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Questionnaires for adaptive choice-based conjoint analysis aim at minimizing some measure of the uncer-

tainty associated with estimates of preference parameters (e.g. partworths). Bayesian approaches to conjoint

analysis quantify this uncertainty with a multivariate distribution that is updated after the respondent

answers. Unfortunately, this update often requires multidimensional integration, which e↵ectively reduces

the adaptive selection of questions to impractical enumeration. An alternative approach is the polyhedral

method by Toubia et al. (2004), which quantifies the uncertainty through a (convex) polyhedron. The

approach has a simple geometric interpretation, and allows for quick credibility-region updates and e↵ective

optimization-based heuristics for adaptive question-selection. However, its performance deteriorates with

high response-error rates. Available adaptations to this method do not preserve all of the geometric sim-

plicity and interpretability of the original approach. We show how, by using normal approximations to

posterior distributions, one can include response-error in an approximate Bayesian approach that is as intu-

itive as the polyhedral approach, and allows the use of e↵ective optimization-based techniques for adaptive

question-selection. This ellipsoidal approach extends the e↵ectiveness of the polyhedral approach to the high

response-error setting and provides a simple geometric interpretation (from which the method derives its

name) of Bayesian approaches. Our results precisely quantify the relationship between the most popular

e�ciency criterion and heuristic guidelines promoted in extant work. We illustrate the superiority of the

ellipsoidal method through extensive numerical experiments.
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1. Introduction

Conjoint analysis (Green and Srinivasan 1978) is a set of methods used in market research to elicit

consumer preferences for products or services. Market researchers often envision products as vectors

of attributes, or profiles; consumer preferences are thus characterized in terms of a “partworth”

vector, which indicates how much a consumer values each particular attribute (in relative terms).

In conjoint studies, representative consumers are asked a series of questions about their preferences;

the data from their answers is used to estimate the parameters of an underlying model of consumer

preferences, as well as estimates of the individual partworth vectors.

In choice-based conjoint analysis (Louviere et al. 2000), each question presents a consumer with

a set of product profiles, among which the consumer is asked to choose the most preferred one.
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The resemblance of this task to the actual environment consumers face in the marketplace has

contributed to the popularity of choice-based methods.

Di↵erent questionnaires di↵er on the data collected from their application. E�ciency of a ques-

tionnaire is often measured in terms of the “precision” of the parameter estimates produced from

the data it generates. A natural measure of the precision of these estimates is a function of the deter-

minant of the covariance matrix of the estimates, which can be interpreted as function of the volume

of a credibility region or confidence set around the estimate. Such a measure is usually denoted the

D-error and minimizing it is often referred to as the D-criterion or seeking D-e�ciency. McFadden

(1974) shows that the D-error of a questionnaire depends on the underlying model parameters, thus

indicating that e�cient questionnaire design should include some form of sequential process that

adjusts questions as information on said parameters is inferred from respondents’ answers (Silvey

1980). E↵ectively, choice-based conjoint methods have evolved from static questionnaire designs

that ask the same set of questions to all respondents, to heterogeneous designs where questions are

designed using data from pre-tests and not every respondent answers the same set of questions.

In the last decade, advances in technology have allowed the development and implementation of

adaptive designs that adapt questions within a questionnaire based on the answers of the respon-

dent to previous questions. Toubia et al. (2004) in particular develops the polyhedral method for

choice-based conjoint analysis. The method allows for fast updates of the credibility region, which

is envisioned as a polyhedron, and selects questions adaptively using optimization-based meth-

ods. Unfortunately, the method does not perform well in settings with high response-error rates,1

and while many extensions addressing the issue have been proposed in the literature, none of

them maintain the simple and geometric intuition of the original method, nor its computational

implementability.

Objectives and assumptions. In this paper we develop an adaptive questionnaire method for

choice-based conjoint analysis that aims at maximizing the precision of the individual partworth

estimates. For this, we envision adaptive question-selection as a sequential decision-making prob-

lem under uncertainty and model the latter in a Bayesian framework. In this context, we model the

question-selection problem using dynamic programming and use moment-matching or expectation-

propagation techniques (e.g. (Gelman et al. 2013, Section 13.8)) to approximate the posterior

distribution given the response to a question. We then combine this approximation with mixed

integer programming (MIP) techniques to formulate the optimal selection of the next question.

We finally connect all these elements into a near-optimal one-step look-ahead moment-matching

approximate Bayesian policy we denote the ellipsoidal method due to its natural geometric inter-

pretation. In formulating the adaptive questionnaire design problem in a Bayesian framework we

assume: i) a binary encoding of the product profiles, so that possible constraints on product design
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are explicitly considered when selecting questions; that ii) consumer’s choice is driven by a mixed

logit model, where we assume that a (multivariate normal) prior distribution for the partworth

vector is available; and that iii) the number of questions in each questionnaire is fixed and given

upfront, and that on each question a respondent is presented with two product profiles, with no

implicit outside alternative.

The first assumption above is made to simplify the exposition (recall that D-error minimization is

invariant to recoding of attributes, (Arora and Huber 2001)). The assumption on the specific choice

model is made to facilitate the discussion and is quite common in the literature on questionnaire

design; all methods in this paper extend directly to the case of alternative specifications for the

idiosyncratic shocks to utility. The assumption of a prior distribution on the partworth vector is

also common in the literature, with the most studied case being that of a multivariate normal

distribution (see, e.g. Sándor and Wedel (2005)): see further comments and discussion in Section

4.4. Finally, while most theoretical results in the paper are developed for the case of two profiles

per question, our methods extend to the case of more profiles per question and presence of an

explicit outside alternative; see the discussion in Section 7.

Main Contributions. A first contribution lies in formulating the adaptive questionnaire design

problem as a sequential decision-making problem under uncertainty. In particular, our formulation

explicitly considers the objective of reducing the D-error of the partworth estimates. This provides

a clear guideline for comparing adaptive methods.

The second and arguably more significant contribution lies in proposing a method that approxi-

mates closely a one-step look-ahead optimal policy, and whose question-selection does not rely on

impractical enumeration. This method arises from applying an approximate dynamic program-

ming approach to finding the “optimal” one-step look-ahead questionnaire policy. In designing the

method we make two approximations. First, we follow a moment-matching approximate Bayesian

approach and approximate the posterior partworth distribution with a multivariate normal distri-

bution whose parameters are chosen so as to match those of the actual posterior distribution. We

show that implementing such an approximation only requires one-dimensional integration, inde-

pendent of the dimension of the partworth vector, and therefore it can be performed e�ciently

(see Proposition 1). The second approximation relates to e�cient question-selection: we show that

the expected posterior D-error (when the prior distribution is a multivariate normal) is a function

of only two scalars that are quadratic functions of the encoding of the profiles in a question. In

particular, we show that such an expected D-error depends on: i) the expected utility imbalance

between the profiles in the question; and ii) the variance of the posterior along the direction of the

question (see Proposition 2). This allows us to model optimal question-selection as a mixed integer

programming (MIP) problem, which can be solved e↵ectively using state-of-the-art MIP solvers.
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Moreover, we show that such an approach to question-selection extends to alternative variance

measures such as those based on asymptotic properties of the Fisher information matrix considered

in extant work (see Section 5.4).

The third contribution comes from interpreting the proposed method’s geometry and comparing

it to that of existing methods. Following Toubia et al. (2004) one can envision adaptive methods as

operating directly over credibility regions of the partworth vector (in our method, such credibility

regions are ellipsoids, and are updated via posterior computation). This interpretation, from which

the method derives its name, allows us to derive insight about the key principles behind optimal

question-selection, and to interpret them in terms of key guidelines driving question-selection in

previous work. In particular, in the polyhedral method questions are envisioned as hyperplanes

cutting through the (polyhedral) credibility region, and question-selection follows two main guide-

lines; i) choice-balance; and ii) post-choice symmetry. Both guidelines aim at minimizing D-error;

the first one is derived by the influential concept of utility balance (Huber and Zwerina 1996) in

non-adaptive questionnaire design; the second aims at obtaining “symmetrical” credibility regions,

which can be linked to reducing the volume of the expected credibility region. Prior work follow

these guidelines, often prioritizing one over the other, but do not identify a precise trade-o↵ between

them (e.g. Toubia et al. (2004), Bertsimas and O’Hair (2013)). In contrast, we characterize the

precise balance between choice-balance and post-choice symmetry needed to minimize the D-error.

In particular, our analysis reveals that the D-error is a non-trivial, but precisely characterized

function of choice-balance and post-choice symmetry. Furthermore, this function can be e�ciently

computed numerically through one-dimensional integration. This result reinforces the theoretical

justification of the choice-balance and post-choice symmetry guidelines advocated for in Toubia

et al. (2004) (see Proposition 2).

Finally, we present extensive numerical experiments showing that: (i) question-selection can be

performed in real-time with no noticeable delay between questions, thus providing strong evidence

of the implementability of the method; and that (ii) the ellipsoidal method outperforms other

geometric-based adaptive questionnaire design methods in various criteria. With regard to (i),

although our implementation relies on MIP and numerical integration, e�cient coding allows us to

solve MIP models and to approximate posterior distributions almost instantaneously. With regard

to (ii), our results show that the ellipsoidal method consistently outperforms the benchmark in

terms of minimizing D-error. Our experiments also show that the ellipsoidal method provides a

better estimate of the partworth vector, both with respect to the distance between the true and

estimated vectors and with respect to out-of-sample hit-rates. Furthermore, this advantage holds

for the native estimators of each method and for individual and Hierarchical Bayes estimators

computed o✏ine numerically. Finally, this advantage is also preserved when the prior distribution
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used by the methods is not centered at the true population mean. The complete source code of the

method implementations used for these experiments can be found at (Sauré and Vielma 2017).

Organization of the paper. The next section provides an overview on the relevant literature

on adaptive conjoint analysis. In Section 3 we present a Bayesian framework for optimal question-

naire design in choice-based adaptive conjoint analysis. Then, in Section 4 we interpret existing

geometric methods within the proposed framework, and discuss the use of prior information. In

Section 5 we present the proposed method for near-optimal question-selection, and provide the

geometric interpretation. Finally, Section 6 illustrates the performance of the ellipsoidal method

via a comprehensive set of numerical experiments, and Section 7 presents our final remarks. Proofs

and complementary computational results are included in Appendix A.

2. Literature Review

Static questionnaire design and e�ciency criteria. E�ciency of a questionnaire design is

commonly measured in terms of the “precision” of the parameter estimates, which are calibrated

with the data collected through the questionnaire. This precision is typically associated with some

function of the covariance matrix of the parameter estimates. For the case of choice experiments

under the random utility framework, McFadden (1974) shows that maximum likelihood estimates

are asymptotically normal, with a covariance matrix proportional to the inverse of the Fisher

information matrix. For this reason, and while various e�ciency criteria have been proposed (see,

e.g. Kuhfeld et al. (1994) and Yu et al. (2012) for overviews and discussion), the literature has

largely focused on minimizing the determinant of the inverse of the Fisher information matrix, an

approach known as D-criterion or D-e�ciency. The use of this criterion is often justified as the

volume of an credibility region for a multivariate normal distribution is proportional to the square

root of the determinant of its covariance matrix (see Segall (2010) for a discussion in a Bayesian

framework).

