into {xi : i < j} and {xi : i ≥ j}, it
returns f(x) = max{x,−x}.

Proof of claim. The proof is by induction on |j|; by symmetry we may as-
sume that j > 0. If j = 1, Algorithm 2 terminates immediately, returning
max{−x, x}.

Now suppose j ≥ 2. The best-fit affine function for {(xi, yi)}i≥j is −x.
For {(xi, yi)}i<j , the graph y = c̃x + d̃ of the best-fit affine function (c̃, d̃)
must intersect the convex hull of the points {(xi, yi)}i<j as a subset of R2.
By LP duality, this is equivalent to (c̃, d̃) being a convex combination of
the lines defined by facets of conv{(xi, yi)}i<j : The inequality −c̃x + y ≤
max

�
−c̃x+y : (x, y) ∈ conv{(xi, yi)}i<j

�
is a convex combination of certain

facets, as is the reverse inequality with “min” replacing “max”.
For the remainder of the proof, assume j ≥ 3; the case j = 2 is similar.

The lines defined by facets of conv{(xi, yi)}i<j are

(−1, 0), (1, 0),

�
m− j + 1

m+ j − 1
,−2m(j − 1)

m+ j − 1

�
, (0,−1),

with the first coordinate representing slope and the second representing the
intercept. It is not hard to show that (0,−1) is in the convex hull of the
first three lines (when considered as elements of R2), so we may omit it from
consideration. Let us call the third line (ĉ, d̂) for brevity.

The best-fit affine function (c̃, d̃) is a convex combination of (−1, 0),
(1, 0) and (ĉ, d̂); using first-order arguments it can be shown that it must
be a strict convex combination. Therefore its value at 0 is less than 0 and
its value at (j − 1) is greater than (−j + 1). In particular, the re-partition
implied by it and −x decreases j to some value greater than or equal to 1.
Thus |j| decreases and the induction hypothesis gives us the result. �

The previous example shows that for any arbitrarily large number of
points m and from any non-trivial initial partition, Algorithm 2 converges
to a max-affine function that overestimates the value at every single data
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point in the set, while the best-fit max-affine function is (by inspection) an
affine function. We can further generalize the example with the following
result.

Proposition 3.5. Let n = 1, and suppose the data set (xi, yi) is concave;

i.e. there is a concave function g : R → R with g(xi) = yi. Then the best fit

over all convex functions is given by an affine function. In particular, the

optimal solution of (3.8) is affine, regardless of p.

Proof. Assume without loss of generality that x1 < · · · < xm, and let f̂ :
R → R be a best-fit convex function for the set. Let ĝ : [x1, xm] → R be the
piecewise linear concave function defined by the data set; i.e.

ĝ(x) = λyi−1 + (1− λ)yi, xi−1 ≤ x ≤ xi, x = λxi−1 + (1− λ)xi.

If ĝ is affine, then f̂ is affine and there is nothing to prove. Otherwise, we may
assume that there is a subinterval [x�, x��] of [x1, xm] with x1 ≤ x� < x�� ≤ xm

such that f̂(x) ≤ ĝ(x) for x ∈ [x�, x��] and f̂(x) > ĝ(x) otherwise. Then we
can replace f̂ with

f∗(x) =
(f̂(x��)− f̂(x�))

(x�� − x�)
(x− x�) + f̂(x�)

without worsening the fit: If x ∈ [x�, x��], then f̂(x) ≤ f∗(x) ≤ ĝ(x). Simi-
larly, if x �∈ [x�, x��], then f̂(x) ≥ f∗(x) ≥ ĝ(x). �

Proposition 3.5 fails for n ≥ 2. If each xi is an extreme point of the
set {xi}mi=1, then for any values of yi (and any m) the data set can be
interpolated with either a piecewise linear convex or concave function.

