
 1

Evaluating Approaches for Solving the Area Restriction
Model in Harvest Scheduling

Marcos Goycoolea Universidad Adolfo Ibañez
Alan T. Murray Arizona State University
Juan Pablo Vielma Georgia Institute of Technology
Andres Weintraub Universidad de Chile

Abstract

We survey three integer-programming approaches for solving the area
restriction model (ARM) for harvest scheduling. We describe and analyze each
of these approaches in detail, comparing them both from a modeling and
computational point of view. In our analysis of these formulations as modeling
tools we show how each can be extended to incorporate additional harvest
scheduling concerns. In our computational analysis we illustrate the strengths
and weaknesses of each formulation as a practical optimization tool by studying
harvest scheduling in four North American forests.

Key Words: adjacency, ARM, green-up, optimization, integer-programming.

1. Introduction

Forest firms face the challenge of adapting current harvest scheduling
methodologies in order to meet growing environmental concerns, particularly
those of protecting species and natural habitat, while minimally foregoing
economic gains. A common approach for incorporating such wildlife concerns
consists of restricting the local extent of harvest activity by imposing a limit on
the maximum contiguous area of clear-cut regions (Thompson et al 1973).

In order to model these types of problems, forest planners rely on spatially
explicit models in order to represent forests and harvest scheduling plans.
More specifically, Geographic Information Systems (GIS) are used to partition
forests into stands representing sub-regions with homogeneous characteristics,
and decisions are made at a stand level. In this way, the design of a harvest
schedule is abstracted as a combinatorial optimization problem, with decision
variables corresponding to stands for potential harvest at a particular time, and
where the objective may consist in maximizing profits or other objectives,
subject to operational and environmental constraints. The constraint we are
concerned with in this article consists of prohibiting contiguous groups of
stands from exceeding the prescribed clear-cut area limit.

Approaches to solve this problem initially were relatively simple, and relied on
an experienced planner to manually pre-define disjoint feasible “clusters”
(contiguous groups of stands) each satisfying the maximum contiguous area
restriction. This was done in such a way that if two clusters were adjacent, then
their combined area would exceed the maximum opening size restriction. Thus,
the harvest scheduling problem reduced to selecting, among these pre-defined
clusters, a subset which would maximize revenue, subject to the constraint that
no two adjacent clusters be simultaneously selected. Clearly this approach was
highly dependent on how the clusters were pre-defined. Murray (1999) referred

 2

to this approach as the unit restriction model (URM). A number of exact
formulation approaches for this model have been pursued: Barahona et al
(1992) and Weintraub et al (1994) proposed a column generation scheme;
Murray and Church (1996, 1997) proposed using cliques to directly solve a set
packing problem; and, Hoganson and Borges (1998) proposed a dynamic
programming approach. Heuristic and meta-heuristic approaches have also
been proposed, including Tabu search (Murray and Church 1995) and simulated
annealing (O’Hare 1989, Nelson and Brodie 1990, Murray and Church 1995).

More recently, Hokans (1983) and Lookwood and Moore (1993) proposed
incorporating the construction of clusters from stands in the decision model, as
opposed to having these clusters be pre-defined. Murray (1999) referred to this
approach as the area restriction model (ARM). Murray and Weintraub (2002)
empirically showed that solution profit value can be improved through the
addition of cluster-forming in the ARM. However, the ARM is a significantly
more complex problem. Until recently, most solution approaches were heuristic
or meta-heuristic in nature (see Hokans 1983, Lockwood and Moore 1993,
Barrett et al 1998, Clark et al 2000, Richards and Gunn 2000, Boston and
Bettinger 2002, Caro et al 2003). Lately, however, several exact integer
programming formulations have been proposed for solving the problem. One
formulation, which we henceforth call the Path Formulation, is based on
enumerating all possible ways in which a harvesting cluster may be infeasible,
and defining constraints which prohibit each of these infeasibilities (see McDill
et al. 2002, Crowe et al. 2003, Gunn and Richards 2005). A second formulation,
which we henceforth call the Cluster Packing Formulation, is based on defining
variables for all possible feasible harvesting clusters and defining constraints
which prevent any selected pair from being overlapping or adjacent (see McDill
et al. 2002, Murray et. al 2004, Goycoolea et al. 2005, Martins et al. 2005,
Vielma et al. 2005). A third formulation, which we call the Bucket Formulation,
is based on defining buckets a-priori, and then assigning stands to each bucket
so that each bucket represents a harvested cluster (see Constantino et al. 2006).

In this paper we review and compare these three mixed integer programming
formulations for the ARM, and discuss some basic extensions. We consider
both modeling and computational issues. In terms of modeling, we discuss
different spatial considerations which can be incorporated into the
formulations, such as green-up, minimum-size, maximum average-size, shape
constraints and others. In terms of computational issues our focus is on
performance.

It is well known that most integer programming problems can be formulated in
different ways, and that the properties of these different formulations can
significantly affect their performance. One such issue is the formulation size.
Another, less trivial issue is tightness of the formulation. There are several
ways of defining the notion tightness. Given that we consider formulations that
are defined on different variables; we compare their LP relaxation values. That
is, the optimal value obtained when solving the formulation without imposing
the integrality constraints. This defines a natural bound on the optimal value,
and indicates how good a proxy the relaxation value is to the actual optimal.
This is useful both as a way of validating solutions found with heuristic
methods, and is crucial for the effectiveness of Branch and Bound algorithms.

 3

For more information, see Nemhauser and Wolsey (1988). A final measure that
we consider is the amount of time it takes to find an optimal (or near-optimal
solution). If this cannot be achieved in a reasonable amount of time, we
consider instead what is the best solution found after an allotted time.

This paper is organized as follows. In Section 2 we introduce the ARM and the
notation which will be employed. We then describe the three integer
programming formulations of the ARM. We discuss implementation issues
relating to these formulations, and compare the theoretical quality of the linear
programming relaxation bounds they provide. In Section 3 we discuss
extensions of the ARM and how these may be incorporated into the integer
programming formulations. In Section 4 we present computational results
obtained by testing these approaches using four forest planning applications.
We focus on analyzing the size of the different formulations, the strength of
the linear programming relaxation bounds they provide, the difficulty of
solving each formulation to optimality, and the effect of incorporating model
extensions. Finally, in Section 5 the relative advantages of each approach are
discussed and possible future directions of research are noted.

2. The Area Restriction Model (ARM)

Throughout this article we convene on the following notation in order to
formally describe the problem. Let S be the number of stands in the forest, and
let T represent the number of time periods considered. Assume that each time
period represents Y years. To each stand s we assign the following attributes:

• as : area of stand s,
• ps, t : revenue obtained when harvesting stand s in time t,

• : volume of timber obtained when harvesting stand s in time t,

• gs : initial age of stand s (i.e. the age of stand s in time t=1).

Let E represent all pairs of adjacent stands. That is, if r,s are adjacent stands,
then {r,s}∈E. Let N(s) represent the set of all stands which are adjacent to s.
That is, stand r belongs to set N(s) if and only if r is adjacent to s, or
equivalently, if {r,s}∈E.

To illustrate these concepts consider Figure 1.

 4

Figure 1

In this example, S=15. If we define two stands as being adjacent if they touch,
then we have that the pair {1,4} is in E but that the pair {1,9} is not. Note also
for this example that N(4) = {1,5,9,10}.

We say that a set C of contiguous stands defines a cluster of stands. For each

cluster C we define its total area as . Likewise, we define the revenue

obtained from harvesting cluster C at time t as . Finally, let

 equal the volume of timber obtained when harvesting cluster C at

time t.

The Area Restriction Model, or ARM, consists of selecting, for each time
period, a set of stands to be harvested so as to maximize revenue subject to the
following constraints:

Volume yield constraints: A typical requirement in forestry operations is that a
“forest produces a non-declining even flow of timber” (Buongiorno and
Gilless, 2003, p. 70) or a “reasonable yield pattern” (Ware and Clutter, 1971,
page 436). For each time period t, the amount of timber extracted should be
no more than U t times (and no less than L t times) what was extracted in the
previous time period. Variants of this constraint might consider imposing
minimum and maximum volume requirements in different time periods.

Average ending age constraints: The average age of standing timber at the end

of the planning horizon should be at least years.

Harvest-once constraints: Each stand should be harvested at most once during
the planning horizon. Here it is implicitly assumed that we are only concerned
with first-harvest and that replanted stands will not reach a profitable age in
the planning horizon.

Maximum clear-cut size constraints: No contiguous group of stands harvested in a same
time period may exceed an area limit of A.

 5

Henceforth we say that a cluster C is feasible if it satisfies aC ≤ A. Otherwise we say that C is
infeasible. Using this definition, the maximum clear-cut constraint can be equivalently
described as prohibiting infeasible clusters from being harvested in all of the time periods.
Note that the definition of a feasible cluster coincides with the definition of generalized
management unit as proposed by McDill et al. (2002).

The maximum clear-cut size constraint can be visualized using the hypothetical
forest illustrated in Figure 1. For simplicity, assume that all stands have an area
of 10 hectares, that a maximum opening size of A = 30 hectares is stipulated,
and that we are considering a single time period. Given this, the cluster defined
by stands 4, 5, and 9 is feasible. However, if any additional neighboring stand
were added, the resulting cluster would be infeasible. For example, cluster
{4,5,9,10} is infeasible, as it has a total area of 40 hectares. In this way, if we
momentarily ignore volume-flow and average ending age constraints, it can be
seen that set of shaded stands illustrated in Figure 2 define a feasible solution.