For choice experiments, the Fisher information matrix depends on the underlying partworth

vector, thus the e�ciency of a design depends on these unknown parameters. In this context,

Huber and Zwerina (1996) show that e�cient designs can be achieved when there is some form of

prior information on the model parameters. There, the authors identify four guidelines for e�cient

choice designs (balance, orthogonality, minimal overlap and utility balance), and show via numerical

experiments that e�ciency is improved by focusing on the latter utility balance guideline. Arora

and Huber (2001) operationalize this idea by proposing the aggregate customization approach

to questionnaire design which, roughly speaking, consists on building an e�cient (static) design

for the average respondent based on the information collected on a pretest. Sándor and Wedel

(2001) propose a similar approach in a Bayesian framework, and show that it leads to smaller
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credibility regions for the parameter estimates. Like in this paper, their focus is on minimizing an

approximation to the D-error, while leaving aside traditional design guidelines. That is also the

case of Kanninen (2002) which studies D-optimal questionnaires for the asymptotic approximation

based on the Fisher information matrix.

Recent work on static designs has focused in the case of consumer heterogeneity, usually in the

Bayesian framework. See for example Yu et al. (2009) and Kessels et al. (2009). The latter work,

in particular, is among the first (to the best of our knowledge) to suggest the use of individualized

adaptive questionnaires. In the same context, Sándor and Wedel (2005) depart from the work above

by proposing an heterogeneous questionnaire design where di↵erent sub-designs are applied to

di↵erent respondents. More recently, Liu and Tang (2015) propose an heterogeneous questionnaire

design with individualized sub-designs, which are shown to outperform extant methods numerically.

We refer to this latter work for a review of recent methods for static questionnaire design.

Roughly speaking, the work above, one way or the other, aim at improving e�ciency by exploiting

the fact that an asymptotic approximation to D-error depends on the partworth vector of each

respondent. This, while maintaining the paradigm of static/common questionnaires. Our work, on

the other hand, focuses on the design of adaptive questionnaires, which ought to lead to more

precise partworth estimates.

Adaptive choice-based Conjoint Analysis. Toubia et al. (2004) are among the first to propose

the use of adaptive questionnaires for choice-based tasks. Their approach consists on envisioning

the set of possible partworth vectors as a polyhedron, and questions as hyperplanes that cut

through said polyhedron. Assuming no response-error, they develop fast polyhedral updates and

optimization-based question-selection methods. The resulting method is simple and geometrically

intuitive, and, as shown in Hauser and Toubia (2005), it does not seem to su↵er from endogeneity

bias. Furthermore, the method can be very e↵ective when response-error is low, but its performance

can deteriorate when response-error is high.

Toubia et al. (2007) provide a probabilistic interpretation of the polyhedral method and propose a

Bayesian extension that incorporates response-error and allows the use of informative priors. In this

method, uncertainty over the partworth vector is represented through a mixture of uniform distri-

butions over polyhedra, and response-error modeling favors tractability. Although it preserves the

intuitive geometric interpretation of the original method, computation time of question-selection

and the Bayesian update scale unfavorably with the number of questions, which limits its applica-

tion. Bertsimas and O’Hair (2013) present another extension of the polyhedral method, in which

response-error is addressed using robust optimization modeling. There, parameter uncertainty is

polyhedral, although its representation involves the possibility of reversing a fraction of the respon-

dent’s answers. In Section 4 we provide a bayesian interpretation of the geometric methods above,

as they are used as benchmark in our numerical experiments.
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Based on statistical learning theory, Abernethy et al. (2008) adapt the polyhedral method so that

question-selection aims at reducing the uncertainty surrounding parameter estimates when these

are computed by minimizing a regularized network loss function (Question-selection is implemented

heuristically by adapting the utility balance and post-choice symmetry criteria in the original

method). Like in the work above, this paper presents an adaptive method for questionnaire design

for conjoint analysis somewhat inspired by the polyhedral method.

Our work is also related to Yu et al. (2011), which describe an hybrid static/adaptive full

Bayesian model to minimize D-error in the context of choice-based conjoint studies. Using a panel

mixed logit model, after an initialization phase, the method computes the posterior distribution

of the respondent’s partworth vector after each response, which is then used to select the next

question so as to minimize the immediate expected D-error, thus e↵ectively resulting on a one-

step look-ahead policy. Posterior computation requires multidimensional integration, and question-

selection amounts to enumeration (Bliemer and Rose 2010), which renders the approach impractical

(see Crabbe et al. (2014) for a similar approach focusing in entropy minimization). The method

we propose can be seen as an approximation to a full Bayesian approach in which one strives to

maintain practical and theoretical tractability, a clear geometric interpretation and to shed light

on the principles guiding optimal question-selection.

Outside the realm of Conjoint Analysis, Toubia et al. (2013) present a non-bayesian methodology

for adaptive questionnaire design for estimating preferences. Their focus is on the version of D-

e�ciency based on the Fisher information matrix. We show how our proposed methods can also

work with this alternative definition in Section 5.4.

Conjoint Analysis and Operations Research.Our work applies operations research techniques

to address adaptive choice-based conjoint analysis, and as such joins a large list of previous work

in marketing. The work above on adaptive questionnaires is a good example, per its use of robust

and convex optimization techniques.

Preference estimation is also view as a component of conjoint studies. Like Toubia et al. (2004),

Cui and Curry (2005), Evgeniou et al. (2005) and Evgeniou et al. (2007) approach estimation of

preferences in conjoint settings as an optimization problem without assuming an underlying prob-

abilistic structure on the data. While Cui and Curry (2005) solve a constrained quadratic problem,

Evgeniou et al. (2005) in addition solve nonlinear problems. Focusing on consumer heterogeneity,

Evgeniou et al. (2007) adapt the ridge regression method to estimating preferences which amounts

to solving a more general convex loss function. The models in this paper are endowed with a

probabilistic structure, thus we use the natural Bayesian estimator. However, we do compare our

estimator with that in Toubia et al. (2004).
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Huang and Luo (2016) propose the use of active machine learning algorithms for adaptive

question-selection in the context of preference elicitation for complex products. Their question-

selection is guided by the utility balance criterion and uses convex optimization to select the next

question. Dzyabura and Hauser (2011) also use machine learning techniques to design adaptive

question-selection when respondents use heuristic decision rules. Unlike approaches reviewed so

far, their method focuses on minimizing (via enumeration) expected posterior entropy. Like in our

paper, their method approximates the posterior distribution so as conduct question-selection with-

out noticeable delay. When explicit enumeration is impractical, question-selection is driven instead

by a criterion similar to utility balance.

3. A Bayesian Framework for Optimal Adaptive Conjoint Analysis

3.1. Adaptive questionnaires

We adopt the classic profile representation of products in terms of attributes and levels. In particu-

lar, we encode a product profile via a binary vector x2 {0,1}n, where a one on the i-th component

indicates that the product is endowed with attribute i, and is 0 otherwise. We assume that feasible

profiles belong to a set X ✓ {0,1}n (without loss of generality, this set may contain an outside

alternative).

In the conjoint task, each respondent faces a sequence of questions, which we index by k 2

{1, . . . ,K}, where K denotes the total number of questions. Each question consists of a set of

product profiles, among which the respondent is asked to select the most preferred one. Here, we

assume that each question consists of two profiles, although the analysis extends for the case of

more alternatives. We denote by xk and yk the first and second profiles presented in question k

to a respondent, respectively. Also, we denote by a
k

2 {1,2} the (random) profiled selected by a

respondent on question k.

In this context, a questionnaire is a sequence
�

(xk, yk) , kK
 

of questions adapted to the

filtration generated by the questions and answers given by the respondent, i.e. (xk, yk) is F
k

-

adapted, where F
k

:= � (xl, yl, a
l

, l < k), and F
1

:= ; .

3.2. Estimation Framework

3.2.1. Respondent Choice We assume that a respondent’s (compensatory) preferences are

characterized by a vector of partworths � 2Rn representing the relative importance she assigns to

product attributes. In particular, a respondent assigns a utility U
x

to product profile x 2 {0,1}n,

with

U
x

:= � ·x+ "
x

,
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where a · b :=
P

n

i=1

a
i

b
i

denotes the inner product of two vectors a, b 2 Rn, and "
x

is a random

idiosyncratic shock to utility. We assume that consumer choice follows a logit model, i.e. the shocks

to utility are i.i.d. random variables, each following a (standard) Gumbel distribution independent

of x, and respondents select the profile with the highest utility among those o↵ered. That is, for

k 2 {1, . . . ,K} we have that a
k

is the random variable given by a
k

= 1 + 1
�

U
x

k

U
y

k

 

, k  K,

where 1{·} denotes the indicator function of a set. With this assumption, it is well known that

P (a
k

= 1|�) = e�·x
k

e�·xk + e�·yk
. (1)

In this context, we say response-error occurs whenever � ·xk > � ·yk and U
x

k

U
y

k

, or � ·xk  � ·yk

and U
x

k

>U
y

k

.

3.2.2. Prior Information, Update and Estimation While the respondents’ partworths

are unknown upfront, we assume that they are drawn from a prior multivariate normal distribution

with a known mean µ0 2Rn and covariance matrix ⌃
0

2Rn⇥n. Given a respondent’s answer to a

question this prior distribution is updated using Bayes’ rule and (1) as a likelihood function. More

precisely, after observing a sequence of questions and answers F
k

we can construct a posterior

distribution of a respondent’s partworths whose density is given by

f (�|F
k

) :=
� (�;µ0,⌃

0

)L (F
k

|�)
P (F

k

)
,

where

� (�;µ,⌃) :=
1

(2⇡)n/2 det (⌃)1/2
e�

1
2 (��µ)

>
⌃

�1
(��µ)

denotes the density of a multivariate normal distribution with mean µ and covariance matrix ⌃,

det (·) denotes the determinant of a matrix,

L (F
k

|�) :=
Y

l<k: a

l

=1

e�·x
l

e�·xl + e�·yl
Y

l<k: a

l

=2

e�·y
l

e�·xl + e�·yl

is the likelihood function of F
k

given � and (1), and P (F
k

) =
R

Rn

� (�;µ0,⌃
0

)L (F
k

|�)d�. This

posterior distribution can be used directly for any stochastic optimization problem that requires

information about � or the information can be simplified using a summary statistic. For instance,

a natural point-wise estimate of � given the events in F
k

is its expectation under the posterior, i.e.

µk :=E (�|F
k

) =

Z

Rn

�f (�|F
k

)d�.

Similarly, the covariance matrix of the posterior distribution of � can be calculated as ⌃
k

:=

E
⇣

(��E (�|F
k

)) (��E (�|F
k

))>
�

�F
k

⌘

. However, both these summary statistics require multidi-

mensional integration, so even approximating them can be computationally expensive.
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3.3. Optimal Question Selection Policy

The stated objective of questionnaire design in conjoint experiments is the precision of partworth

estimates. In the Bayesian context this precision is usually quantified through the expectation of

some function of the posterior covariance matrix ⌃
k

(Yu et al. 2012). In particular, the most widely

used e�ciency criterion focuses on minimizing the D-error, i.e. the expected n-th root of det (⌃
k

)

when ⌃
k

is an n⇥n matrix. (Huber and Zwerina 1996, Sándor and Wedel 2005).