In situations such as those exemplified by the previous proposition, the
heuristic may converge to a fitting function that is far from optimal, even
if started from many random initial partitions. One distinct advantage of
the MIP approach is the guarantee of an optimal fitting function under
any circumstance. Of course, if the data is concave, the best-fit max-affine
function is likely to be affine (and a poor fit.) In this case, the MIP solution
is useful more as a qualitative indicator that an underlying assumption about
the data points is incorrect.

3.2.2 Modifying the Model for Separable Fitting

There may be situations in which we desire the best-fit function to be sepa-
rable. If we divide each dimension’s axis into p intervals, the resulting set of
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x2

x1

f

Figure 7: Separable bivariate convex piecewise linear function f defined
as the sum of the two univariate max-affine functions max{1, x1} and
max{0, 12x2−

1
2}. The domain grid implied by the function is {[0, 1], [1,∞)}×

{[0, 1], [1,∞)}.

polytopes P has |P| = pn, a number we could never hope to model explicitly
in higher dimensions. We next present a variation of (3.12) that fits data
with a separable convex function.

Each function f ∈ F now has the form

f(x) =
n�

j=1

max
k=1,...,p

{ckjxj + dkj }, (3.16)

where (ck, dk) ∈ Rn+n, ∀ k = 1, . . . , p. See Figure 7 for a two-dimensional
example. The generic model (2.2) becomes

min
m�

i=1

����
n�

j=1

max
k=1,...,p

{ckjxij + dkj }− yi

����
q

s.t. c ∈ Rn×p, d ∈ Rn×p.

(3.17)

The solution to (3.17) finds the optimal grid over which to define the sepa-
rable best-fit convex function, in addition to finding the function itself.

Applying the same modeling techniques used in the non-separable model,
the problem can be written as

min
m�

i=1

����
n�

j=1

f j
i − yi

����
q

(3.18a)

s.t. f j
i ≥ ckjx

i
j + dkj , ∀ k = 1, . . . , p, ∀ j = 1, . . . , n, ∀ i = 1, . . . ,m (3.18b)
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d1

c1

c2

c3

Figure 8: An ordering of the univariate affine functions. Starting from the
origin, the first function has the smallest slope and largest intercept, with
subsequent functions following the orderings (3.18e) and (3.18f).

f j
i ≤ ckjx

k
j + dkj +M(1− zkij), ∀ k = 1, . . . , p,

∀ j = 1, . . . , n, ∀ i = 1, . . . ,m
(3.18c)

p�

k=1

zkij = 1, ∀ j = 1, . . . , n, ∀ i = 1, . . . ,m (3.18d)

c1j ≤ · · · ≤ cpj , ∀ j = 1, . . . , n (3.18e)

d1j ≥ · · · ≥ dpj , ∀ j = 1, . . . , n (3.18f)

z ∈ {0, 1}m×n×p (3.18g)

c ∈ Rn×p, d ∈ Rn×p (3.18h)

f j
i ∈ R, ∀ j = 1, . . . , n, ∀ i = 1, . . . ,m. (3.18i)

Here, f j
i = fj(xij) = maxk{ckjxij + dkj } and zkij ∈ {0, 1} is defined with

respect to f j
i in an analogous fashion to zki in (3.12).

We can use reasoning analogous to Proposition 3.2 to show that con-
straints (3.18e) are valid for at least one optimal solution. In addition,
because the functions are univariate, those constraints also allow us to add
constraints (3.18f) (see Figure 8.)

The following result shows how to further restrict the feasible region.

Proposition 3.6. There is an optimal solution of (3.17) that satisfies

d1j = 0, ∀ j ≥ 2. (3.19)
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Proof. Let (c̃, d̃) be an optimal solution to (3.17). Define

ck∗j = c̃kj , ∀ k = 1, . . . , p, ∀ j = 1, . . . , n

dk∗j =

�
d̃kj +

�n
j�=2 d̃

1
j� , j = 1

d̃kj − d̃1j , j ≥ 2
, ∀ k = 1, . . . , p.