Figure 2

We now describe three different integer programming formulations which have been
proposed for this problem.

The focus of this article is on these maximum clear-cut size constraints.

2.1 The Path Formulation

The Path Formulation, originally proposed in McDill et al. 2002, works by

defining for each stand s and each time period t, a binary variable taking

value 1 if stand s is to be harvested in period t, and value 0 if not. In order to
see how the maximum clear-cut size condition can be imposed using these
variables, let us consider again the hypothetical forest of the previous section,
and a candidate solution in which the stands {1,2,3,4,5} are all harvested in
time period t=1. Since the total area of this cluster is 50, and the maximum
clear-cut size is A=30, this cluster would be infeasible. Thus, in order to
ensure a feasible solution, we need to prohibit that all these stands be
harvested simultaneously in t=1. For this, it suffices to add the constraint:

 6

This idea can be generalized in the following manner: Let Λ represent the set
of all infeasible clusters. That is, (C ∈ Λ), if and only if, C corresponds to a
contiguous set of stands such that (aC > A). In order to prohibit all infeasible
clusters from being selected add the family of constraints:

A concern regarding this formulation is that the set Λ of infeasible clusters may
be exponentially large, thus rendering this formulation impractical. However, it
is possible to greatly reduce the size of this formulation by utilizing only those
constraints which are strictly necessary. Consider two infeasible clusters C and
D such that C ⊆ D. It is easy to see that by prohibiting the harvest of cluster C,
the harvest of cluster D is also prohibited. Going back to the previous example,
observe that to prevent {1,2,3,4,5} from being harvested in t=1 it would
suffice to add the constraint:

Formally, we can generalize this concept as follows. Define a cluster C ∈ Λ to
be minimally infeasible if C is infeasible and if for every s ∈ C either C-{s} is a
feasible cluster or C- {s} is not contiguous. That is, if removing any stand from
C we obtain another cluster which is either feasible or the resulting set of
stands is disconnected. If C is minimally infeasible, then C cannot contain any
other infeasible clusters. Thus, if we define Λ+ = { C ∈ Λ : C is minimally
infeasible} we can instead use the so-called Path Inequalities:

This leads us to the Path Formulation of the ARM (McDill et al. 2002):

 (1)

Subject to

 (2)

 (3)

 (4)(a)

 (4)(b)

 (5)

 (6)

 7

The objective function, (1), consists in maximizing the total harvest revenue.
Constraints (2) impose that each stand be harvested at most once during the
planning horizon. Constraints (3) impose the maximum clear-cut size
condition. Constraints (4) impose the volume flow constraints. Constraints (5)
impose the average ending age condition. Constraints (6) impose integrality on
decision variables.

We say that set K of stands defines a clique if every pair of stands r,s∈K are
adjacent to each other. A clique K is maximal, if no other clique contains it.
Observe that the sets {1,4,5,10} and {6,7,13} in Figure 1 each define a
maximal clique. Let Π denote the set of all maximal cliques. Crowe et al (2003)
suggest adding the following family of constraints in order to strengthen the
problem formulation:

 (7)

Observe that constraints (7) need only be defined for those cliques whose total
area exceeds the prescribed limit. Computational results presented in Crowe et
al (2003) suggest that this strengthening approach is not very effective in
practice. However, by building on this idea, Gunn and Richards (2005) propose
another way of tightening the Path formulation by adding only one constraint
per stand. The basic idea is based on the following observation: if a stand s is
harvested in period t, then the total area adjacent to stand s which can be
harvested is bounded by (A – as). The constraints they propose are as follows:

 (8)

As an example, consider again the forest depicted in Figure 1. For stand 4, time
period t, this constraint would take form:

Gunn and Richards (2005) describe different ways by which to compute

suitable coefficients , as well as a lifting algorithm by which to strengthen

these constraints. Gunn and Richards (2005) observe that by replacing
constraints (3) with constraints (8), they were able to generate optimal feasible
solutions for several test cases. However, they point out that such an approach
will not always yield feasible solutions. Consider the forest depicted in Figure
3, and assume that the area of stands 1, 2, 3 and 4 is 20 hectares each. Further,
assume that A = 60.

Figure 3

A cluster consisting of stands 1, 2, 3, and 4 exceeds the maximum opening size,
yet no constraint of type (8) excludes it.
Regardless, constraints (8) can be effective for improving the performance of the Path
Formulation when combined with constraints (3), or, constraints (8) can be used alone to

1 2 3 4

 8

generate approximate solutions (when individual stand sizes are large relative to the
maximum clear-cut size) as proposed by Gunn and Richards (2005).

An important issue pertaining to the use of the Path Formulation is the enumeration of the
minimally infeasible clusters which are needed to define constraints (3). McDill et al. (2002)
propose what they call the Path Algorithm for achieving this. In Appendix I we present an
alternative algorithm which is easier, and which we have found to work better in practice.
In the appendix we also discuss how this algorithm can be modified so as to generate the
set of all maximal cliques and other sets of stands.

2.2 The Cluster Packing Formulation

An alternative way to formulate the ARM problem is based on focusing on feasibilities
rather than infeasibilities. This can be achieved by defining a 0-1 decision variable for every
feasible cluster (taking value 1 if we should select it and 0 otherwise), and defining
constraints in such a way as to ensure that the selected clusters are disjoint and separated
one from another.

More formally, for each feasible cluster C and every time period t, let binary variable
xC,t indicate if cluster C is to be harvested in time period t or not. We say that
two feasible clusters C and D are incompatible if they intersect or are adjacent. The Cluster
Packing model imposes the maximum area constraint by forcing selected clusters into
being compatible with one another.

A natural way to achieve this consists in explicitly prohibiting incompatibility
by using pair-wise constraints (McDill et al 2002, Goycoolea et al 2005). That
is, if two feasible clusters C and D are incompatible one could impose, for each time
period t, constraints of the form:

.
Let Ω represent the set of all feasible clusters. For each set of stands U, let Ω(U) represent
the set of all feasible clusters containing at least one stand in U and define Ω(s) = Ω({s})
for each stand s. The Pairwise Cluster Packing formulation for the ARM is
defined as follows:

 (9)

Subject to

€

x
C ,t

C∈Ω(s)

∑
t=1

T

∑ ≤1 (10)

 (11)

 (12)(a)

 (12)(b)

 (13)

 (14)

 9

The objective function, (9), is to maximize total harvest revenue. Constraints
(10) impose that each stand should be harvested at most once during the
planning horizon. Constraints (11) impose that incompatible pairs of clusters
should not be selected in a same time period, (12) impose the volume flow
constraints. Constraints (13) impose that the average ending age condition.
Constraints (14) impose integrality on decision variables. If we replace constraints
(14) with constraint,

 (14)(b)

we obtain what is called the LP relaxation of this formulation. In Appendix I we
describe how to algorithmically generate the set Ω required for formulating the problem.

Observe that there may exist two feasible clusters whose union defines yet
another feasible cluster. This can happen if the clusters are disjoint, adjacent to
each other and if their combined area does not exceed the prescribed
maximum. A common concern is that constraints (11) would prohibit these
from being simultaneously harvested. It should be noted that this is not a
problem because the cluster defined by taking the union of these smaller
clusters also has a variable associated to it.

Though this formulation is valid, it is possible to obtain others which, building
upon the same idea, provide much tighter linear programming bounds.

To see this, consider a pair of adjacent stands r,s. That is, a pair {r,s} in the set
E. These pairs will henceforth be referred to as edges. In a feasible ARM
solution there can be at most one selected cluster intersecting the edge {r,s}. In
fact, if there are two clusters intersecting the set {r,s} then either they both contain a same
stand, or otherwise, they are disjoint but adjacent to each other. In both cases, they are
incompatible. From the preceding analysis, the following family of constraints is valid for
the ARM (see Martins et al, 2005):

 (11)(b)

If we replace constraints (11) with constraints (11)(b) we obtain what we call the Edge
Cluster Packing formulation, which is tighter than the Pairwise Cluster Packing
formulation.

An even tighter formulation was developed by Martins et al (2005) and
Goycoolea et al (2005). As before, let Π denote the set of all maximal cliques
in the forest. Constraints (11)(b) can be substituted with constraints:

 (11)(c)

The reason for this is that two clusters intersect a common edge if and only if
they intersect a common clique. When this substitution is used we obtain the Clique
Cluster Packing Formulation. Going back to the example depicted in Figure 1,
{6,7,13} defines a clique. This means that among the feasible clusters {6,7,13},

 10

{2,6,10}, {3,8,7}, {7,13,14}, {6,12}, {13,14} and all others that intersect
{6,7,13}, only one can be chosen. Recall that an algorithm by which to
enumerate all maximal cliques is described in Appendix I.

The Clique Cluster Packing formulation is not only tighter than the Edge
Cluster Packing formulation. Results detailed in Goycoolea et al (2005) show
that the Clique Cluster Packing formulation is substantially faster to solve.
Goycoolea et al (2005) also introduced a methodology called “constraint
projection” for deriving additional families of valid inequalities for this
problem (see Nemhauser and Wolsey 1988). Finally, Goycoolea et al (2005)
describe a methodology for strengthening constraints (11)(c) by a clique-lifting
procedure. Computational tests, however, indicate that these constraints are
very effective, and do not need such strengthening.