While we focus on the minimizing the expected n-th root of det (⌃
k

) in our experiments, we

more broadly consider the d-th root of det (⌃
k

), where d is not necessarily equal to n. In particular,

we consider the geometric interpretation of the case d= 2 which explains one intent of the D-error.

This interpretation arises by considering the construction of a confidence set or credibility region

of level � > 0 for a given distribution (i.e. a region that contains � of the mass of the distribution).

For a multivariate normal distribution with mean µ and covariance matrix ⌃, a natural credibility

region is given by the ellipsoid

E (µ,⌃, r(�)) :=
�

� 2Rn : (��µ)>⌃�1(��µ) r (�)
 

(2)

where r(�) is the �2-value (with n degrees of freedom) located at the � percentile, so that

P
N(µ,⌃)

(� 2 E (µ,⌃, r(�))) = � (Anderson 1984). The volume of this ellipsoid is a natural dispersion

measure and is proportional to det (⌃)1/2. While the posterior distribution is no longer multivariate

normal, E (µk,⌃
k

, r
k

(�)) for an appropriately chosen r
k

(·) should provide a good approximation

of a credibility region for relatively small k (e.g. in this setting we expect the posteriors to be

nearly multivariate normal or at least unimodal). Hence det (⌃
k

)1/2 should provide a reasonable

dispersion or precision measure. We denote this measure the volumetric D-error.

In our Bayesian context, the general D-error det (⌃
k

)1/d is a random variable dependent on

F
k

. Then, an optimal adaptive questionnaire is a non-anticipative strategy ⇡ than minimizes the

expected final D-error. That is, an optimal strategy ⇡ is such that

⇡ 2 argmin
n

E
⇣

det (⌃
K

)1/d
⌘

: (xk, yk)F
k

-measurable for all kK
o

. (3)

As a sequential decision problem under uncertainty, the formulation above can be casted as a

dynamic program (Bellman 1957). Considering the set of questions and answers F
k

observed prior

to a question as the state variable, the Bellman (value function) recursion is given by

V
k

(F
k

) = min
x

k

,y

k2X
E
�

V
k+1

(�(F
k

[
�

xk, yk, a
k

 

))
�

, (4)

with the border condition V
K+1

(F
K+1

) = det (⌃
K+1

)1/d. We are interested in V
1

(;). In general, the

formulation above is intractable not only because computing posterior distributions require multi-

dimensional integration and optimal question-selection can only be resolved via enumeration, but
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also because the state space scales exponentially with the number of questions and the dimension of

the partworth vector, a fact known as the curse of dimensionality of dynamic programming (Powell

2007). A popular heuristic solution in dynamic programming is the so-called one-step look-ahead

policy that, in a nutshell, operates in each period as if it was the last period in the horizon. In the

context of formulation (4), this translates into treating each question as if it was the last one in

the questionnaire. In Section 5 we show how the di↵erent geometric methods in the literature can

be seen as one-step look-ahead policies, applied over an approximation to the D-error metric.

4. Geometric Benchmark and Prior Information

Next, we use the framework of the previous section to provide an interpretation of the geometric

methods reviewed in Section 2, which will serve as benchmark in our numerical experiments.

4.1. Polyhedral Method

Introduced in Toubia et al. (2004), the choice-based Polyhedral method maintains credibility

regions in the form of polyhedra, assumes no response-error, and focuses question-selection on

the precision of the partworth vector estimate after the credibility region update. In particu-

lar, the method begins with a credibility region in the form of a non-empty polyhedron P
0

:=

{� 2Rn :A�  b} that is believed to contain the true partworth vector. Upon observing the answer

to question k, the method updates this credibility region assuming that there is no response-error,

i.e. that "
x

k

= "
y

k

. Thus, the update preserves only those regions in P
0

that are absolutely “con-

sistent” with a respondent’s answer. Letting P
k

denote the polyhedra representing the credibility

region after observing the answer to question k� 1, the update is given by

P
k+1

:=P
k

\
(

�

� 2Rn : � ·xk � � · yk

 

if a
k

= 1
�

� 2Rn : � ·xk  � · yk

 

if a
k

= 2.
(5)

Note that the representation via a polyhedron is preserved by the update, thus contributing to the

simplicity of the method.

A Bayesian interpretation of this approach is that the initial prior distribution on the partworth

vector is the uniform distribution on polyhedron P
0

and that the likelihood function is obtained

from the choice probability

P (a
k

= 1|�) = 1
�

� ·xk � � · yk

 

.

Toubia et al. (2004) propose using analytic center of P
k+1

(which can be computed e�ciently, see

Bertsimas and Tsitsiklis (1997)) as a point-wise estimate of the partworth vector after question k.

Standard computation of the analytic center also yields an approximation of the covariance matrix

of the uniform distribution over P
k

which can be used to construct an ellipsoidal approximation

of P
k

known as Sonnevend’s ellipsoid (Sonnevend 1986). With regard to question-selection, the

method follows two main guiding principles:
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• Choice-balance: select question k so that respondents are as indi↵erent as possible between

choices xk and yk. Geometrically, this principle aims to minimize the distance between hyper-

plane (xk � yk) ·� = 0 and the center of polyhedron P
k

.

• Post-choice symmetry: select question k to minimize the maximum variance of any combina-

tion of partworths in P
k+1

. Geometrically, this principle aims for hyperplane (xk � yk) ·� = 0

to be as orthogonal as possible to the longest “axis” of polyhedron P
k

.

These criteria are heuristically implemented as follows. First, the center and axes of the poly-

hedron are approximated by the analytic center and axes of the associated Sonnevend’s ellipsoid

(these can be found e�ciently via nonlinear optimization and eigen-decomposition techniques).

Then, the intersection of this longest axis (starting from the analytic center) with P
k

yields two

partworth vectors �1 and �2; xk and yk are found solving two independent optimization problems:

xk 2 argmax
�

�1 ·x : x2X , c ·xM
 

and yk 2 argmax
�

�2 ·x : x2X , c ·xM
 

,

where M > 0 is a (randomly drawn) constant and c is the analytic center of P
k

. If xk happens to

be identical to yk, a new M is resampled and the problems are resolved, repeating until xk 6= yk.

4.2. Probabilistic Polyhedral Method

Introduced in Toubia et al. (2007), this method generalizes the Polyhedral method by assuming

respondents make “mistakes” with constant probability. In its simplest version, the probabilistic

polyhedral method follows the Bayesian interpretation of the Polyhedral method using an ini-

tial prior distribution that is uniform on polyhedron P
0

. However, instead of using the no-error

likelihood function obtained from (5), its likelihood is obtained from the choice probability

P (a
k

= 1|�) =
(

↵ � ·xk � � · yk

1�↵ � ·xk < � · yk

.

where ↵2 (0,1) is a tuning parameter representing the probability of a “correct” answer.

Although there is no explicit construction of credibility regions, the posterior distribution can be

interpreted as a generalization of a polyhedral credibility region as it corresponds to a mixture of

uniform distributions over polyhedra. The general version of the probabilistic polyhedral method

uses this interpretation to incorporate informative priors that are more complex than simply the

uniform distribution on polyhedron P
0

. We discuss such informative priors in Section 4.4.

With regard to question-selection, the method follows a direct adaptation of that of the poly-

hedral method: the analytic center of the mixture of polyhedra is computed as the mixture of the

analytic centers of the polyhedra; and the longest axis of a mixture of polyhedra is computed as

the vector that maximizes the weighted norm of its projection on the longest axes of the polyhedra
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in the mixture. While there is a closed-form expression for the longest axis of a mixture, the

procedure requires computing the analytic center and longest axis of each polyhedron in said mix-

ture. Unfortunately, the number of polyhedra grows exponentially with the number of questions,

which renders their exhaustive enumeration impractical. Because of this, the practical implemen-

tation of the question-selection procedure for the probabilistic polyhedral method simply considers

a constant number of polyhedra with the largest weights.

4.3. Robust Method

Proposed by Bertsimas and O’Hair (2013), the method adapts the polyhedral method to handle

response-error via robust optimization. The method starts with an initial polyhedral credibil-

ity region P
0

, which is updated by adding only some of the linear inequalities associated with

a respondent’s answers, reversing the sign of the remaining ones to represent the possibility of

response-error. Considering a tolerance parameter ⇢ < 1 representing the maximum fraction of

responses one is allowed to reverse, the method maintains the credibility region given by

P
k+1

:=

(

� 2P
0

: 9S ✓ {1, . . . , k} s.t. |S| ⇢k ^
� ·x

l

� � · y
l

, 8 l /2 S, a
l

= 1 or l 2 S, a
l

= 2

� ·x
l

 � · y
l

, 8 l 2 S, a
l

= 1 or l /2 S, a
l

= 2

)

,

where S represents the questions in which the respondent’s answers are reversed. The resulting

credibility region is no longer a polyhedron, but can be represented as the feasible region of a MIP.

Bertsimas and O’Hair (2013) obtain a point-wise estimator by combining this MIP representation

with the nonlinear optimization problem used to compute the analytic center of a polyhedron. This

can be interpreted as a mixed integer nonlinear programming (MINLP) version of the analytic

center.

With regard to question-selection, Bertsimas and O’Hair (2013) focus exclusively on the choice-

balance criterion. To achieve this, they select the next question by solving (via enumeration)

(xk, yk)2 argmin

⇢

|(x� y) · c|
kx� yk : x, y 2X , x 6= y

�

,

where c is a generalization of the analytic center.

4.4. Informative Priors and Ellipsoidal credibility regions

One salient feature of bayesian approaches to question-selection is the possibility of incorporating

any prior information on preferences via the prior distribution of the partworth vector. This pos-

sibility arises in the context of both static and adaptive questionnaires (see e.g. Sándor and Wedel

(2005) Yu et al. (2011)); some work even suggest incorporating information across respondents into

adaptive question-selection (see e.g. Dzyabura and Hauser (2011), Huang and Luo (2016)).



14 Sauré and Vielma: Ellipsoidal Methods for Adaptive Choice-Based Conjoint Analysis

In this regard, one way the probabilistic polyhedral method improves upon the polyhedral

method is by incorporating prior information. In particular, Toubia et al. (2007) show how a mix-

ture of polyhedra can be used to approximate a multivariate normal prior over the partworth vector

� at the cost of using mixtures of uniform distributions on polyhedra. An alternative is to use the

LOG-Het approach proposed by Evgeniou et al. (2007) to incorporate multivariate priors through

a regularization in the analytic center estimation procedure. This approach was incorporated into

the question-selection procedure for standard multivariate normal priors by Abernethy et al. (2008)

and can be directly extended to general multivariate priors. However, it requires selecting a penalty

parameter that can be hard to tune in the context of individualized partworth estimate procedures.

One might avoid selecting such a parameter by using Bayesian methods such as the one described

in Section 3. However, Bayesian methods replace the parameter selection with potentially costly

multidimensional integration.

Fortunately, one can incorporate multivariate normal priors to all geometric methods by consid-

ering ellipsoidal credibility regions such as (2). To achieve this, instead of starting from an initial

polyhedral credibility region P
0

we may instead start from an initial ellipsoidal credibility region

given by

P
0

:= E
�

µ0,⌃
0

, r(⇢)
�

(6)

for some confidence level ⇢, where µ0 2Rn and ⌃
0

2Rn⇥n are the mean and covariance matrix of

the multivariate normal prior. This modification can be easily incorporated into all the geometric

methods described in the previous sections. For instance, the analytic center and Sonnevend’s ellip-

soid have straightforward extensions to the intersection of an ellipsoid and polyhedron (Boyd and

Vandenberghe 2004). Furthermore, incorporating such ellipsoidal priors only incurs in a marginal

computational cost when using state-of-the-art optimization techniques. In addition, it yields a

way to incorporate informative priors with a simple geometric interpretation. For these reasons

from now on we assume that all geometric methods (benchmark described so far and new methods

described in the following sections) begin from the initial ellipsoidal credibility region (6).