The solution (c∗, d∗) shifts the affine functions in the first dimension up by�
j�≥2 d̃

1
j� , and shifts each affine function in dimension j ≥ 2 down by d̃1j ,

satisfying (3.19). Let x ∈ Rn; then

n�

j=1

max
k=1,...,p

{ck∗j xj + dk∗j } =

max
k=1,...,p

�
c̃k1x1 + d̃k1 +

n�

j=2

d̃1j

�
+

n�

j=2

max
k=1,...,p

{c̃kjxj + d̃kj − d̃1j} =

max
k=1,...,p

{c̃k1x1 + d̃k1}+
n�

j=2

d̃1j +
n�

j=2

�
max

k=1,...,p
{c̃kjxj + d̃kj }− d̃1j

�
=

n�

j=1

max
k=1,...,p

{c̃kjxj + d̃kj },

and therefore (c∗, d∗) is also optimal. �

The separable model increases the number of binary variables by an
order of magnitude to Θ(mnp) and the number of continuous variables by a
comparable amount to Θ(mn+np). The number of constraints also increases
to Θ(mnp). This substantial increase in the model’s size may again restrict
the realistic size of data sets we can hope to optimally fit with current
optimization technology. An option available exclusively in the separable
case is to partially solve (3.18) to obtain a feasible solution, and then fix the
grid and solve the resulting continuous model.

4 Computational Examples

We next present computational examples to highlight the benefit of con-
sidering the fitting models over variable regions introduced in Section 3.
All fittings were performed with a least-squares objective (q = 2 in (2.2).)
The fitting models were optimized using CPLEX 11.1 on a Xeon 2.66 GHz
workstation with 8 Gb of RAM.
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(a) (b)

Figure 9: Random and optimal domain triangulations for cubic function
grid fitting experiment.

4.1 Grid Fitting with Variable Triangulations

4.1.1 Cubic Example

To test our grid fitting model, we generated a sample of of the function
f(x) = (x1 − 1

2x2)
3 over the domain [0, 10]2. We defined the grid points as

bkj = k, ∀ k = 0, . . . , 10, ∀ j = 1, 2, and sampled ten points from each grid

square’s uniform distribution. For each point xi, we set yi = (x1 − 1
2x2)

3 +
125, and defined the upper bound U = max{f(x) + 125 : x ∈ [0, 10]2} =
1125. We also generated a random triangulation of the domain to fit the
function initially; see Figures 9a and 10a.

Using the initial random triangulation in (2.8), we obtained a best-fit
total squared error of 1538.12. We then ran the swapping heuristic outlined
in Algorithm 1 starting from the randomly generated triangulation to obtain
the triangulation shown in Figures 9b and 10b, yielding a total squared error
of 423.57. Using (3.3) with the heuristic solution as a warm-start, we were
able to prove the optimality of this triangulation in under 10 seconds.

By optimizing the fitting over all possible triangulations, we were able
to exploit the underlying structure of our data without any prior knowledge.
In this example, we find an optimal triangulation that clearly reflects the
invariance of the underlying cubic function along the line 2x1 = x2, and can
therefore decrease the squared error by over 70%.

4.1.2 Sinusoidal Example

We next tested the model on a different function with more complicated
sinusoidal structure. Using the same domain and grid from the previous
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Figure 10: Best-fit function plots for random and optimal triangulations in
cubic grid fitting experiment.
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(a) (b)

Figure 11: Random and optimal domain triangulations for sinusoidal func-
tion grid fitting experiment.

(a)

xy

(b)

xy

Figure 12: Best-fit function plots for random and optimal triangulations in
sinusoidal grid fitting experiment.

example, we generated 1000 points for the function f(x) = sin(�x−(5, 5)�2).
For each point xi, we set yi = f(x)+1.5 and defined the upper bound U = 3.
We also generated another random triangulation for the initial fitting, shown
in Figures 11a and 12a.