In the computational results section we will see that in the linear programming relaxation
bounds afforded by the Cluster Packing formulation are strictly better than those afforded
by the Path formulation in all but one of the instances tested (For example, in Table 5, see
El Dorado with T=1).

A natural question is whether or not the Cluster Packing formulation can have a worse
linear programming relaxation bound than the Path formulation. The answer, remarkably,
is no. That the LP relaxation value of the Path formulation will always be larger or equal to
that of the Cluster Packing formulation is proved as a mathematical theorem in Appendix
II. That in practice it is very often strictly larger can be seen in the computational results.

In important implication of this result is that the Clique-Cluster Packing formulation is
better suited than the Path formulation as a tool for validating heuristics and estimating
quality of solution values.

2.3 The Bucket Formulation

Consider an instance of ARM and observe that in any given time period, one
can never simultaneously harvest more clusters than there are stands in the
forest. This naturally follows from the fact that harvested clusters must be
disjoint and non-adjacent to each other. This suggests yet a third way in which
the ARM can be formulated.

For each stand i define a “bucket” Bi. The idea is that stands should be
assigned to these buckets in such a way that (a) each stand is assigned to at
most one bucket, (b) the total area of stands assigned to a same bucket does
not exceed the prescribed maximum, and (c) buckets should be non-adjacent to
each other. Consider such an assignment of stands to buckets and consider any
given bucket. If the bucket is non-empty, and the stands in the bucket are all
connected to each other, then the bucket defines a feasible cluster. Otherwise,
break-up the stands of the bucket into connected components. Given condition
(b), each such component defines a feasible cluster. Finally, due to condition
(c) all of the clusters obtained from the stand-to-bucket assignment will be
compatible with each other, and so, one obtains feasible ARM solutions
through these assignments. Moreover, it is easy to see that given any feasible
ARM solution it is possible to construct such a stand-to-bucket assignment by
simply letting each feasible cluster define a bucket.

 11

Let us now formalize this idea for multiple-time periods by means of an integer
programming model. For each stand s, period t and bucket Bi define a binary

decision variable indicating whether or not stand s will be assigned to

bucket Bi in time period t. For each e ∈ E, t = 1,..., T, and i=1,…,S define a

binary decision variable indicating if at least one of the end-points of edge

e has been assigned to bucket Bi in period t.

Using these variables it is possible to use the following integer programming formulation
for the ARM problem (see Constantino et al. 2006):

 (15)

Subject to

 (16)

 (17)

 (18)

 (19)

 (20)(a)

 (20)(b)

€

as gs + T ⋅Y − t ⋅Y + gs() ys

it

i=1

S

∑
t=1

T

∑










s=1

S

∑ ≥G asys

it

s=1

S

∑ (21)

€

ys
it
∈ {0,1}

€

∀i =1,…,S,∀s =1,…,S,∀t =1,…,T (22)

 (23)

The objective function, (15), is to maximize the total harvest revenue. Constraints (16)
impose that each stand can be assigned at most to a single bucket throughout the planning
horizon. Constraints (17) impose that clusters are pair wise non-adjacent. This is achieved
by imposing that at most one bucket intersects each edge in the forest. Constraints (18)
impose the relationship between the and variables. That is, each time a stand is

assigned to a bucket, the variable corresponding to the edges which it touches must be
triggered. Constraints (19) impose that the total area of stands in a bucket cannot exceed A.
Constraints (20) impose the volume flow condition and constraints (21) impose the average
ending age condition. Constraints (22) impose integrality of the y variables. Constraints (23)
impose non-negativity of the variables. Note that it is not necessary to impose
integrality for the variables, as a feasible schedule will be fully determined by the y
variables.

 12

As with the Cluster Packing Formulation, it is observed in Constantino et al. (2006) that a
tighter formulation can be obtained replacing edges by cliques. For this, define a binary

decision variables for each i=1,…,S, each t = 1,…,T, and each K ∈ Π, indicating if

at least one of the stands in clique K has been assigned to bucket Bi in period t.
Then, substitute constraints (17), (18), and (23) by:

 (17)(b)

 (18)(b)

 (23)(b)

A very important feature of this formulation is that the number of rows and columns is
independent of the maximum clear-cut size A. As the value of A increases all that needs
change in this formulation is the right-hand side of constraints (19). In the Path
formulation, the number of constraints increases exponentially with A, and in
the Cluster Packing formulation, the number of columns increases
exponentially with A. This makes the Bucket formulation especially significant for
problems in which the average stand size relative to the maximum clear-cut size is small.

Despite this fact, however, the formulation can still be very large in practice. In order to
make up for this, Constantino et al. (2006) propose a series of pre-processing ideas to make
the formulation practical to real applications. Without going into all the details, we briefly
summarize the two key ideas for effective pre-processing:

• Assume that the clusters defined from bucket Bi will only be made up of stands sj with j

= i,…,S. In this way, each cluster will be uniquely represented by the bucket
corresponding to its lowest stand index.

• Consider a bucket Li and time period t. Only define variables for stands s such that

there exists a feasible cluster C containing both s and i. In this way, stands that are too
far away from s will not be included in bucket Bi.

3 Incorporating additional spatial constraints into the ARM

There are many possible extensions to the basic ARM. Such extensions are often
fundamentally important to different planning applications. In this section we discuss
several such extensions and ways of incorporating them into the three different
formulations.

3.1 Harvest costs

While income from timber sales can be approximated as a summation of the
volumes from all harvested stands, costs are not necessarily linear. There are
usually fixed costs involved in harvesting an area, such as establishing a work
force, setting up operations and moving equipment (Weintraub et al. 1999).
Other costs include fencing, which depends on the perimeter length of the
harvested area. McDill et al (2002) point out that the cost savings achieved by
joint management of adjacent stands can be significant.

In the Cluster Packing approach it is straightforward to consider fixed costs or
non- linearities because costs for each cluster are derived a priori. It is not
clear how this issue can be imposed in the other formulations in a simple way.

 13

3.2 Average clear-cut size constraints.

In certain cases, imposing average clear-cut size constraints can provide much
flexibility. For example, instead of imposing clusters never exceed a size of 40
hectares, it could be imposed that in average they never do so. Recent voluntary
initiatives, such as that of the American Forest and Paper Association (2001),
promote the use of such average constraints, as opposed to strict area
limitations.

Let

€

A
t
 equal the maximum allowed average clear-cut size for time period t. A

bound on the average clear-cut size can be imposed using the following
constraint in the Cluster Packing Formulation (see Murray et al. 2004):

 (24)

Observe that imposing (24) in the cluster packing formulation still requires that
a maximum area be imposed when defining the feasible cluster variables.

This constraint can also be imposed in the bucket formulation by use of the
following constraints:

€

∀t =1,…,T

€

ys
it
− yi

it
≤ 0

€

∀i =1,…,S,∀t =1,…,T

(25)

The validity of this constraint follows immediately from the observation that

defines a lower bound on the total number of clusters selected for

harvesting. Observe that an advantage of the bucket formulation over the
cluster packing formulation in terms of this constraint is that a strict maximum
area requirement need not be imposed in the bucket formulation.

It is not clear how this constraint can be imposed in the path formulation.

3.4 Green-Up constraints

Green-Up constraints extend maximum clear-cut area constraints to multiple-time periods.
That is, they impose that once an area is harvested, adjacency conditions should still be
enforced for that area during a certain amount of time which is called a green-up period.
The length of this period depends on the species that are replanted, and the length of each
period. For example, the American Forest and Paper Association (2001) promotes
adopting “green-up requirements, under which past clear-cut harvest areas must have trees
at least 3 years old or 5 feet high … before adjacent areas may be clear-cut.”

We distinguish between two types of green-up constraints, namely dynamic and static
green-up constraints. The main difference between the two is that dynamic green-up
constraints enforce the adjacency condition at the stand level, whereas static green-up
constraints enforce the condition at the cluster level. It is important to note that this is a
fundamental difference that has not been made explicit in other articles. For example, the
notion of green-up employed by Goycoolea et al. 2005 and Constantino et al. 2005 is that

 14

of static green-up. However, the notion of green-up used by Gunn and Richards 2005b,
Barrett and Giles 2000 and Davis et. al. 2001 is that of dynamic green-up.

Consider a green-up period equal to Δ. That is, if a stand is harvested in period t, it will be
considered in clear-cut state for all periods in {t, . . . , t + Δ-1 }.

Dynamic green-up constraints limit the combined area of contiguous stands in clear-cut
state independent of the moment in which the stands were harvested. Dynamic green-up
constraints can be easily implemented by adding prescription variables (see Gunn and
Richards 2005b, Barrett and Giles 2000 and Davis et. al. 2001). Under our assumptions of
only one possible treatment, the formulation obtained has two sets of variables. One
indicates when a stand is harvested and the other when a stand is in clear-cut state. The
details for implementing this formulation in the ARM model are as follows. We first
introduce additional binary variables zs,t for each stand s and each period t and then modify
some of the constraints. The idea of these variables is that they should indicate if stand s is
harvested in time t, whereas the variables ys,t and xC,t should indicate if a stand or cluster is
in clear-cut state during period t.

For the Path Formulation constraints (2) need to be replaced by,

 (26)

For the Cluster Packing formulations constraints (10) need to be replaced by,

 (27)

For both formulations it is necessary to add constraints,

 (28)

In addition, changes need to be made to both models, since the objective function, volume
flows, and average ending age constraints should be stated in terms of the z variables as
opposed to the y and x variables. For example, objective functions (1) and (9) should be
replaced by,

 (29)

Modifying the Bucket Formulation is analogous to modifying the Path Formulation.