One of the advantages of having ellipsoidal credibility regions is that getting a point-wise estimate

and a dispersion measure is straightforward.2 Unfortunately, this simplicity disappears if we update

the region with any of the methods described so far. This also applies to the proper Bayes update of

a normal prior distribution of the partworth vector: the posterior distribution is not elliptical, and

thus credibility regions are not ellipsoids. However, for the Polyhedral method we could exploit the

fact that we can e�ciently compute the minimum volume ellipsoid containing the intersection of

an ellipsoid and a half-space defined by a linear inequality (see, e.g. Grötschel et al. (2011)). Hence,

we could simply replace such ellipsoid/half-space intersection obtained after the first question with
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the corresponding minimum volume ellipsoid. Repeating this for each question would allow us to

maintain an ellipsoidal credibility region. In preliminary experiments, this approach provided a

tangible improvement to the polyhedral method and a similar approach has been used in the context

of pricing in Cohen et al. (2016). However, an undesirable artifact of the minimum volume ellipsoid

is an increment in variance in directions orthogonal to the question defining the half-space. We can

use some linear algebra to correct this variance increment, but our preliminary experiments showed

that both these minimum ellipsoid approaches are dominated by the Bayesian-based ellipsoidal

approximation of the posterior credibility region we describe in the following section.

5. The Approximate Bayesian Ellipsoidal Method

The attractiveness of the polyhedral method follows mainly from: i) its simplicity and clear geomet-

ric intuition; and ii) its suitability for incorporating optimization techniques into question-selection.

Unfortunately, these features mostly disappear in the extensions discussed in the previous section.

For example, the clear interpretation of P
k

as a credibility region is lost in the probabilistic and

robust adaptations of the method. Also, the steps required to either perform a region/distribution

update or to select a question get more convoluted (cf. the notion of the longest axis of a mixture

of polyhedra and the proposed generalization of the analytic center in the robust approach).

Next, we propose a method that approximates the optimal adaptive questionnaire while pre-

serving the positive features of the polyhedral method mentioned above. In addition, the method

maintains the treatment of response-errors of the Bayesian approach. At the core of the method

are the following approximations.

• Following all benchmark methods from Section 4, we focus on a one-step look-ahead approx-

imate dynamic programming policy that assumes the next question is the last.

• We use a moment matching approximate Bayesian approach to approximate all posterior

distributions with a multivariate normal distribution in a computationally e�cient way.

• We combine approximate Bayesian and MIP techniques to approximate the optimal question-

selection problem as a MIP.

The first approximation above allows us to approximate the dynamic programming formulation

(4) with V
k

(F
k

) =min
x

k

,y

k2X E
⇣

det (⌃
k+1

)1/d
⌘

; the second approximation allows us to replace the

state variable F
k

with the mean µk and covariance ⌃
k

of the approximate normal posterior; the

third approximation replaces E
⇣

det (⌃
k+1

)1/d
⌘

with a MIP-based approximation ǧ that depends

on (xk, yk), µk and ⌃
k

. With this, the approximate dynamic program becomes

V
k

(µ
k

,⌃
k

) = min
x

k

,y

k2X
ǧ
�

(xk, yk), µk,⌃
k

�

.
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In the sequel, we show that the minimization above, as well as the computation of the normal

posterior approximation, can be carried out almost instantaneously for practical instances of the

problem, and thus can be implemented in a real-time environment. Moreover, we show that by

envisioning the posterior update in terms of the underlying ellipsoidal credibility regions, the

method admits a simple and clear geometrical interpretation.

5.1. E�cient Approximate Posterior Updates

As argued in Section 3.3, a multivariate normal distribution should provide a reasonable approx-

imation to the posterior distribution of the partworth vector (after a single question) when its

prior is also multivariate normal. This is precisely the premise of moment-matching approxima-

tion approaches (e.g. (Gelman et al. 2013, Section 13.8)). The main di�culty for constructing the

approximate normal posterior is the numerical computation of the posterior’s mean and covari-

ance matrix, which often involves approximating a series of n-dimensional integrals. Fortunately,

moment matching approximations for Bayesian logistic regression problems like the one we face can

be e�ciently computed by approximating a series of one-dimensional integrals (e.g. (Gelman et al.

2013, page 340)). The following proposition, whose self-contained proof is included in Appendix A,

formalizes this result.

Proposition 1. For two profiles x, y 2X such that x 6= y, let ⌦ := {� 2Rn : U
x

�U
y

} and suppose

that � ⇠N(µ,⌃). Furthermore, let

- ⌃1/2 be the square root or Cholesky decomposition of ⌃ such that ⌃=⌃1/2

�

⌃1/2

�>
,

- µ
x,y

:= (x� y) ·µ and �
x,y

:=
�

�

�

�

⌃1/2

�>
(x� y)

�

�

�

be the mean and variance of question (x� y) ·�,
- W = [w1, . . . ,wn] 2 Rn⇥n where {wi}n

i=1

is an orthonormal basis such that w1 =
�

⌃1/2

�>
(x�

y)/�
x,y

, and

- Z is a random variable with density

f
Z

(z) :=
(1+ e�µ

x,y

��
x,y

z)
�1

�(z)
R

R (1+ e�µ

x,y

��
x,y

z)�1

�(z)dz
,

where �(·) denotes the standard normal density.

Then,

E (�|⌦) = µ+
�

⌃1/2W
�

1

E (Z) and Cov(�|⌦) =
�

⌃1/2W
�

✓

Var (Z) 0
0 I

◆

�

⌃1/2W
�>

, (7)

where
�

⌃1/2W
�

1

denotes the first column of matrix ⌃1/2W .

Proposition 1 allows for the fast computation of approximate posteriors, thus keeping the method

computationally tractable and practical. Indeed, the moments of Z above can be e�ciently com-

puted through one-dimensional numerical integration or Montecarlo simulation (in our implemen-

tation, we chose the former). In terms of the geometry of the method, as mentioned before, one
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can envision the approximate posterior update in terms of the credibility regions of the prior and

posterior distributions: the ellipsoidal credibility region is updated as follows

E
�

µk,⌃
k

, r(⇢)
�

! E
�

µk+1,⌃
k+1

, r(⇢)
�

,

where the dependence between approximate prior and posterior parameters, for a given question

and answer, is that specified by (7).

Next, we show that Proposition 1 allows us not only to work e�ciently with the posterior

distribution, but also to write a simple optimization problem to conduct question-selection.

5.2. E�cient Approximate Optimal Question Selection

In this section, we use Proposition 1 to write D-error minimization via MIP. The next result shows

that, for a given question, evaluation of D-error can be conducted via one-dimensional integration.

In addition, it sheds light into the importance of choice-balance and post-choice symmetry and

more importantly, yields the precise trade-o↵ between them to minimize D-error.

Proposition 2. For two profiles x, y 2 X such that x 6= y, let a := 1 + 1{U
x

U
y

} and suppose

that � ⇠N(µ,⌃). Furthermore, let

- µ
x,y

and �
x,y

be the mean and variance of question (x� y) ·� as defined in Proposition 1,

- p (m,v) :=
R

R (1+ e�m�vz)
�1

�(z)dz, and Z (m,v) be a random variable with density

f
Z(m,v)

(z) :=
(1+ e�m�vz)

�1

�(z)

p (m,v)
,

where �(·) denotes the standard normal density and m,v 2R with v > 0.

Then, for any integer d� 2 we have

E
a

⇣

det (Cov (�|a))1/d
⌘

:= det (⌃)1/dg (µ
x,y

,�
x,y

) ,

where g (m,v) := p (m,v)Var (Z (m,v))1/d + p (�m,v)Var (Z (�m,v))1/d.

Proposition 2 shows that the expected D-error is proportional to a two-variable function g of

the mean and variance of question (x� y) · � under � ⇠N(µ,⌃). Such a two-variable function is

depicted in Figure 1(a) for the volumetric D-error which corresponds to d= 2. From Figure 1(a)

we see that the D-error is smaller the closer the question mean (x� y) · µ is to zero. In terms

of the geometry of the method, the closer the question mean is to zero, the closer the question

cuts through the center of the prior ellipsoid. Hence, the D-error is smaller the closer we are to

satisfying choice-balance. Similarly, we see that the D-error decreases as the question variance
�

�

�

�

⌃1/2

�>
(x� y)

�

�

�

= (x� y)>⌃ (x� y) increases. If the question cuts through the center of the
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(a) Exact function. (b) Piecewise linear approximation.

Figure 1 Two variable function relating question mean and variance with D-error.

prior ellipsoid, the question variance is maximized precisely when the question is orthogonal to

the largest axis of the prior ellipsoid. Hence, the D-error is smaller the closer we are to satisfying

post-choice symmetry. As we study further in Section 5.5, this suggests that the two principles

used for question-selection in the polyhedral method are precisely those that, if properly balanced,

yield the smallest expected D-error. Furthermore, Proposition 1 gives us a precise way to optimize

D-error over a restricted set of questions through

min
n

g
⇣

(x� y) ·µ,
�

�

�

�

⌃1/2

�>
(x� y)

�

�

�

⌘

: x, y 2X , x 6= y
o

. (8)

As written, (8) is still impractical as it is a non-convex MIP whose objective function can only

be evaluated numerically. However, numerical computation is only necessary for the evaluation of

g (m,v) at di↵erent points (m,v) and such a computation only requires one-dimensional numerical

integration or Montecarlo simulation. Furthermore, g is only a two-variable function, so by eval-

uating it in a grid for the possible values of m and v we can easily construct a piecewise linear

function ǧ that closely approximates g. One such function is depicted in Figure 1(b). We can use

any such piecewise linear approximation and standard MIP techniques to construct the following

formulation of (8).

min ǧ
⇣

X

n

i=1

(x
i

� y
i

)µ
i

,
X

n

i=1

X

n

j=1

(X
i,j

+Y
i,j

�W
i,j

�W
j,i

)⌃
i,j

⌘

(9a)

s.t.

X
i,j

 x
i

, X
i,j

 x
j

, X
i,j

� x
i

+x
j

� 1 8i, j 2 {1, . . . , n} (9b)

Y
i,j

 y
i

, Y
i,j

 y
j

, Y
i,j

� y
i

+ y
j

� 1 8i, j 2 {1, . . . , n} (9c)

W
i,j

 x
i

, W
i,j

 y
j

, W
i,j

� x
i

+ y
j

� 1 8i, j 2 {1, . . . , n} (9d)
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X

n

i=1

X
i,i

+Y
i,i

� 2W
i,j

� 1 (9e)

x, y 2X ✓ {0,1}n (9f)

X,Y,W 2 {0,1}n⇥n

. (9g)

Constraints (9b)–(9d) and (9g) enforce X
i,j

= x
i

x
j

, Y
i,j

= y
i

y
j

and W
i,j

= x
i

y
j

for all i, j and

constraint (9e) enforces x 6= y. If X can be described by linear inequalities (plus the integrality of

x, y), then the only non-linearity of (9) is the piecewise linear objective. However, such objective

can be modeled exactly as MIP using standard techniques (Huchette and Vielma 2017, Vielma

et al. 2010). Applying such techniques yields a linear MIP that can be e↵ectively solved with

state-of-the-art solvers. This allows for a near-optimal selection of a question.