We solved model (2.8) with this triangulation to obtain a total squared
error of 1.26. We then ran Algorithm 1, producing the triangulation in
Figures 11b and 12b, with squared error of 0.42, after the second outer iter-
ation. Using (3.3) with this solution as a warm-start, we proved optimality
in approximately 4.5 minutes. As before, the optimization over all triangu-
lations allowed us to discover the radially symmetric structure of the data
around the point (5, 5) without requiring prior knowledge, and enabled us
to decrease the initial squared error by two thirds.
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4.2 Convex Piecewise Linear Fitting

We next present an example for the convex non-separable model (3.12). To
test this model, we generated a set of 300 data points on the domain [0, 10]2

as in the previous section, by generating three points in each unit square
from the square’s uniform distribution. In this case, we used the convex
function f(x) = ln(ex1 + e2x2), setting yi = f(xi), ∀ i. As in the previous
experiment, we generated a feasible solution to the model using Algorithm
2’s heuristic and then validated the solution’s quality with our MIP model.

We first solved the model with p = 3. From the first random partition
of the data points, the heuristic found the best-fit function given by

(c1, d1) = (0, 1.99, 0.05)

(c2, d2) = (0.37, 1.25, 0.73)

(c3, d3) = (0.97, 0.04, 0.18),

with total squared error 0.26. We were then able to prove optimality with
(3.12) in under two minutes. Figure 13 illustrates how the best-fit function’s
implicit partition of the domain reflects the underlying function’s curvature.
For comparison, the squared error when fitting the data points in the clas-
sical least-squares linear fitting model is 479.14. This drastic decrease in
fitting error indicates the potential benefit of variable-region fitting when
compared to a more classical approach.

However, the model’s difficulty increases substantially with the problem’s
size. For example, we attempted to solve the same fitting problem with the
same data points and p = 4. After the fifth iteration (starting from a
random partition of the data points,) the heuristic found a best-fit solution
with total squared error equal to 0.11, a marginal improvement from the
best-fit function found above for p = 3. After one hour of computation
time, CPLEX was only able to decrease the optimality gap to 84%. We
conducted a similar experiment with p = 5, and CPLEX was not able to
improve the lower bound from the trivial 0 after one hour. (The heuristic
solution’s squared error was 0.07.)

Part of the difficulty may come from the underlying function’s structure,
which lends itself to fitting with three affine functions. However, part of the
difficulty must also come from model (3.12)’s own limitations. Even with
the addition of constraints (3.15), we did not strengthen the LP relaxation
enough. It seems that an entirely new and different modeling technique may
be needed for (3.10).
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Figure 13: Level curves of original function for f(x) = 3, 6, 9 (dotted curves)
and partition implied by best-fit max-affine function (dashed lines).

5 Conclusions

We have introduced models for continuous piecewise linear data fitting that

i) study piecewise linear data fitting from a linear and discrete optimiza-
tion perspective, and

ii) introduce mixed-binary techniques to solve models with region vari-
ability.

Generally, one of the main benefits of using optimization to solve a problem
is the straightforward fashion in which additional constraints can be added
without a change in methodology. A specific example from our current
work is the introduction of convexity-enforcing constraints in each of our
models. However, many other constraints are possible and may be desirable
depending on the fitting problem’s application. This flexibility, epitomized
by the region variability of our mixed-binary models, is a distinct advantage
of the optimization approach.

Our work also introduces various questions. Chief among them is the
scalability of our models for large data sets, which are important in many
applications. Bertsimas and Shioda (2007) circumvent this issue by employ-
ing clustering heuristics to reduce their original data set to a manageable
size. Jiang and Klabjan (2009) use a branch-and-price algorithm for the
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clusterwise regression problem, which is related to (2.1). These and other
techniques may allow our models to accommodate large data sets and thus
increase their application value.

Another important issue concerns MINLP. As we mention in Section 1,
the optimization community has lately focused on MINLP methodology. In
the least-squares case (q = 2 in (2.2)), our models have a convex-quadratic
objective, and therefore the mixed-binary models encompass a novel and
potentially important class of convex MINLP problems for researchers to
study, both to generate good solutions and also to strengthen lower bounds
(Bienstock, 2010).
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