Static green-up constraints (Goycoolea et al. 2005, Constantino et. al. 2005) are different in
the sense that they mimic the effect of green-up constraints over the URM model. The
main difference with the dynamic green-up approach is that in static green-up forces all
contiguous stands in a clear-cut state are to be harvested in the same time period. A
methodological advantage of this is that green-up constraints can be easily imposed at the
cluster level without the introduction of any additional variables.
Static green-up constraints can be implemented in the Clique Cluster Packing formulation
by extending the clique inequalities to:

 (30)

€

ys,t = zs,q
q= t−Δ +1

t

∑

 15

in the Path Formulation by adding,

 (31)

(where M is some suitable large number), and in the Bucket Formulation by extending
(17)(b) to:

We now illustrate the difference between the dynamic and static green-up constraints using
the following example. Again consider Figure 3 that consists of a narrow forest made up of
4 stands. Assume that in this example the green up requirement is of two time periods, that
all stands span ten hectares, and that the maximum clear-cut size is twenty hectares. Thus,
if stand 1 is harvested in period 1, stand 2 in period 2, stand 3 in period 3, and stand 4 in
period 4, we observe that for t=1 there will be a single clear-cut cluster {1}, for t=2 there
will be a single clear-cut cluster {1,2}, for t=3 a clear-cut cluster {2,3}, for t=4 a clear-cut
cluster {3,4}, and for t=5 a clear-cut cluster {4}. Given that in all time periods the clusters
satisfy the maximum clear-cut size condition, the solution is feasible for the dynamic green-
up constraints. However, this same solution would not be valid for the static green-up
constraints.

It is interesting to note that the introduction of such green-up constraints and the choice
between the dynamic or static versions can have important consequences in terms of
spatial analysis. In fact, many of the specialized Cluster Packing constraints have to be
carefully considered. This is because the shapes of clear-cut areas will be constantly
changing in time when using dynamic green-up constraints. For example, consider the
average clear-cut size constraints described in Section 3.2. Should the average size be
considered in terms of the clear-cut clusters as they evolve in time? Or should the average
size only be considered in terms of when clusters are actually harvested? How should fixed
costs be defined when using dynamic green-up constraints?

3.3 Restricting the set of feasible areas

In certain applications it may be of importance to restrict the actual shapes of
harvested clusters. For example long, elongated clusters may be undesirable
from an operational point of few, and clusters with holes in the middle may be
undesirable in terms of wildlife protection. In some cases it may even be
desirable to limit the minimum size of a clear-cut area (Andalaft et al. 2003).
This condition is applied when determining fixed costs is difficult. In the
Cluster Packing formulation all such constraints are easily imposed by
discarding clusters having non-desirable shapes or characteristics through a
preprocessing phase. It is not clear how this issue can be imposed in the other
formulations in a simple way.

3.4 Using alternative definitions of adjacency

It has long been recognized that adjacency conditions can be interpreted in a variety of
ways. The classic approach is merely to infer adjacency when two stands share a common
border or edge (point-touch adjacency). However, adjacency could be defined based upon
many conceived notions of proximity, both spatial and aspatial (for example, see Walters
1996). There are several reasons why it might be desirable to consider different definitions
of adjacency. As it has been pointed out before, when using point-touch adjacency
definitions, maximum clear-cut size constraints tend to leave managed forests very

 16

fragmented, reducing it to small, disconnected patches, each having a reduced interior area
(Gustafson and Crow 1998, Borges and Hoganson 2000, Rebain and McDill 2003). While
some species might prefer early successional stage habitats (which often occur in forest
edges), it is well known that this can be very detrimental to many others.

Part of the problem is due to the fact that a single definition of adjacency is used in current
models to simultaneously model two different aspects of harvest scheduling. On the one
hand it is used to define when a group of stands make up a cluster, and in the other, it is
used to define how far apart different clusters should be from each other. Point-touch
adjacency metrics seem a reasonable measure with which to define clusters. This is because
(for operational reasons) one would like the stands which make up a common cluster to be
tightly packed together. However, it seems a poor choice for defining cluster
incompatibility as one would like clusters well separated one from another, possible by a
wide buffer.

An alternative to point-touch definitions of adjacency for use in defining cluster
incompatibility would consist in defining clusters to be adjacent when they are within a
certain distance of each other; say, M meters (distance adjacency). In this way, if we
consider a single time period model it is easy to see that harvested clusters will be separated
one from another by a wide buffer, and that the diameter of the standing forest will be at
least M meters wide at all points; except, possibly, near the edges. If in addition it is
imposed that clusters should be M meters away from the edge of the forest, then the
resulting harvest plans will be such that the standing forest is entirely connected and that
the diameter condition will hold throughout. In this way we would obtain a forest where
the un-harvested region is connected by corridors of width M meters throughout. By
properly combining distance adjacency metrics with green-up constraints it is possible to
ensure that these connectivity conditions extend in time.

Goycoolea et al. (2005) define this variation of the ARM, which considers two
simultaneous definitions of adjacency, as the Extended Area Restriction Model (EARM).
As they point out, formulating this model using the cluster packing formulation is trivial. In
fact, it is simply a matter of defining the clusters with one definition, and using the latter to
define the cliques which define the compatibility constraints. It is not clear how this
issue can be imposed in the path and bucket formulations.

4 Computational Tests

4.1 Introduction

In order to compare the performance of the different integer programming approaches,
tests were conducted on four forest regions. The goal of the experiments was to assess:

(a) The size of the different formulations. We focus on the number of columns, rows,
and non-zeroes resulting in the formulation of real forest instances. Special
attention is paid to how the size changes relative to the maximum clear-cut size
condition.

(b) The strength of the linear programming relaxation bounds. The proximity of the
linear programming relaxation bound to the value of the best known feasible
solution is compared. Special attention is paid to how this proximity changes with
the number of time periods considered, and with the use of volume flow, average
ending age constraints and green-up constraints.

 17

(c) The amount of time required to solve problems with each formulation. The time
required to solve each problem to optimality is compared, as well as the time
required to find feasible solutions having a reasonable gap (one percent).

The first data set, El Dorado, corresponds to a United States national forest region in
northern California. Sets Shullkel and Lemon Creek, correspond to Canadian national
forest regions in Nova Scotia and British Columbia. The last set, NBCL5 corresponds to a
publicly owned tract of industrial forest region in New Brunswick. Each data set contains
information describing the age, timber volume, and area for each stand. All of these data
sets, with the exception of Lemon Creek1, are available at the FMOS (2006) web.
Furthermore note that a choice of maximum clearcut size of 16.19 hectares was chosen
instead of 48.56 hectares for Shullkel and Lemon Creek. Similarly a choice of 32.37
hectares was chosen for NBCL5. This is because these instances have many stands which
are very small. Thus, limiting the maximum clearcut size assures that the problems could be
formulated in at most 2 GB of RAM. In Table 1 some basic information concerning these
instances is summarized.

Instance Stands Total Area

[hectares]

Min Stand

Area

[hectares]

Avg. Stand

Area

[hectares]

Max Stand

Area

[hectares]

Maximum Clearcut

Size [hectares]

El Dorado 1,363 21,147.03 4.05 15.52 47.09 48.56

Shullkel 1,039 4,498.75 0.13 4.33 112.36 16.19

Lemon Creek 6,675 40,814.17 2.84 6.11 97.74 16.19

NBCL5 5,881 60,393.1 0.99 10.27 99.95 32.37

Table 1. Problem instance information.

These forests were selected because their characteristics make them induce
relatively hard to solve ARM models. For example, El Dorado has a fairly
homogeneous age distribution which usually results in harder ARM models
(McDill and J. Braze. 2000, McDill et. al 2002). Computational results should
then be considered illustrative of types of forests.

In order to carry out the tests, two stands were defined as adjacent if they
touched in a line. The revenue was assumed proportional to the timber volume
for each stand. For multiple time-period runs a discount rate of 3% was applied
to each period. When using volume flow constraints, we defined Lt = 1 –
15/100, and Ut = 1 + 15/100, for all t =1,…,T. Unless specifically stated
otherwise, no green-up constraints were imposed. When using average ending
age constraints, the average ending age was required to be of 40 years. Stands
having an area larger than the maximum imposed limit were ignored. Note that
the Path formulation strengthening of Crowe et al (2003) and Gunn and
Richards (2005) as described in Section 2.1 were not used.

All runs were made on a Pentium IV (Xeon) running at 2.40 ghz and with 2 GB
of RAM running Linux. All programs were written in the C++ programming
language, and ILOG CPLEX 9.0 was utilized for all linear and integer
programs solves. Summaries of the runs can be found in Tables 3-9 and in

1 The original Lemon Creek data contained so many stands that none of the one period formulations could
be generated even when using a computer with 12 GB of RAM. For this reason the data set was modified by
aggregating stands together until no stand had an area below 2.83 hectares. This modified instance is what
will be denoted as Lemon Creek from here on.