5.3. Method Summary

The proposed method approximates a one-step look-ahead optimal policy for the dynamic pro-

gramming formulation of the optimal adaptive questionnaire (3). For this, after observing each of

the respondent’s answers, we use (7) to approximate the partworths’ posterior distribution by a

multivariate normal with the same mean and covariance matrix of the posterior, which one can

compute e�ciently as per Proposition 1. With this approximation, question-selection focuses in

minimizing the expected D-error: this step can be can be further approximated by solving the MIP

formulation (9). We formalize the proposed method next.

Definition 1 (Ellipsoidal Method). Let µ0 2Rn and ⌃
0

2Rn⇥n be such that the initial prior

distribution of the partworth vector is � ⇠N (µ0,⌃
0

). The policy is given by the following recursion

for all k 2 {1, . . . ,K}.

- (µk,⌃
k

) are calculated through equation (7) of Proposition 1 for µ= µk�1, ⌃=⌃
k�1

, x= xk�1

and y= yk�1, and

- (xk, yk) are an optimal solution of (9) for µ= µk�1, ⌃=⌃
k�1

, x= xk�1 and y= yk�1.

5.4. Other Variance Measures

The key property given by Proposition 2 is that the expected posterior D-error only depends on the

question profiles x, y through µ
x,y

and �
x,y

. From the proof of Proposition 2 we can see that this

also holds for more general variance measures of the form E
a

( (det (Cov (�|a)))) for  : R! R.
In particular, it holds for the expected Shannon information or entropy E

a

(log (det (Cov (�|a)))).

This does not hold for arbitrary functions of Cov (�|a) and in particular fails for expected A-,

C-, and E-errors.3 However, it does hold for other measures of posterior variance that are not

based on the posterior covariance matrix. In particular, Proposition 3 below shows it does hold for

some measures based on the generalized Fisher information matrix given by the negative of the
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expected Hessian of the log posterior likelihood (e.g. (Yu et al. 2012, Section 4.2)). In our context

this generalized Fisher information matrix is given by

H (↵) :=�E
a

(Hess (lnf(�|a)) |
�=↵

) =
⇣

�

1+ e�z·↵��1

(1+ ez·↵)�1

z z> +⌃�1

⌘

, (10)

where z := (x�y) and z z> denotes the outer product of z with itself. The inverse of H (↵) is often

used to approximate the posterior covariance matrix and, in fact, it is common to define D-error

based on det (H (↵))�1/d. Dependency of ↵ can be eliminated by taking expectation with respect

to the prior distribution, but, in principle, this requires expensive multidimensional integration,

so a computationally e↵ective alternative is to evaluate H (↵) with ↵ equal to the posterior mean

(Toubia et al. 2013). Fortunately, Proposition 3 shows that the expectation can be achieved via

univariate integration and both Fisher-based versions of D-error depend on the question only

through µ
x,y

and �
x,y

. A similar result also holds for Fisher-based versions of entropy and for the

minimum volume ellipsoid-based measures of variance used in our preliminary experiments and in

Cohen et al. (2016) (see the comments at the end of Section 4.4).

Proposition 3. For two profiles x, y 2X such that x 6= y, let a := 1+1{U
x

U
y

} and suppose that

� ⇠N(µ,⌃). Furthermore, let µ
x,y

and �
x,y

be the mean and and variance of question (x� y) · �

as defined in Proposition 1, and  : R! R be an arbitrary function. There exists a function g
 

:

R2 !R, which can be computed through univariate integration and for which

E
a

( (det (Cov (�|a)))) := (det (⌃) g
 

(µ
x,y

,�
x,y

)) .

In addition, if H (↵) is the generalized Fisher information matrix defined in (10) then

 
⇣

det (H(µ))�1

⌘

= 

 

det (⌃)

✓

1+
�2

x,y

2+2cosh (µ
x,y

)

◆�1

!

(11)

and

E
↵⇠N(µ,⌃)

⇣

 
⇣

det (H(↵))�1

⌘⌘

=

Z

R
 

 

det (⌃)

✓

1+
�2

x,y

2+2cosh (µ
x,y

+�
x,y

z)

◆�1

!

�(z)dz. (12)

Finally, let P(a) denote the set of partworths that are contained in the confidence ellipsoid

E (µ,⌃, r) that are also consistent with answer a, absent idiosyncratic shocks to utility (i.e. P(a) :=

{� 2 E (µ,⌃, r) : (2a� 3)(x� y) ·� � 0}). If M(a) is the minimum volume ellipsoid containing P(a)

and P(1)\P(2) 6= ;, then there exists g :R3 !R such that

E
a

(vol (M(a))) = det (⌃)1/2 g (µ
x,y

,�
x,y

, n) .
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All the measures considered in Proposition 3 allow for a formulation of a MIP akin to (9). In

addition, constructing the formulation for the measures based on evaluating the generalized fisher

information matrix on µ as done in (Toubia et al. 2013) does not require numerical integration.

Thus, it provides an interesting approximation to the exact expected posterior D-error. In Appendix

B.3 we show that a variant of the ellipsoidal method based on this approach performs nearly

identically to the base method in our set of experiments.

5.5. Further Geometric Interpretation of Optimal Question Selection

As previously mentioned, the relationship between D-error, choice-balance and post-choice sym-

metry give some interesting insights into these last two criteria. Consider Figure 2, where the blue

(solid) and red (dotted) ellipsoids represent prior and posterior credibility regions, respectively.

This figure illustrates how the choice-balance criterion of cutting through the center of the ellipsoid

is advantageous as it minimizes the expected volume of the resultant half-ellipsoid by inducing two

half-ellipsoids with the same volume.4 In contrast, the advantage of post-choice symmetry is less

evident as the expected volume of resultant half-ellipsoid for both questions in Figure 2 is identical

as they both cut through the center of the prior ellipsoid. However, the advantage becomes clear

by noting that the volume of the posterior ellipsoid for the question that cuts perpendicular to the

longest axis of the prior ellipsoid (Figure 2(a)) is about 20% smaller than the one for the question

that cuts perpendicular to the shortest axis.5

(a) Question perpendicular to the longest axis. (b) Question perpendicular to the shortest axis.

Figure 2 Ellipsoidal credibility regions for prior (depicted by solid blue ellipsoid) and approximate normal pos-

terior (dashed red ellipsoids) for di↵erent questions. The axes of the prior ellipsoid are depicted by the

dotted grey line.

Ideally, one would like to find questions that go through the center of the prior ellipsoid (best

possible choice-balance) and are orthogonal to the largest axis of the prior ellipsoid (best possible

post-choice symmetry). Constraints on the questions may prevent simultaneously satisfying both
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criteria. However, Figure 1(a) illustrates how, subject to one of the criteria being fixed, improving

the other criteria is precisely what is needed to minimize D-error. This can be further confirmed

by examining the Fisher-based approximation of D-error from (11) in Proposition 3. This approx-

imation is given by

F (µ
x,y

,�
x,y

,⌃) := det (⌃)1/d
✓

1+
�2

x,y

2+2cosh (µ
x,y

)

◆�1/d

,

for which we can easily check that @F (m,v,⌃)

@v

 0 and m@F (m,v,⌃)

@m

� 0 for all m,⌃ and v� 0.

6. Numerical Experiments

In this section we show how the policy from Definition 1 can be implemented in real-time, and

that it significantly outperforms the benchmark from Section 4. In this regard, we compare the

ellipsoidal method from Definition 1 to all three geometric methods described in Section 4.

6.1. Settings and Implementation details

Experimental setup. To compare the e↵ectiveness of the di↵erent methods we conduct Monte-

carlo simulation experiments similar to those in Toubia et al. (2004, 2007). That is, we consider a

multivariate normal prior distribution of the partworth vector with mean µ0 and covariance matrix

⌃
0

under four regimes that vary response accuracy and population heterogeneity. To model response

accuracy we consider µ0

j

= 0.5 in the low accuracy regime and µ0

j

= 1.5 in the high accuracy regime,

for j = 1, . . . , n. For heterogeneity we consider a diagonal ⌃
0

with (⌃
0

)
j,j

= 0.5 ⇥ µ0

j

in the low

heterogeneity regime and with (⌃
0

)
j,j

= 2.0⇥µ0

j

in the high heterogeneity regime, for j = 1, . . . , n.

For each of the four possible combinations of accuracy/heterogeneity regimes we sample 100 part-

worths from the corresponding prior distribution, which we consider the “true” partworths of 100

individuals. Then, for each individual we run a simulation where we ask two-product choice-based

questions that the individuals respond using their true partworth vector and the random utility

model described in Section 3.2.1. For this we consider n= 12.

Real-time Implementation. All methods were implemented in the Julia programming language

(Bezanson et al. 2017). Computation of the moments for the approximate posterior update in equa-

tion (7) was conducted via one-dimensional numerical integration using adaptive Gauss-Kronrod

quadrature (QuadGK.jl 2017): associated computation times were negligible in all instances.

Optimization problems for question-selection for all methods were modeled using JuMP (Dun-

ning et al. 2017, Lubin and Dunning 2015) and solved using CPLEX 12.6.3 (IBM ILOG 2015) on

a Core i7-3770 3.40Ghz desktop computer (Late 2012 iMac). For the case of the proposed method,

computation of the piecewise linear approximation ǧ in (9) was automated using available Julia

packages (Huchette 2017, Huchette and Vielma 2017). In all cases ǧ was constructed using an 8⇥8
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grid. While solution time for problem (9) was capped at one second, this limit was never reached

in the low accuracy regimes and it was rarely reached for the high accuracy regimes. The overall

average question-selection processing time for the low and high accuracy regimes were 0.19 and

0.29 seconds.

Open-source implementations of all methods in the paper are available at (Sauré and Vielma

2017).

Benchmark. We compare the ellipsoidal method with the three benchmark methods described

in Section 4. As described in Section 4.4 an ellipsoidal initial prior credibility can be trivially

incorporated to all three benchmark methods, so we let all four methods start with the same

initial ellipsoid. Hence, the main di↵erences with the methods are (1) the way they estimate the

partworths, (2) the way they model error to update the credibility region, and (3) the way they

adaptively select questions. Table 1 summarizes these characteristics for all four methods.

Method Estimator Error Modeling Question Selection
Ellipsoidal Approx. Bayesian Approx. Bayesian Approx. D-error + MIP
Polyhedral Analytic center No error Heuristic
Prob. Polyhedral Mixture of analytic centers Fixed error probability Heuristic
Robust MINLP analytic center Fixed fraction of errors Heuristic

Table 1 Method Characteristics

6.2. Quality of Method’s Estimator

Let �i be the true partworth vector of individual i2 {1, . . . ,100}. We begin by measuring the quality

of each method’s point-wise estimator after question k 2 {0,1, . . . ,K} for individual i, which we

denote by �̂k,i. For all methods and individuals i we have that �̂0,i is equal to µ0, the mean of the

posterior distribution. For k > 1 the estimator varies with the method as described in Sections 4

and 5, and summarized in Table 1.

Table 2 presents summaries of various performance metrics for the estimators right after the

fourth, eight and sixteenth question (k 2 {4,8,16}). Following Toubia et al. (2007) we report the

root mean squared error (RMSE) of the estimator after normalizing it and the true partworth

vector so that the sum of the absolute values of the coe�cients for all features is equal to the

number of parameters. In addition to RMSE we consider two out-of-sample metrics. The first one

is the individual hit rates on 100 holdout questions. The second is the mean absolute error (MAE)

in predicting marketshares for the same 100 holdout questions. Unlike the Bayesian estimators

considered later, the di↵erent methods do not provide a uniform notion of covariance matrix for

their estimators. For this reason we evaluate the Fisher-based approximation of D-error from (11)
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with µ equal to the corresponding estimator as a proxy for the true D-Error (evaluation at the

estimator yielded a better approximation than evaluating at the prior mean). Table 2 presents

averages for all these metrics. In the table, a bold underlined value indicates that the associated

method is significantly better (↵= 0.05) than all other methods for the corresponding metric.

Fisher Marketshare
D-Error RMSE Hit-Rate MAE

# Questions 4 8 16 4 8 16 4 8 16 4 8 16
Low A, Low H
Ellipsoidal 0.21 0.18 0.14 0.84 0.76 0.67 0.78 0.80 0.83 0.17 0.12 0.08
Polyhedral 0.24 0.23 0.21 1.08 1.02 0.99 0.70 0.72 0.73 0.07 0.04 0.06
Prob. Poly. 0.24 0.23 0.21 0.91 0.97 1.00 0.75 0.74 0.74 0.12 0.05 0.05
Robust 0.24 0.24 0.22 1.06 1.14 1.10 0.72 0.71 0.71 0.13 0.06 0.04
High A, Low H
Ellipsoidal 0.61 0.49 0.33 0.50 0.45 0.37 0.86 0.87 0.89 0.10 0.07 0.04
Polyhedral 0.73 0.68 0.56 0.64 0.63 0.60 0.82 0.82 0.83 0.03 0.03 0.03
Prob. Poly. 0.71 0.66 0.55 0.58 0.57 0.57 0.84 0.84 0.84 0.06 0.04 0.03
Robust 0.72 0.67 0.59 0.66 0.71 0.66 0.80 0.80 0.82 0.08 0.03 0.04
Low A, High H
Ellipsoidal 0.81 0.66 0.42 1.10 0.98 0.76 0.71 0.75 0.82 0.15 0.09 0.05
Polyhedral 0.97 0.89 0.68 1.31 1.16 0.99 0.66 0.69 0.74 0.06 0.04 0.04
Prob. Poly. 0.90 0.81 0.64 1.19 1.10 0.97 0.68 0.71 0.76 0.14 0.06 0.04
Robust 0.95 0.90 0.79 1.38 1.40 1.31 0.62 0.62 0.66 0.10 0.06 0.04
High A, High H
Ellipsoidal 2.71 2.44 1.38 0.89 0.77 0.55 0.78 0.81 0.87 0.11 0.07 0.04
Polyhedral 2.95 2.77 2.05 0.97 0.86 0.68 0.75 0.78 0.84 0.05 0.04 0.03
Prob. Poly. 2.85 2.57 1.92 0.93 0.82 0.65 0.75 0.79 0.83 0.09 0.06 0.04
Robust 2.91 2.70 2.22 1.12 1.13 0.98 0.71 0.72 0.76 0.08 0.06 0.04

Table 2 Summary of Quality Measures for Method’s Estimator

We can see that the ellipsoidal method provides a rather consistent advantage over the bench-

marks for all metric except for marketshare prediction.

To get a more detailed view of the temporal evolution of the estimators as more questions

are answered we present plots of the metrics as a function of the number of questions answered

in Figure 3. To complement the RMSE we use a more geometric and individualized measure of

the estimators’ quality. This measure calculates the geometric or euclidean distance between the

estimator �̂k,i and the true partworth vector �i. Considering that only the relative weights between

the components of the partworth vector are important, we again normalize the vectors as for RMSE.

However, following the geometric nature of this measure we normalize them so that their euclidean

norm is equal to one (For RMSE the normalization was for the l1 or Manhattan norm to be equal

to the length of �). However, even with this normalization, the distance between �i and the initial
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estimator µ0 may vary greatly between individuals. For this reason, we further normalize by this

initial distance. That, is for each method we calculate

d
i,k

=

�

�

�

�

�

�̂k,i

�

��̂k

�

�

� �i

�

��i

�

�

�

�

�

�

�

.

�

�

�

�

µ0

kµ0k � �i

k�ik

�

�

�

�

8k 2 {0,1, . . . ,16} , i2 {1, . . . ,100} .

For all methods and individuals i we have that d
i,0

= 1. Hence, d
i,k

< 1 means that the questions

have improved the original estimate and d
i,k

> 1 means that they have worsened it. Figure 3

presents all metrics for the low accuracy and high heterogeneity regime. For D-Error we plot the

median and a confidence interval between the first and third quartiles. For the other metrics we

shrink the interval to that between the seventh and thirteenth ventiles to improve clarity in the

figure (the quartile intervals overlapped too much for these metrics). Figure 3 again shows that the
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Figure 3 Temporal Evolution of Quality Measures for Method’s Estimator in the Low Accuracy and High Het-

erogeneity Regime

ellipsoidal method provides a significant advantage on the quality of the point-wise estimator and

on hit rates, but not on marketshare predictions.

6.3. Quality of Bayesian Estimators

While calculating true Bayesian estimators takes too long to use in the question selection proce-

dures, they can be computed o✏ine from the questions and answers collected by each method. We
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evaluate the quality of two versions of such estimators. The first version is the true Bayesian estima-

tor for each individual �i for the model described in Section 3.2.2. While the prior distribution is the

same Gaussian �i ⇠N (µ0,⌃
0

) for each individual (with a fixed population mean µ0 and variance ⌃
0

for each accuracy/heterogeneity regime), these estimators are computed independently using only

the information collected for the specific individual. The second version is the estimator for a simple

Hierarchical Bayesian (HB) model that considers all individuals at the same time. In this model,

the individual �i are also drawn from a common prior Gaussian distribution. However, the Gaus-

sian prior is now �i ⇠N (⌫0,⌃
0

) where the population mean ⌫0 is now a random hyper-parameter

whose prior distribution is ⌫0 ⇠N (µ0,⌃
0

), where µ0 and ⌃
0

are the same parameters that are fixed

for each accuracy/heterogeneity regime. Hence, this HB model uses the questions for all individuals

to update the distribution of both the population mean ⌫0 and all the individual partworths �i. For

both Bayesian models we sample from the posterior distributions of the corresponding parameters

using STAN (Carpenter et al. 2016) through its Julia interface (Stan Development Team 2017). In

all cases, we ran four MCMC chains for 5000 iterations plus the default 1000 warm-up iterations

and evaluate their convergence using the standard Gelman-Rubin-Brooks potential scale reduction

factor (PSRF) diagnostics provided by the Mamba.jl package (Smith 2017). Using the resulting

samples (after dropping the warm-up ones) we compute the sample means and covariance matrices

of the posterior distributions. We use the sample mean as the point-wise estimator and the sample

covariance matrix to compute the D-Error of this estimator. Tables 3 and 4 present summaries of

the quality measures for the individual Bayesian and Hierarchical Bayesian estimators respectively

and in the same format as Table 2. In addition, Figure 4 presents the temporal evolution of these

measures for the individual Bayesian estimator in the low accuracy and high heterogeneity regime

(Figure 5 in Appendix B shows the same for the Hierarchical Bayesian estimators). Formatting for

these figures is the same as for Figure 3.

We observe that the ellipsoidal method continues to provide a significant advantage on the

quality of the point-wise estimator and hit rates for both the Bayesian and HB estimators. Also,

as expected, the ellipsoid method provides a significant reduction of the D-Error of the point-wise

estimator. Finally, we now have that the ellipsoid method also provides an advantage with regards

to marketshare prediction errors.

An additional interesting property of the ellipsoidal method is revealed when we compare all

three estimators (the method’s estimator, and the two Bayesian ones). It is apparent that there

is little di↵erence between the quality of ellipsoidal method’s own estimator and the estimators

recomputed using the individual or hierarchical Bayesian methods for the questions selected by the
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Average Average Marketshare
D-Error RMSE Hit-Rate MAE

# Questions 4 8 16 4 8 16 4 8 16 4 8 16
Low A, Low H
Ellipsoidal 0.22 0.19 0.15 0.84 0.76 0.67 0.77 0.80 0.83 0.16 0.12 0.08
Polyhedral 0.24 0.23 0.21 0.87 0.84 0.80 0.76 0.77 0.78 0.19 0.17 0.13
Prob. Poly. 0.24 0.23 0.21 0.87 0.85 0.81 0.76 0.77 0.78 0.19 0.17 0.13
Robust 0.24 0.23 0.21 0.87 0.86 0.83 0.76 0.76 0.77 0.18 0.17 0.14
High A, Low H
Ellipsoidal 0.60 0.49 0.34 0.50 0.45 0.37 0.86 0.87 0.89 0.09 0.07 0.04
Polyhedral 0.70 0.64 0.54 0.53 0.51 0.48 0.85 0.85 0.86 0.11 0.10 0.08
Prob. Poly. 0.70 0.64 0.54 0.53 0.51 0.47 0.85 0.86 0.87 0.11 0.10 0.07
Robust 0.69 0.64 0.54 0.53 0.51 0.46 0.85 0.85 0.87 0.11 0.10 0.07
Low A, High H
Ellipsoidal 0.79 0.62 0.41 1.10 0.98 0.76 0.71 0.75 0.82 0.15 0.09 0.04
Polyhedral 0.90 0.78 0.61 1.19 1.12 0.97 0.68 0.71 0.76 0.18 0.12 0.06
Prob. Poly. 0.89 0.77 0.59 1.18 1.09 0.94 0.69 0.72 0.77 0.18 0.11 0.07
Robust 0.91 0.82 0.67 1.18 1.15 1.02 0.69 0.71 0.75 0.17 0.13 0.08
High A, High H
Ellipsoidal 2.24 1.67 0.96 0.89 0.77 0.55 0.77 0.81 0.87 0.11 0.06 0.04
Polyhedral 2.46 2.01 1.36 0.89 0.82 0.67 0.77 0.79 0.84 0.13 0.09 0.05
Prob. Poly. 2.46 2.01 1.35 0.90 0.81 0.65 0.76 0.79 0.83 0.14 0.09 0.06
Robust 2.50 2.11 1.56 0.91 0.85 0.74 0.77 0.78 0.82 0.14 0.10 0.07