 18

Graph 1. Unless otherwise noted, all runs were made using the default CPLEX
settings and a maximum time limit of 10,000 seconds (≈2.8 hours) was
imposed. Finally, note that the times reported do not take into account the
amount of time taken to build the problem, e.g. the time required to enumerate
all clusters and cliques and set up the formulation. However, the enumeration
algorithms described in Section 2 ran very fast. In fact, completely formulating
(e.g. enumerating clusters, cliques, and defining the constraints) each of the
problems took less than one minute for most combinations of instances and
approaches. More specifically, the average formulation time for the Path,
Clique-Cluster Packing and Bucket formulations was 28.97, 23.39, and 73.08
seconds respectively.

4.2 Size of the different formulations.

Our first experiment consisted in formulating our four test cases using the different
formulations, and comparing the resulting sizes. As a preliminary step it was necessary to
enumerate all of the feasible and minimally infeasible clusters, as well as all of the maximal
cliques for each forest. In Table 2 we list the number of each of the enumerated objects
when using the maximum clear-cut size areas indicated in Table 1.

Instance Stands F. Clusters M. I. Clusters M. Cliques

El Dorado 1,363 21,411 20,629 2,033
Shullkel 1,039 29,630 12,889 1,093

Lemon Creek 6,675 87,336 175,743 10,766
NBCL5 5,881 94,912 52,136 5,967

Table 2. Number of clusters and cliques.

As can be seen, the number of clusters (both feasible and minimally infeasible)
per stand is roughly 10-30, and the number of maximal cliques is 1-2 per stand.
Further, it can be observed that the number of feasible clusters is similar to the
number of minimally infeasible clusters in each forest. Thus, it would be
expected that the total number of rows and columns should be very similar for
the Path and Clique-Cluster Packing formulations. This is confirmed in Table
3, where we describe the number of rows, columns and non-zero coefficients
for each of the three formulations when considering the specific case in which
there are three time periods, and both volume and ending age constraints.

Instance PATH CLIQUE-C. PACKING BUCKET

 Cols Rows NZ Cols Rows NZ Cols Rows NZ
El Dorado 4089 63255 297952 64233 7467 1280747 114309 264987 760437

Shullkel 3117 39711 233113 88890 4323 1822338 60264 135111 418464
L.Creek 20025 533909 2359277 262008 38978 5234423 684171 1579148 4435775
NBCL5 17643 162294 915292 284736 23787 5352639 294981 633042 1942489

Table 3. Size for 3 periods.

For example, consider instance El Dorado. It can be seen that the total number of rows
and colums for the cluster formulation is 71,700, and for the Path formulation 67,344. On
the other hand, it can be seen that the Bucket Formulation results in much larger problems
for these tests. In El Dorado the number of rows and columns adds up to 379,296. It can
also be seen that the cluster formulation is by far the densest formulation (in terms of non-
zeroes).

 19

Our next experiment consisted in increasing the maximum clear-cut size to see how this
affects problem size. As should be expected, problem size increased exponentially with
both the Path and Clique-Cluster Packing formulations. Increasing the size of the
maximum clear-cut condition by 60% resulted in an increased problem size of roughly
500%. Not surprisingly, problem size increased linearly with the Bucket Formulation. That
the Bucket Formulation grows at all is due to the fact that the pre-processing becomes less
effective as the maximum clear-cut size value is increased. This can be observed in the case
of El Dorado (3 time periods, with volume flow and average ending age constraints) in
Graph 1. By observing the graph we can see that if the maximum clear-cut size increases to
72.84 hectares or more, then the Bucket formulation becomes the most compact (in terms
of total number of columns and rows) of the three. It is interesting to observe how the
average cluster size grows with the maximum clear-cut size condition. Table 4 shows that
in the specific case of El Dorado, the size of feasible clusters nearly doubles when
increasing the average clear-cut size condition by 60%.

Graph 1. Impact of maximum clear-cut size parameter.

Maximum clearcut size
(hectares)

Average cluster size Maximum cluster size
(number of stands)

48.56 3.57926 7

53.42 4.01706 8
58.27 4.46242 8
63.13 4.91272 9
67.99 5.36555 10
72.84 5.81671 10

 20

77.7 6.26803 11

Table 4. Impact of maximum clear-cut size parameter (El Dorado).

4.3 Strength of the Linear Programming Relaxation.

Our second experiment consisted in solving the linear programming relaxation of each test
case with 1, 3, and 5 time periods. We also solved For El Dorado with 12 time periods. For
each problem we considered up to four variants; one without using volume flow, ending
age or any green-up constraints (labeled as “T”, indicating the number of time periods
considered), one using both volume flow and average ending age constraints (“T,
volume+age”), and two using volume flow, average ending age, and dynamic green up
constraints (“T, volume+age, green-up”, where the last parameter indicates the length of
the green-up period). For each run we recorded the time it took to solve the problem (root
lp time) and in addition, the value of the best solution obtained. Then, for each instance we
kept the best solution found among all the different runs. For each run we compared the
value of the lp relaxation to the value of the best known feasible solution for the
corresponding instance (root lp gap). If x is the value of the best known solution for a
given instance, and r is the value of the lp relaxation obtained using a given formulation,
then the corresponding root lp gap would have value ((r/x)-1)*100. For example, the best
known feasible solution for El Dorado (T=1) has value x=2154060 and the lp relaxation
for the Bucket formulation has value r = 2249236.2. Thus, the value of root lp gap is
(2249236.2/2154060-1)*100 = 4.4184. The results are illustrated in Table 5.

 Path Cl ique-C. Packing Bucket

 Number of t ime per iods, and
extensions used in the formulat ion.

Root lp
gap (%)

Root lp
t ime (s)

Root lp
gap (%)

Root lp
t ime (s)

Root lp
gap (%)

Root lp
t ime (s)

T=1 5.81% 0.84 0.16% 0.57 4.42 % 802.71
T=3 5.67% 17.9 0.57% 22.86 3.51 % 10000+

T=3, volume+age 0.74% 12.11 0.08% 8.35 0.47% 444.21
T=3, volume+age+greenup=2 7.16% 12.22 0.38% 6.97 5.11% 10000+

T=5 3.21% 92.91 0.44% 31.77 2.01% 8916.97
T=5, volume+age 0.25% 13.05 0.05% 13.19 0.13% 394.81

T=5, volume+age+greenup=2 3.37% 247.7 0.96% 215.79 2.63% 10000+
T=5, volume+age+greenup=3 8.31% 538.1 0.52% 500.92 5.16% 10000+

T=12 0.79% 41.38 0.08% 33.68 0.53% 1541.38
T=12, volume+age 0.47% 16.12 0.46% 31.61 0.48% 706

T=12, volume+age+greenup=2 5.89% 621.43 5.74% 120.85 5.86% 10000+

E
l

D
o

ra
d

o

T=12, volume+age+greenup=3 12.44% 1125.19 10.83% 2259.42 11.98% 10000+
T=1 2.16% 0.29 0.02% 0.37 4.00% 33.5
T=3 1.06% 3.54 0.06% 2.97 0.77% 107.55

T=3, volume+age 0.38% 7.06 0.03% 9.85 0.55% 148.7
T=3, volume+age+greenup=2 7.75% 22.18 0.13% 27.72 7.14% 5644.02

T=5 0.34% 14.71 0.02% 4.49 0.25% 82.47
T=5, volume+age 0.03% 12.67 0.01% 14.08 0.08% 89.8

T=5, volume+age+greenup=2 1.16% 45.41 0.37% 109.2 1.29% 4138.67

S
h

u
lk

el
l

T=5, volume+age+greenup=3 7.45% 155.86 0.15% 103.1 6.78% 10000+
T=1 14.16% 24.26 0.17% 5.32 5.71% 10000+
T=3 7.24% 52.24 1.23% 29.46 3.72% 10000+

T=3, volume+age 1.65% 381.12 0.68% 2303.17 1.18% 10000+
T=5 3.75% 11012.59 0.61% 1759.53 2.51% 10000+ L

em
o

n

C
re

ek

T=5, volume+age 0.25% 2021.5 0.08% 1555.07 0.19% 10000+
T=1 0.78% 1.58 0.01% 1.5 2.49% 286.34
T=3 0.21% 13.71 0.01% 10.21 0.42% 64.6

T=3, volume+age 0.04% 120.4 0.01% 31 0.08% 267.5 N
B

C
L

T=3, volume+age+greenup=2 0.34% 63.05 0.02% 54.07 0.75% 1285.87

 21

T=5 0.07% 48.29 0.00% 14.43 0.18% 176.59
T=5, volume+age 0.01% 267.42 0.01% 66.82 0.02% 504.05

T=5, volume+age+greenup=2 0.09% 1122.17 0.01% 32.73 0.12% 496.51

T=5, volume+age+greenup=3 0.24% 1936.1 0.03% 108.8 0.43% 1368.18

Table 5. Strength of linear programming relaxations and time required to

solve.

Several observations arise:

It can be seen that the cluster formulation yields, by far, the tightest root lp
gaps. For example, consider the Lemon Creek instance (T=3,volume+age). The
root lp gap for the Path formulation is 1.65% and for the Bucket formulation
this value is 1.18%. However, the value for the Clique-Cluster Packing
formulation is 0.68%. In general, however, all three formulations perform
rather well with the averages gaps (over all test cases) for the Path, Clique-
Cluster Packing and Bucket formulation being 3.13%, 0.73% and 2.45%
respectively.