Table 3 Summary of Quality Measures for Individual Bayesian Estimator

Average Average Marketshare
D-Error RMSE Hit-Rate MAE

# Questions 4 8 16 4 8 16 4 8 16 4 8 16
Low A, Low H
Ellipsoidal 0.27 0.21 0.16 0.87 0.78 0.68 0.77 0.79 0.82 0.15 0.12 0.10
Polyhedral 0.32 0.26 0.22 1.06 0.94 0.83 0.72 0.74 0.77 0.24 0.19 0.15
Prob. Poly. 0.32 0.26 0.22 0.97 0.88 0.82 0.74 0.76 0.77 0.24 0.17 0.14
Robust 0.35 0.28 0.23 0.88 0.92 0.87 0.75 0.75 0.76 0.20 0.19 0.16
High A, Low H
Ellipsoidal 0.71 0.53 0.34 0.51 0.46 0.37 0.86 0.87 0.89 0.10 0.07 0.04
Polyhedral 0.82 0.69 0.56 0.56 0.53 0.48 0.84 0.85 0.86 0.12 0.11 0.08
Prob. Poly. 0.82 0.69 0.56 0.54 0.52 0.48 0.85 0.85 0.87 0.12 0.11 0.08
Robust 0.91 0.71 0.56 0.56 0.53 0.47 0.84 0.85 0.86 0.12 0.10 0.06
Low A, High H
Ellipsoidal 0.93 0.68 0.42 1.19 1.00 0.76 0.69 0.75 0.82 0.22 0.10 0.05
Polyhedral 1.03 0.82 0.62 1.28 1.16 0.98 0.67 0.70 0.75 0.22 0.15 0.09
Prob. Poly. 1.02 0.81 0.60 1.28 1.13 0.94 0.67 0.71 0.77 0.24 0.17 0.07
Robust 1.27 0.90 0.69 1.19 1.19 1.02 0.69 0.70 0.75 0.18 0.14 0.11
High A, High H
Ellipsoidal 2.56 1.82 0.96 0.90 0.78 0.55 0.77 0.80 0.87 0.13 0.09 0.04
Polyhedral 2.69 2.06 1.37 0.95 0.83 0.67 0.75 0.79 0.84 0.17 0.10 0.05
Prob. Poly. 2.70 2.07 1.37 0.93 0.82 0.65 0.75 0.79 0.83 0.16 0.09 0.07
Robust 3.18 2.25 1.59 0.93 0.87 0.75 0.76 0.78 0.82 0.15 0.10 0.07

Table 4 Summary of Quality Measures for Hierarchical Bayesian Estimator



28 Sauré and Vielma: Ellipsoidal Methods for Adaptive Choice-Based Conjoint Analysis

▲ ▲ ▲
▲

▲
▲

▲
▲

▲ ▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

●
●

●
●

●
●

●
●

●
●

●
● ●

● ● ● ●

◇ ◇ ◇
◇

◇
◇

◇
◇

◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.4

0.5

0.6

0.7

0.8

0.9

D-error

▲ ▲ ▲ ▲
▲ ▲

▲
▲ ▲ ▲

▲ ▲ ▲
▲ ▲ ▲ ▲

■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■

●
●

●
●

● ● ●
● ●

●
●

● ● ● ● ● ●

◇ ◇ ◇ ◇ ◇
◇ ◇ ◇ ◇ ◇

◇ ◇ ◇
◇ ◇ ◇ ◇

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.5

0.6

0.7

0.8

0.9

Estimator Distance

▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■●

● ● ●
● ● ● ● ●

● ● ●
● ● ● ● ●

◇

◇ ◇ ◇ ◇ ◇ ◇
◇ ◇ ◇

◇ ◇ ◇ ◇ ◇ ◇ ◇

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.7

0.8

0.9

Hit Rate

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

◇
◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.0

0.2

0.4

0.6

0.8

Marketshare Prediction Error

▲ Probabilistic Polyhedral ■ Robust ● Ellipsoidal ◇ Polyhedral

Figure 4 Temporal Evolution of Quality Measures for Individual Bayesian Estimator in the Low Accuracy and

High Heterogeneity Regime

ellipsoidal method. Indeed, the RMSE (over all features, individuals, number of questions, accuracy

and heterogeneity regimes) between the ellipsoidal method’s own estimator and its individual

Bayesian recalculation is 0.01 (cf. 0.49, 0.36 and 0.74 for the polyhedral, probabilistic polyhedral

and robust methods respectively). Similarly, the RMSE for the hierarchical Bayesian recalculation

is 0.16 (cf. 0.56, 0.45 and 0.77 for the polyhedral, probabilistic polyhedral and robust methods

respectively). This suggests that the Bayesian approximations used by the ellipsoidal method in

both the question selection and updates are quite accurate. Table 6 in Appendix B shows the

temporal evolution of these RMSE through their evaluation right after the fourth, eighth and

sixteenth questions.

6.4. Sensitivity to Prior Distribution

We next evaluate the relative sensitivity of the ellipsoidal method to the prior distribution not being

centered at the true population mean. For this, we let the true population mean ⌫0 be a random

perturbation of the assumed population mean µ0 such that kµ0 � ⌫0k=E
�⇠N(µ0

,⌃0) kµ
0 ��k. The

true partworth vectors �i are sampled from N (⌫0,⌃
0

), but all methods and estimators still operate

assuming they are samples from N (µ0,⌃
0

). Table 5 shows a summary for the usual metrics for

this experiment in the low accuracy and high heterogeneity regime.
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Average Average Marketshare
D-Error RMSE Hit-Rate MAE

# Questions 4 8 16 4 8 16 4 8 16 4 8 16
Method
Ellipsoidal 0.81 0.66 0.41 1.02 0.88 0.66 0.76 0.80 0.86 0.17 0.09 0.06
Polyhedral 0.97 0.90 0.69 1.17 1.01 0.83 0.70 0.75 0.80 0.17 0.11 0.07
Prob. Poly. 0.90 0.82 0.64 1.07 0.96 0.80 0.74 0.76 0.80 0.17 0.10 0.07
Robust 0.95 0.90 0.79 1.35 1.33 1.25 0.65 0.65 0.68 0.21 0.19 0.15
Bayes
Ellipsoidal 0.79 0.62 0.40 1.02 0.88 0.66 0.76 0.80 0.86 0.17 0.09 0.06
Polyhedral 0.90 0.78 0.61 1.06 0.95 0.80 0.74 0.77 0.81 0.18 0.12 0.08
Prob. Poly. 0.89 0.76 0.58 1.05 0.93 0.76 0.75 0.78 0.82 0.17 0.11 0.07
Robust 0.91 0.82 0.67 1.08 0.96 0.85 0.73 0.77 0.80 0.20 0.13 0.09
HB
Ellipsoidal 1.09 0.77 0.50 0.94 0.82 0.56 0.79 0.82 0.88 0.16 0.11 0.05
Polyhedral 1.09 0.88 0.69 0.88 0.77 0.65 0.79 0.84 0.86 0.18 0.11 0.08
Prob. Poly. 1.09 0.87 0.66 0.78 0.73 0.65 0.83 0.84 0.86 0.13 0.11 0.07
Robust 1.31 0.97 0.75 1.08 0.91 0.71 0.71 0.81 0.85 0.25 0.13 0.11

Table 5 Sensitivity Analysis for Prior Distribution

We observe that the ellipsoidal method still outperforms the benchmark for most metrics.

7. Conclusions

In this paper we frame questionnaire design for choice-based conjoint analysis as a sequential

decision-making problem under uncertainty. Considering a Bayesian approach, we have developed

a near-optimal one-step look-ahead moment-matching approximate Bayesian policy for adaptive

questionnaire design. We have formulated the one-step optimal question-selection as a MIP that

can be solved e↵ectively using state-of-the-art solvers.

We have shown that our method admits a simple and intuitive geometric interpretation, akin to

that of the polyhedral method of Toubia et al. (2004). In this interpretation, the method maintains

an ellipsoidal credibility region for the partworth vector, which is updated after each question.

Questions are envisioned as hyperplanes on the partworth space, although unlike in the polyhedral

method our update does not discard regions that are inconsistent with an answer, but instead

adjusts the new credibility region to include the possibility of response-error.

The aforementioned geometric interpretation allows us to analyze optimal question-selection in

terms of the traditional guidelines driving question-selection in previous methods. We show that

optimal question-selection is achieved by striking a non-trivial trade-o↵ between the choice-balance

and the post-choice symmetry criteria, which can be computed and solved e�ciently using opti-

mization techniques. Our numerical experiments have shown how incorporating such insight into

existing methods achieves a significant improvement in various performance metrics, including the

D-error, RMSE and out of sample hit-rates.
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Our formulation of the questionnaire design problem assumes that consumer-choice follows a

multinomial Logit model. The results and methods can be extended directly to di↵erent speci-

fications of the distribution of the idiosyncratic shock to utility, as long as said shocks remain

uncorrelated among profiles. Indeed, under a di↵erent noise specification, one would only have

to adjust the distribution of the Z random variables in Propositions 1 and 2, on top of minor

adjustments to computations throughout our algorithms. However, the e�ciency of our multivari-

ate normal approximation to the posterior distribution, and therefore of the whole method, would

be a↵ected by the new specification. Consider for example the trivial case of no response-error: the

exact posterior computation would be that of the polyhedral method, and the multivariate normal

approximation may not be reasonable. In this regard, the suitability of our approach would depend

on the relative variance of the idiosyncratic shock relative to that of the prior distribution.

Our results so far apply to the case of two profiles per question, which might include a no purchase

option (for this, one simply imposes some structure on the set X ). Most of the proposed framework

adapts directly to the case of more profiles per question; one needs to be especially careful when

specifying the approximate posterior update and the question-selection MIP. In the more general

case of r profiles, the answer to a question can be seen as inserting r � 1 hyperplanes through

a credibility region in the geometric interpretation of the method. However, the fast ellipsoidal

update in Proposition 1 would have to be adjusted: from the proof of Proposition 1, we see that

one would require the computation of the mean and covariance matrix of a r � 1 dimensional

random vector (Z). Computationally, this will replace the one-dimensional integration for the case

of two profiles with a r� 1 dimensional integration computation, which becomes more expensive

as r grows larger. Similarly, optimal question-selection would have to be modified along the same

lines. That is, a new function g would arise, which would depend on the distances of the many

hyperplanes to the center of the prior mean, and on the covariance matrix associated with said

hyperplanes (interpreted as in Section 5.5). This would increase the computational cost of the

procedure, but remains practical for a small but reasonable number of profiles. Note that, in our

current implementation, question-selection as well as update computations can be performed with

no noticeable delay, thus allowing the implementation of the method in real-time.

With regards to the scalability of the method we should consider the dimension of the partworth

vector and the size of the grid used to construct piecewise linear function ǧ. With regards to the

later, we did not detect significant sensitivity to the grid size or resolution in our experiments

(reducing it did not significantly reduce the performance of the method and increasing it did not

significantly increase the solve times for question-selection). However, it is possible to construct

instances where a high grid resolution is needed to maintain the ellipsoidal method’s advantage.

Fortunately, the size of advanced MIP formulations for piecewise linear functions grow very slowly
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(logarithmically) with this resolution and can hence easily handle large grids (Huchette and Vielma

2017, Vielma et al. 2010). In contrast, while the numerical integration time needed to evaluate

D-error function g(m,v) at a single point (m,v) is extremely small, the number of evaluations

needed to build ǧ for a k⇥k grid is k2, which could lead to an unacceptable question-selection time

for high resolutions. In such cases, a more tractable approach would be to build a piecewise linear

approximation of the Fisher-based approximation of D-error described in Proposition 3, which does

not require numerical integration. To evaluate the e↵ectiveness of such an approach we repeated

our computational experiments with exactly such a variant of the ellipsoid method and obtained an

almost identical behavior to the original ellipsoidal method. Detailed results of this experiment are

included in Appendix B.3. With regards to scalability on the dimension n of the partworth vector,

we note that the size of (9) grows as n2 because of the standard approach to linearize products

of binary variables. Hence, working with very large n will likely require applying more advanced

techniques in this part of the formulation.

Finally, the application of the Bayesian ellipsoidal method requires a working prior distribution

over the partworth vector, which might lack in practice. In this regard, practical application of

the method might required a two stage procedure, akin the steps in existing methods, e.g. the

aggregate customization approach of Arora and Huber (2001). Ongoing research aims at that

direction, and on the application of the method in field experiments. The results in this paper

can be seen as providing both the theoretical and technological grounds to test the method in live

conjoint experiments, which is the subject of current research.

Endnotes

1. Within a random utility framework, a response-error is said to occur whenever a respondent

does not select the alternative that would be chosen absent idiosyncratic shocks to utility; see

Section 3.2.1

2. Indeed, if we consider a uniform distribution over the ellipsoidal region, its mean is equal to

µ0 and its covariance matrix is equal to ⌃
0

, which are precisely the mean and covariance matrix

of the multivariate normal prior.

3. E
a

(tr (Cov (�|a))), E
a

(c>Cov (�|a) c), and E
a

(�
max

(Cov (�|a))) respectively, where tr(·) is the
trace of a matrix, c is an arbitrary fixed vector and �

max

(·) is the largest eigenvalue of a matrix.

4. Cutting o↵-center yields one half-ellipsoid with a smaller volume and one with a larger volume,

but the resultant low probability of the respondent picking the first one o↵sets any potential gains

here.

5. The prior ellipsoid for Figure 2 is taken to be the 90% credibility ellipsoid for a zero-mean

multivariate normal with diagonal covariance matrix and (⌃
0

)
1,1

= 100 and (⌃
0

)
2,2

= 1 (the aspect

ratio of the figure is modified to improve the aesthetics).
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Appendix A: Omitted Proofs

Proof of Proposition 1. Define v := x� y and note that � ⇠ µ+⌃1/2Z, where Z ⇠N(0, I)

and I 2Rn⇥n denotes the identity matrix. Consider an orthonormal basis {w
1

, . . . ,w
n

} of Rn such

that

w
1

:=
�

⌃1/2

�>
v/�

x,y

.

Thus, we have that � ⇠ µ+⌃1/2WZ as well. Let us focus on the posterior distribution f
Z|⌦(·) of

Z given ⌦. Per Bayes’ rule, we have that

f
Z|⌦(z) =
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n
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where C :=
⇣

R

R (1+ exp(�µ
x,y

��
x,y

z0))�1

�(z0)dz0
⌘�1

. We conclude that the components of the

posterior z are independent, and that Z
i

⇠N(0,1) for all i > 1. Consider now a random variable

Z 0 with density

f
Z

0 (z0) :=C
⇣

1+ e�µ

x,y

��
x,y

z

0
⌘�1

�(z0).
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Because � ⇠ µ+⌃1/2WZ, we have that

E{�|⌦}= µ+
�

⌃1/2W
�

1

E(Z 0), and Cov(�|⌦) =⌃1/2W

0

@

Var(Z 0) 0

0 I 0

1

A

�

⌃1/2W
�>

,

where I 0 2Rn�1⇥n�1 denotes the identity matrix. This concludes the proof.

Proof of Proposition 2. Set m= µ
x,y

and v= �
x,y

. Using Proposition 1, we have that

Cov(�|a= 1) =
�

⌃1/2W
�

0

@

V ar(Z(m,v)) 0

0 I 0

1

A

�

⌃1/2W
�>

.

Exchanging the roles of x and y in Proposition 1, we have that

Cov(�|a= 2) =
�

⌃1/2W
�

0

@

V ar(Z(�m,v)) 0

0 I 0

1

A

�

⌃1/2W
�>

.

From the fact that W is an orthonormal basis, we have that

det (Cov(�|a= 1)) = det (⌃) V ar(Z(m,v)) and det (Cov(�|a= 2)) = det (⌃) V ar(Z(�m,v)).

From the above, and noting that P(a= 1) = p(m,v) = 1� p(�m,v), we obtain that

E
a

⇣

det (Cov(�|a))1/d
⌘

= p(m,v) det (Cov(�|a= 1))1/d + p(�m,v) det (Cov(�|a= 2))1/d

= det (⌃)1/d
�
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�

.

The result follows from noting that the above depends on (x, y) only through m= µ
x,y

and v= �
x,y

.

Proof of Proposition 3. The first result follows directly from the proof of Proposition 2.

For the second result, from (10) we have that

det (H(↵)) = det
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��1
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.

Then, by the matrix-determinant lemma (Harville 2000), we have that
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.

The result follows from evaluating at ↵= µ and noting that µ · (x� y) = µ
x,y

.
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For the third result, note that if ↵ · (x� y)⇠ µ
x,y

+�
x,y

Z, with Z ⇠N(0,1), then

E
↵⇠N(µ,⌃)

⇣

 
⇣

det (H(↵))�1

⌘⌘

=

Z

R
 

 

det (⌃)�1

✓

1+
�2

x,y

2+2cosh (µ
x,y

+�
x,y

z)

◆�1

!

�(z)dz.

For the last result note that from Section 3.1 in Grötschel et al. (2011) we have that if n(2a�
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n2 � 1

◆

n

✓

1� 2 (1�n(2a� 3)m/v)

v(n+1) (1� (2a� 3)m/v)

◆

.

Then the result follows for

g (m,v,n) :=
rn⇡n/2

� (n/2+1)

⇣

p (m,v) (ĝ(m,v,n,1))1/2 + p (�m,v) (ĝ(m,v,n,2))1/2
⌘

,

where p (m,v) is as defined in Proposition 2 and

ĝ(m,v,n, a) :=

8

>

<

>

:

g(m,v,n, a) n(2a� 3)µ
x,y

/�
x,y

< 1

1 n(2a� 3)µ
x,y

/�
x,y

� 1
.

Appendix B: Additional Graphs and Tables

B.1. Hierarchical Bayesian Estimator

Figure 5 presents a variant of Figure 4 that uses the Hierarchical Bayesian estimator instead of the

individual one.
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Figure 5 Temporal Evolution of Quality Measures for Hierarchical Bayesian Estimator in the Low Accuracy and

High Heterogeneity Regime

B.2. Quality of the Each Methods Estimator

Table 6 presents the RMSE between each methods estimator and the corresponding individual and

hierarchical Bayesian recalculations.

B.3. Question Selection

While the one-dimensional numerical integration needed to compute D-error through g in Propo-

sition 2 is extremely fast, there may be settings in which avoiding this may be desirable. For

this reason we now compare the base ellipsoidal method with a variant that use the Fisher-based

approximations of D-error (11) from Proposition 3 with  (·) = (·)1/n. We denote this variant simply

as Fisher. As a reference, we also include a variant that uses the alternative Fisher-based approxi-

mations of D-error (12) from Proposition 3 also with  (·) = (·)1/n. This alternative approximation

does require one-dimensional numerical integration and we denote it as Expected Fisher. Finally, we

also include a variant that uses the heuristic question selection method from the polyhedral method

(i.e. the heuristics aim of maximizing the question’s variance and minimizing the absolute value of

it’s mean). We denote this variant as MaxMin. Table 7 shows the usual performance metrics for the

individual Bayesian estimator derived from the questions generated by all four variants (including
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M-B RMSE M-HB RMSE
# Questions 4 8 16 4 8 16
High A, Low H
Ellipsoidal 0.01 0.01 0.01 0.26 0.18 0.08
Polyhedral 0.67 0.65 0.66 0.86 0.76 0.68
Prob. Poly. 0.30 0.48 0.64 0.51 0.51 0.65
Robust 0.63 0.79 0.75 0.68 0.83 0.79
Low A, High H
Ellipsoidal 0.00 0.00 0.01 0.12 0.07 0.05
Polyhedral 0.38 0.36 0.36 0.41 0.37 0.36
Prob. Poly. 0.24 0.25 0.31 0.25 0.28 0.32
Robust 0.39 0.48 0.46 0.42 0.50 0.46
High A, High H
Ellipsoidal 0.01 0.01 0.03 0.53 0.20 0.09
Polyhedral 0.61 0.48 0.40 0.81 0.55 0.39
Prob. Poly. 0.23 0.32 0.32 0.59 0.49 0.32
Robust 0.91 1.11 1.04 0.95 1.17 1.05
Low A, Low H
Ellipsoidal 0.01 0.01 0.04 0.17 0.16 0.07
Polyhedral 0.45 0.32 0.17 0.55 0.31 0.17
Prob. Poly. 0.27 0.19 0.13 0.38 0.18 0.14
Robust 0.70 0.80 0.69 0.72 0.84 0.71

Table 6 RMSE between each method’s estimator and the individual Bayesian and Hierarchical Bayesian

estimators

Average Average Marketshare
D-Error RMSE Hit-Rate MAE

# Questions 4 8 16 4 8 16 4 8 16 4 8 16
Method
Fisher 0.81 0.66 0.42 1.12 1.00 0.75 0.71 0.75 0.81 0.13 0.08 0.04
Expected Fisher 0.81 0.66 0.42 1.12 1.00 0.77 0.70 0.74 0.81 0.15 0.09 0.05
Ellipsoidal 0.81 0.66 0.42 1.10 0.98 0.76 0.71 0.75 0.81 0.16 0.10 0.05
MaxMin 0.91 0.82 0.66 1.16 1.11 1.01 0.67 0.70 0.74 0.21 0.14 0.09
Bayes
Fisher 0.79 0.62 0.41 1.12 1.00 0.75 0.70 0.75 0.81 0.13 0.08 0.04
Expected Fisher 0.79 0.62 0.41 1.12 1.00 0.77 0.70 0.74 0.81 0.16 0.09 0.05
Ellipsoidal 0.79 0.62 0.41 1.10 0.98 0.76 0.71 0.75 0.81 0.15 0.10 0.05
MaxMin 0.92 0.84 0.68 1.16 1.11 1.01 0.67 0.70 0.74 0.21 0.15 0.08
HB
Fisher 0.93 0.68 0.41 1.16 1.00 0.75 0.70 0.75 0.81 0.16 0.08 0.04
Expected Fisher 0.92 0.68 0.42 1.17 1.01 0.78 0.69 0.74 0.81 0.18 0.10 0.06
Ellipsoidal 0.93 0.68 0.42 1.19 1.00 0.76 0.69 0.74 0.81 0.21 0.11 0.06
MaxMin 1.18 0.92 0.70 1.26 1.18 1.01 0.66 0.68 0.74 0.27 0.22 0.10

Table 7 Impact of the question selection procedure on the ellipsoidal method.

the original ellipsoidal method). We can see that both Fisher-based approximations perform almost

identically to the original ellipsoidal method. Hence, the first one (Fisher) is a viable alternative

when avoiding one-dimensional numerical integration is prefered. Furthermore, as expected, all
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three approximate-optimal question selection procedures provide an advantage over the MaxMin

heuristic. Finally, we note that all four methods use the same moment-matching update of the

ellipsoidal method and their only di↵erence is how they select questions. Hence, all four methods

yield estimators that are extremely close to the individual Bayesian estimator (cf. Table 6) and the

alternative version of Table 7 using method’s estimator is extremely similar to the original table.