In Theorem 1 it was proved that the lp relaxation gap of the Clique-Cluster
Packing formulation could never be less tight than that of the Path
formulation. However, no such relationship was established between the
Bucket formulation and any other. From the table it can be seen that neither
the Path nor Bucket formulation is stronger than the other. In fact, for El
Dorado (T=5) it can be seen that the Bucket formulation is tighter than the
Path formulation. However, for Shulkell (T=1) it can be seen that the converse
holds. On the other hand, the table suggests that it may be true that the Clique-
Cluster Packing formulation is always tighter than the Bucket formulation (this
is observed in every instance considered).

The time required to solve the LP relaxation of the Bucket formulation is
considerably longer than that required to solve the Path and Clique-Cluster
Packing formulations. We attempted to solve the same instances with the
barrier method (as opposed to the default cplex settings), and though several
problems took considerably less time to solve, others took much longer – thus
making it unclear which method was the better. It would seem this difficulty
should be further studied.

As the number of time periods increases, the root lp gaps tend to decrease
in the Path and Bucket formulations. A clear example is the El Dorado
problem with the Path formulation, where the root lp gap values for
T=1,T=3,T=5 and T=12 are 5.81%, 5.67%, 3.21% and 0.79%. The Clique-
Cluster Packing formulation, on the other hand, seems to peak when T=3. For
example, consider the Lemon Creek instance, in which the lp root gaps for
T=1,T=3, and T=5 are 0.17%, 1.23%, and 0.61% respectively.

Adding the volume and ending age constraints decreases the lp root gap
values in all formulations. For example, in the Path formulation, observe that
El Dorado (T=5) has root lp gap 3.21%, and that El Dorado (T=5,
volume+age) has root lp gap 0.25%. However, adding the extended green-up
constraints (greenup=2, greenup=3) increases the root lp gaps in all
formulations. In El Dorado (T=3, volume+age) it can be seen that the Path
formulation has root lp gap 0.74%. However, when green up constraints are
introduced, this value goes up to 7.16%.

The impact of imposing green-up constraints seems to be much less severe
in the Clique-Cluster Packing formulation than in the Path and Bucket

 22

formulations. For example, consider the Shulkell (T=5, volume+age) instance.
The root lp gaps for the Path, Clique-Cluster Packing, and Bucket formulations
are 0.34%, 0.02% and 0.25% respectively. However, when introducing
greenup=3 constraints, these values increase to 7.45%, 0.15% and 6.78%
respectively.

4.4 Solving the integer programming problem.

Our third experiment consisted in solving the integer programming problem
(with a time limit of 10,000 seconds) for each of the problem variants
considered in Section 4.3. The main tool used for measuring performance was
the gap. Given an incomplete run of a branch and bound algorithm, let zu be
the value of the current upper bound and zl be the value of the best known
feasible solution. We compute gap as (zu/zl-1)*100. For each optimization run
we recorded the time at which the first feasible solution within a provable one
percent of optimality was obtained (“First 1% solution”, in seconds) and the
best provable gap obtained after the 10,000 second time limit expired (“Final
gap / Opt time”). In those cases in which a problem was solved to optimality
within the time limit, the number of seconds required to complete the solve is
indicated in parenthesis. If no feasible solution was found, or no feasible 1%
solution was found, we indicate this with a dash in the corresponding column.
The results obtained are summarized in Table 6.

 Path Cl ique-C. Packing Bucket

 First 1%
solut ion

Final gap
(Opt t ime)

First 1%
solut ion

Final gap
(Opt t ime)

First 1%
solut ion

Final gap
(Opt t ime)

T=1 - 2.07% 2.93 (4.3 s) - 2.58%
T=3 - 3.62% 171.94 (5417.4s) - 15.26%

T=3, volume+age 27.19 0.13% 73.42 0.01% 1433.18 0.44%
T=3, volume+age+greenup=2 - 7.52% 173.48 (1732.6) - -

T=5 - 1.71% 269.99 0.09% - 11.38%
T=5, volume+age 36.02 0.03% 101.72 0.07% 841.14 0.23%

T=5, volume+age+greenup=2 - 2.77% 2379.93 0.80% - -
T=5, volume+age+greenup=3 - 8.68% 1817.17 0.19% - -

T=12 73.61 0.28% 109.48 (192.31 s) 3533.57 0.79%
T=12, volume+age 1684.58 0.45% - 1.98% - 2.69%

T=12,volume+age+greenup=2 - 5.79% - 5.72% - -

E
l

D
o

ra
d

o

T=12, volume+age+greenup=3 - - - 10.69% - -
T=1 19.21 (6315.2 s) 0.9 (1.0 s) - 1.80%
T=3 37.04 0.36% 12.82 (22.8 s) 1376.34 0.50%

T=3, volume+age 120.03 0.11% 74.45 (497.3 s) 3960.02 0.47%
T=3,volume+age+greenup=2 - 4.92% 38.44 (1190.9 s) - -

T=5 16.26 0.06% 17.53 (28.2 s) 148.93 0.12%
T=5, volume+age 17.12 (786.6 s) 31 (2878.1 s) 223.39 0.19%

T=5,volume+age+greenup=2 - 1.01% 655.44 0.27% - -

S
h

u
lk

e
ll

T=5, volume+age+greenup=3 - 6.04% 340.99 0.07% - -
T=1 - 13.50% 17.75 (35.4 s) - -
T=3 - 7.35% 9850 0.91% - -

T=3, volume+age - 3.06% 7143.51 0.62% - -
T=5 - 5.19% 8544.3 0.41% - - L

e
m

o
n

C

re
e
k

T=5, volume+age 8831.06 0.52% 1716.68 0.06% - -
T=1 11.9 0.22% 4.15 (4.4 s) - 1.14%
T=3 20.41 0.04% 30.56 (65.9 s) 286.89 0.18%

T=3, volume+age 132.78 (235.7 s) 55.21 (250.3 s) 1334.25 0.05%
T=3,volume+age+greenup=2 260.66 0.14% 208.19 (474 s) - - N

B
C

L

T=5 53.6 0.02% 43.25 (71.8 s) 216.08 0.07%

 23

T=5, volume+age 340.68 (3948.79 s) 104.22 (1103.7 s) 999.91 (3302.3 s)
T=5,volume+age+greenup=2 1341.34 0.06% 293.78 0.01% 2067.39 0.48%

T=5, volume+age+greenup=3 2086.22 0.16% 703.52 0.02% - -

Table 6. Solving the integer programming problem.

Several observations:

The Clique-Cluster Packing formulation significantly outperformed the Path
and Bucket formulations in problems without volume, ending age, and green-
up constraints, having managed to solve most of these to optimality. The other
formulations had a very difficult time even finding solutions within one percent
on these problems. Example: For El Dorado (T=1), the Clique-Cluster Packing
formulation found a 1% solution in 2.93 seconds and solved the problem to
optimality in 4.3 seconds. However, after 10,000 seconds the Path formulation
had only managed to establish a solution within 2.07% of optimality, and the
Bucket formulation a solution within 2.58% of optimality.

The performance of the Clique-Cluster Packing formulation relative to that
of the Path formulation is most significant when the difference between the LP
relaxation bounds is large (see El Dorado, T=1). On the other hand, when the
difference between the LP relaxation bounds is small, the performance of both
methods is more similar, with the Path formulation sometimes performing
better (see Shulkell, T=5, volume+age).

Problems with green-up constraints proved considerably harder to solve for
all of the formulations. For the Lemon Creek problem we were simply unable
to obtain feasible solutions with any of the formulations.

In problems with no green up constraints, but with volume and age
constraints, the relative performance of the Path and Clique-Cluster Packing
formulations seems to depend on the number of time periods. In fact, for T=1
instances the Clique-Cluster Packing formulation seems to perform better, yet
for T=5 instances (and the T=12 instance) the Path formulation seems to be
the top performer.

In most of the runs, the Bucket formulation did not perform as well as the
other two. In fact, in more than half of the runs it was unable to even find a
feasible solution. This was very surprising; especially when comparing these
results to those reported in Constantino et al. (2006), where very different
results are presented for the specific case of El Dorado. This discrepancy led
us to contact the authors of Constantino et al. (2006). We found that our
implementations differed in many aspects. First, we had used different
parameters for the discount rates, volume flows and average ending age
constraints. More importantly, however, we found that the LP formulations we
were ultimately solving were very different in terms of constraints and number
of variables. The reason for this turned out to be that the pre-processing
routine was dependent on the way stands in the forest was numbered. This
suggests that permuting the ordering of the stands could lead to alternative
formulation pre-processing schemes.

5. Final Remarks
In this paper we have reviewed the three major integer programming
formulations which have been proposed for the Area Restriction Model (ARM)
and have discussed how different spatial concerns can be addressed using each
approach. In addition, through computational tests, we have shown how these

 24

methodologies perform on a set of real problems of small to medium size. It is
important to keep in mind that due to the limited sample size of our
experiments, the results should be regarded as being illustrative rather than as
statistically significant in their conclusions.

All of these formulations, which have been developed during the last decade,
constitute an important first step in being able to solve the ARM to optimality.
However, it seems clear from our analysis that several important issues need to
be resolved before these methodologies can be extended to larger problems.
Some suggested research directions follow.

In Table 5 it can be seen that all three formulations provide very tight linear
programming bounds. However, solving these formulations to optimality via
branch and bound is painfully slow (see Table 6). Though much research has
been conducted in proposing customized heuristics for these problems, no
efforts have been pursued which combine such heuristics (lower bounds) and
linear programming to validate their quality (upper bounds). The tight bounds
obtained in Section 4.3 suggest that this may be a fruitful procedure in practice.
After all, solving the LP relaxation of these problems is very fast, and it is
natural to assume that the LP relaxation of much larger problems can be
solved. If the bound is as tight on these problems, and good customized
heuristics are developed, there may be no need to do branch-and-bound to
obtain provably good solutions.

As shown in Section 4.2, all three integer programming formulations result
in extremely large problems. Larger integer programming problems are hard to
solve, primarily because they require enormous amounts of memory to store.
With current methodologies, problems with over 30,000 stands, or problems in
which feasible clusters average more than ten stands each, seem largely
intractable. It would seem that in order to solve such problems decomposition-
based integer programming methodologies, such as cutting plane or column
generation algorithms, are necessary.

As shown in Section 4.3 and Section 4.4 it would seem that further research
in computationally effective ways of implementing the Bucket Formulation are
necessary. This approach is very promising as an alternative way of dealing with
problems where stands are very small relative to the maximum allowed clear-
cut area. So far, our computational experiments are largely disappointing. It has
been noted that one way of dealing with this issue is through more advanced
preprocessing schemes. This follows from the observation that the CPLEX
preprocessor eliminates a large amount of variables and constraints even after
the pre-processing steps described in Section 2.3. Some work in this direction
is currently being pursued by Mills and McDill 2006.

As observed in Sections 4.3 and 4.4, incorporating green-up constraints has
a very adverse effect on the linear programming relaxation gaps. This in turn,
makes the integer programming problems much harder to solve. Deriving new
classes of strong valid inequalities might be an important direction in being
able to better solve this variant of the ARM.

Incorporating old-growth stands into optimization-based forest harvest
planning is a key issue which to date has not been successfully tackled. The
Cluster based approach of Martins et al. (2005) and the Path based approach of
Rebain and McDill (2003) are both still very exploratory with only small
problem instances being solvable to date. Both studies raise very relevant

 25

questions, provide insightful analysis of obtained solutions and suggest a need
for further studies. Interesting methodological approaches to these problems
are also that of Ohman (2000) and Wei and Hoganson (2006) It is not clear
how these methodologies can be made to work better, or if instead, there is
another way of adapting current ARM formulations to consider this type of
constraint.

6. Acknowledgements

The authors would like to acknowledge Klaus Barber (USDA Forest Service),
John Nelson (University of British Columbia), and Evelyn Richards (University
of New Brunswick), for making the utilized forests available for analysis. The
authors would also like to acknowledge the help of the referees who have
greatly contributed to improving this document. Part of this research has been
funded by Fondecyt under grants 1060807 and 11075028 and the Millenium
project for Complex Engineering Systems.

7. Bibliography

American Forest and Paper Association. 2001. Sustainable forestry initiative
standard. Available online at http://www.afandpa.org/; last accessed on Feb 24,
2007.

Andalaft N., P. Andalaft, M. Guignard, A. Madgenzo, A. Wainer, A. Weintraub.
2003. A problem of forest harvesting and road building solved through model
strengthening and lagrangean relaxation. Operations research, 51(4):613-628.

Barahona F., R. Epstein and A. Weintraub. 1992. Habitat Dispersion in Forest
Planning and the Stable Set Problem. Operations Research, 40(1):S14-S20.

Barrett, T., Gilless J. and L. Davis. 1998. Economic and Fragmentation Effects
of Clearcut Restrictions. Forest Science, 44(4):569-577.

Barrett, T., and J. Gilless, 2000, Even-aged restrictions with sub-graph
adjacency, Annals of Operations Research, 95:159-175.

Borges, J.G., and H.M. Hoganson. 2000. Structuring a landscape by forestland
classification and harvest scheduling spatial constraints. For. Eco. Management.
130:269-275.

Boston, K. and P. Bettinger. 2002. Combining tabu search and genetic
algorithms heuristic techniques to solve spatial harvest scheduling problems.
Forest Science, 48:35-46.

Buongiorno, J., Gilless, J. K., 2003. Decision Methods for Forest Resource
Management. Academic Press, Elsevier Science, San Diego, California.

Caro, F., M. Constantino, I. Martins, A. Weintraub. 2003. A 2-Opt Tabu Search
Procedure for the Multi-Period Forest Harvesting Problem with Adjacency,
Green-up, Old Growth and Even Flow Constraints. Forest Science. 49(5): 738-
751.

 26

Clark, M.M., R.D. Meller and T.P. McDonald. 2000. A three-stage
heuristic for harvest scheduling with access road network development.
Forest Science 46: 204-218.

Constantino, M., I. Martins, and J. Borges. 2006. A new mixed integer
programming model for harvest scheduling subject to maximum area
restrictions. Operations Research. To appear.

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. Introduction To Algorithms.
Cambridge, MA: MIT Press, 1990.

Crowe, K., J. Nelson, and M. Boyland. 2003. Solving the area-restricted harvest
scheduling model using the branch and bound algorithm. Can. J. For. Res. 33(9):
1804-1814.

Davis, L.S., Johnson, K.N., Howard, T.E. and Bettinger, P.S. 2001. Forest
Management, Fourth Edition, McGraw-Hill, New York.

Diestel, R. 2006. Graph Theory. Springer-Verlag, New York.

Forest Management Optimization Site (FMOS). 2006. Richards, E.W. Available
online at http://www.unbf.ca/fmos/; last accessed Feb. 24, 2007.

Goycoolea, M., A. Murray, F. Barahona, R. Epstein and A. Weintraub. 2005.
"Harvest scheduling subject to maximum area restrictions: exploring exact
approaches". Operations Research, 53, 490-500, 2005.

Gunn, E. A. and E.W. Richards. 2005. Solving the adjacency problem with
stand-centred constraints. Canadian Journal of Forest Research. 35(4) 832-842.

Gunn, E. A. and E.W. Richards. 2005b. Construction of Stand-Centered Adjacency
Constraints and Properties. Technical Report.

Gustafson, E.J., and T.R. Crow. 1998. Simulating spatial and temporal context
of forest management using hypothetical landscapes. Environmental Management.
22(5). 777-787.

Hoganson, H.M. and Borges, J.G. 1998. Using dynamic programming and
overlapping subproblems to address adjacency in large harvest scheduling
problems. Forest Science 44: 526-538.

Hokans, R.H. 1983. Evaluating spatial feasibility of harvest schedules
with simulated stand-selection decisions. Journal of Forestry 81: 601-603,613.

Lockwood, C. and T. Moore. 1993. Harvest scheduling with spatial constraints:
a simulated annealing approach. Can. J. For. Res. 23: 468-478.

Martins I, M. Constantino and J. Borges. 2005. A column generation approach
for solving a non-temporal forest harvest Model with spatial structure
constraints. European Journal of Operations Research. 161(2):478-498.

 27

McDill, M. E. and J. Braze. 2000. Comparing adjacency constraint formulations
for randomly generated forest planning problems with four age class
distributions. Forest Science 47(3): 403–418.

McDill, M. E., S. Rebain, and J. Braze. 2002. Harvest Scheduling with Area-
Based Adjacency Constraints. Forest Science 48(4): 631–642.

Mills, S. and McDill M. E. 2006. Incorporating deer exclusion fence considerations into
area-restricted harvest schedule models. 12th Symposium for Systems Analysis in
Forest Resources, Vermont, USA.

Murray, A.T. 1999. Spatial Restrictions in Harvest Scheduling. Forest Science.
45(1):1-8.

Murray, A.T. and R.L. Church. 1995. Heuristic solution approaches to
operational forest planning problems. OR Spektrum 17: 193-203.

Murray, A.T. and Church, R.L. 1996. Analyzing cliques for imposing
adjacency restrictions in forest models. Forest Science 42: 166 - 175.

Murray A.T., R.L. Church 1997. Facets for node packing. European Journal of
Operational Research. 101: 598-608.

Murray A. T. and Weintraub, A. 2002. Scale and unit specification influences in
harvest scheduling with maximum area restrictions. Forest Science, 48 (4): 779 -
788.

Murray, A.T., M. Goycoolea, and A. Weintraub. 2004. Incorporating average
and maximum area restrictions in harvest scheduling models. Canadian Journal of
Forest Research, 34: 456-464.

Nelson, J. and Brodie, J.D. 1990. Comparison of a random search algorithm
and mixed integer programming for solving area-based forest plans. Can. J. For.
Res. 20: 934-942.

Nemhauser, G.L. and L.A. Wolsey 1988. Integer and Combinatorial Optimization.
John Wiley and Sons, Inc., New York.

O'Hare, A., Faaland, B.H. and Bare, B.B. 1989. Spatially constrained
timber harvest scheduling. Canadian Journal of Forest Research 19: 715-724.

Ohman, K. 2000. Creating continuous areas of old forest in long-term forest
planning. Canadian Journal of Forest Research 30: 1817-1823.

Richards, E.W. and Gunn, E.A. 2000. A model and tabu search method to
optimize stand harvest and road construction schedules. Forest Science 46:
188-203.

Rebain, S. M.E. McDill. 2003. A Mixed-Integer Formulation of the Minimum
Patch Size Problem. Forest Science. 49(4). 608-618..

 28

Ryan D. and B. Foster. 1981. An Integer Programming Approach to Scheduling,
Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew
Scheduling, A. Wren, (Ed.) North Holland, Amsterdam, 269-280

Snyder, S, ReVelle C. 1997. Dynamic Selection of Harvests with Adjacency
Restrictions: The SHARe Model. Forest Science 43(2): 213- 222.

Stroustrup, B. 1997. The C++ Programming Language. Addison-Wesley
Professional; 3rd edition.

Thompson, E.F., B.G. Halterman, T.S. Lyon and R.L. Miller. 1973.
Integrating timber and wildlife management planning. Forestry Chronicle
47: 247-250.

Tóth, Sándor F., Marc E. McDill and Sonney George. 2007. Strengthening
Cover
Inequalities for Area-Based Adjacency Formulations of Harvest
Scheduling Models. Submitted to Operations Research.

Vielma, J.P., A.T. Murray, D. Ryan, and A. Weintraub. 2007. Improving
Computational Capabilities for Addressing Volume Constraints in Forest
Harvest Scheduling Problems. European Journal of Operational Research. 176: 1246-
1264.

Walters, K.R. 1996. Defining adjacency and proximity of forest stands for
harvest blocking. Proceedings from GIS 1996. Vancouver, BC. March. Available
online at: http://www.remsoft.com/docs/library/gis96-1.pdf; last accessed Feb
28, 2008.

Ware, G.O., Clutter J.L., 1971, A mathematical programming system for the
management of industrial forests, Forest Science, 17:428-445.

Wei, Y. and Hoganson, H. 2006. Spatial information for scheduling core area
production in forest planning. Can. J. For. Res. 36: 23-33.

Weintraub, A., Barahona, F. y Epstein, R. 1994. "A Column Generation
Algorithm for Solving General Forest Planning Problems with Adjacency
Constraints" Forest Science. 40:142-161.

Weintraub, A., Epstein, R., Chevalier, P., Gabarró, J. 1999. A System for Short
Term Harvesting, European Journal of Operations Research 119:427-439.

 29

Appendix I. Enumerating sets in a forest graph.

In order to successfully implement any of the integer programming formulations described
in this article, it is critical that an efficient algorithm for enumerating sets in a graph be
used. In the case of the Path Formulation, for example, it is necessary to enumerate all
minimally infeasible clusters in order to define constraints (3). In the case of the Clique
Cluster Packing formulation it is necessary to enumerate all feasible clusters in order to
define the variables, and all maximal cliques in order to define constraints (32)(c). Finally, in
the case of the strengthened Bucket Formulation it is necessary to enumerate all maximal
cliques in order to define the clique-variables W and constraints (17)(b), (18)(b), and
(23)(b).

In Algorithm 1 we describe an algorithm for enumerating all minimally infeasible clusters
which can be defined from a forest. This algorithm works recursively, starting from clusters
comprised of a single stand, and growing them one stand at a time until the maximum area
is met. Note that this algorithm is, in its original form, very similar to the one used by
Rebain and McDill 2003.

More specifically, the algorithm starts by defining all feasible clusters composed of a single
stand and putting them in a set called S[1] (see lines 02-04). Then, a recursion is initiated
(line 05). At the beginning of the k-th iteration, the set S[k-1] will contain all feasible
clusters composed of exactly (k-1) stands. From these, the set S[k] is built by adding, to
each cluster in S[k-1] all stands which are contiguous to it and which do not make it grow
beyond the required limit (see lines 09-22). When adding a stand results in an infeasible
cluster we test if this cluster is minimally infeasible, and if so, store it (lines 15-17). The
recursion ends when we can no longer grow any clusters and remain feasible.

 30

Algorithm 1.
In order for this algorithm to run fast, special attention must be paid in steps 12 and 15 in

order to check if D ∉ S[k+1] or if D ∉ Λ+. If simple enumeration and
comparison is utilized, then the algorithm may run prohibitively slow. One way
of speeding this up could be by use of hash tables or binary trees (see Cormen
1990) to check for repetitions. Most modern programming languages (such as
C++ and Python) include special data structures (such as “sets” in C++) which
automatically check for repetitions. In our computational tests we found that
using the “set” class to define the sets S[k], rather than brute-force
comparison, for handling repetitions allowed us to reduce the running time of
this algorithm from many hours to a few seconds in most instances.

Note that it is easy to modify Algorithm 1 so as to generate all possible cliques.
In fact, it is simply a matter of deleting lines 12-17, and replacing these with

01. begin

02. for v∈V do

03. S[1]:=S[1] ∪ {v};

04. end for.

05. for k=1 to ∞ do

06. if S[k] is empty then

07. terminate;

08. end if.

09. for C∈S[k] do

10. for v∈N(C) do

11. D:=C∪{v};

12. if D is feasible and D ∉ S[k+1] then

13. S[k+1]:=S[k+1] ∪{D};

14. end if.

15. else D is minimally infeasible and D∉Λ+ then

16. Λ+:=Λ+U{D};

17. end else.

18. end for.

19. end for.

20. end for.

21. end.

 31

the following instructions:
After completing a run, each of the sets S[k] will contain cliques of size k. Note that

not all of these will be maximal. However, if a clique is not maximal it will
have been marked in step 13b, thus they can easily be identified.

12b. if D is a clique then

13b. Mark C as “non-maximal”;

14b. if D∉S[k+1] then

15b. S[k+1]:=S[k+1]U{D};

16b. end if.

17b. end if.

 32

Appendix II. Comparing strength of the Path and Cluster Packing formulations.

In this section, we prove the following Theorem and Corollary.

Theorem 1. Let x be a non-negative vector in . Define for each

stand s and each t=1,…,T. If x satisfies constraints (10), (11)(b), (12), (13) and
(14)(b) (that is, if x is in the LP relaxation of the Edge Cluster Packing
formulation) then y satisfies constraints (2), (3), (4), (5) and (6)(b) (that is, y is in
the LP relaxation of the Path Formulation). Further, we have that,

Corollary. The Cluster Packing formulation is tighter than the Path formulation. That is,
the value obtained by solving the LP-relaxation of the Edge Cluster Packing formulation
can never be strictly greater than that obtained from the Path Formulation.

Proof of the Corollary: Given any solution x valid for the linear programming relaxation

of the Edge Cluster Packing formulation, by defining , we obtain a solution

y valid for the LP relaxation of the Path formulation which has the same objective function
value. Thus, the optimal value of the linear programming relaxation to the Edge Cluster
Packing formulation must have a smaller or equal value than that of its Path counterpart, as
it is optimizing over a subset of possible objective values.

Proof of the Theorem: To provide a compact proof we need to use the language of
graph theory (Diestel, R. 2006). We will work in the graph of stands with vertex set
V=1,…,S and edge set E given by all pairs of adjacent stands.

For every set of stands U, let E(U) denote the set of all edges in E having both
end-points in U. Similarly, for every set of edges F ⊆ E, let V(F) denote the set
of all nodes in V which are an end-point to some edge in F.

Let L ⊆ E define a tree in G, if (a) L is connected in G, and (b) L contains no
cycles. Note that a tree L always satisfies |L| = |V(L)| - 1. A well known
result is as follows: If a set U ⊆ V is connected in G, then, there exists a tree L
⊆ E(U), such that V(L) = U.

Recall that Ω represents set of all feasible clusters, and Λ the set of all infeasible
clusters. Further, recall that for a set U ⊆ V we have that Ω(U) represents the set
of all feasible clusters intersecting U. That is, Ω(U) = { C ∈ Ω : C � U ≠ Ø }.

Let y be a non-negative vector in R|V| and let x be a non-negative vector in
R|Ω|.

Lemma 1. Assume that for all v∈V, the vectors x and y satisfy the following identity:

. For each v∈V consider a scalar and for each C ∈ Ω, assume that

. Consider a set U ⊆ V. Then,

 33

.

Proof of Lemma 1.

�

Lemma 2. Assume that for all v∈V, the vectors x and y satisfy the following identity:

.

 If

€

x
C

C∈Ω({uv})

∑ ≤1 ∀{u,v}∈ E then .

Proof of Lemma 2.
Consider an infeasible cluster U∈Λ.

On the other hand, given that U is connected, there exists a tree L⊆ E(U), such that
V(L) = U. Adding constraints (11)(b) over the edges in L, one obtains,

which is equivalent to,

€

x
C

|{u,v}∈ L : u∈ C or v ∈ C} |
C∈Ω

∑ ≤| L |=|U |−1

Thus, it suffices to prove that for all feasible clusters C∈Ω we have:

€

|{u,v}∈ L : u∈ C or v ∈ C} | ≥ |C∩U |
However, observe that

€

{{u,v}∈ L : u∈ C or v ∈ C}} can be partitioned into a disjoint

family of trees L1 ... Lk having the following properties:
• There is no edge in L joining Li and Lj for all i ≠ j.
• Defining Ci = V(Li) ∩ C, then, C ∩ U can be partitioned into the sets Ci.
• For each of the trees Li , there exists at least one edge with an end-point in Ci and the

other end-point in U – Ci (This is because U is connected, and because U – Ci is non-
empty). This implies that, |V(Li)| ≥ |Ci| + 1.

Putting everything together, it is easy to see that,

€

|{u,v}∈ L : u∈ C or v ∈ C} |= | L
i
|

i=1

k

∑ = |V (L
i
) |−1()

i=1

k

∑ ≥ |C
i
|

i=1

k

∑ =|C∩U |

�
Proof. From Lemma 1 it is easy to see that since (10), (12), and (13) hold, then
(2), (4), and (5) hold. From Lemma 2 it is easy to see that since (11)(b), then
(3) holds.

