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Abstract

We introduce a new Integer Linear Programming (ILP) approach for solving Integer Pro-
gramming (IP) problems with bilinear objectives and linear constraints. The approach
relies on a series of ILP approximations of the bilinear IP. We compare this approach with
standard linearization techniques on random instances and a set of real-world product
bundling problems.
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1. Introduction

We study the bilinear optimization problem

max

(∑
i

αixi

)∑
j

βjyj

 (1a)

N∑
i=1

ak,ixi +

M∑
j=1

bk,jyj ≤ dk ∀k = 1, . . . ,K (1b)

x ∈ NN , y ∈ NM (1c)

where coefficients αi and βj are nonnegative integers (through scaling we can also consider
rational coefficients).

This integer linear programming (ILP) problem with bilinear objective and linear
constraints is a special case of non-convex quadratic IP problems and more generally
of non-convex non-linear IP problems, both of which have received significant attention
recently [1, 2, 3, 4]. If all variables are bounded this bilinear IP can be transformed to a
Integer Linear Programming (ILP) Problem using well known linearization techniques [5,

6, 7, 8, 9, 10]. One such technique replaces xi by its binary decomposition
∑dlog kie

r=0 2rwi,r,
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where wi,r is a binary variable and ki is an upper bound of xi. It then adds auxiliary
integer variables zi,j,r such that zi,j,r = wi,r · yj by enforcing a standard linearization of
this requirement to obtain the ILP formulation of (1) given by

max

N∑
i=1

M∑
j=1

dlog kie∑
r=0

αiβj2
rzi,j,r (2a)

N∑
i=1

dlog kie∑
r=0

2rak,iwi,r +

M∑
j=1

bk,jyj ≤ dk ∀k = 1, . . . ,K (2b)

zi,j,r ≤ yj ∀ j = 1, . . . ,M, i = 1, . . . , N,

r = 1, . . . , dlog kie (2c)

yj ≤ zi,j,r + (1− wi,r) · kj ∀ j = 1, . . . ,M, i = 1, . . . , N,

r = 1, . . . , dlog kie (2d)

0 ≤ zi,j,r ≤ wi,r · kj ∀ j = 1, . . . ,M, i = 1, . . . , N,

r = 1, . . . , dlog kie (2e)

wi,r ∈ {0, 1} ∀ i = 1, . . . , N, r = 1, . . . , dlog kie (2f)

y ∈ NM (2g)

where kj is an upper bound on yj . We can obtain an alternative formulation by also
replacing yj by its binary decomposition, but we would obtain a formulation that is even
larger than the Θ(log(ki)NM) variables and constraints of formulation (2). Because
the size of formulation (2) can be prohibitively large, we propose a new linearization
technique that leads to the solution of a series of ILP problems of the same size as the
original problem.

Our proposed approach is detailed in Section 2. In Section 3 we present two families
of problems that we use to test our methodology. One of them comes from a product
bundling problem of a major food company. Finally, in Section 4 we show computational
results of these models to compare our approaches with standard linearization techniques.

2. An ILP Solution Approach

In this section we present an ILP solution approach that is based on a linearization
of the objective function. This approach is based on the following simple lemma.

Lemma 1. Let a1, a2, b1, b2 be positive numbers. If a1 + a2 ≥ b1 + b2 and a1 · a2 < b1 · b2
then min{a1, a2} < min{b1, b2}.

Proof. Assume that a1 ≤ a2 and b1 ≤ b2. Let Ka = a1 + a2, Kb = b1 + b2 and
fK(x) = Kx − x2. Note that if Ka ≥ Kb then fKa(x) ≥ fKb

(x) ∀x ∈ [0,Kb/2]. Since
a1a2 = fKa

(a1) < fKb
(b1) = b1b2 and due to the fact that fKa

(x) is strictly increasing
in [0,Kb/2] then a1 < b1.

This lemma suggests the following idea to solve the problem: Instead of maximizing
(
∑

i αixi)(
∑

j βjyj) we can maximize (
∑

i αixi)+(
∑

j βjyj). An optimal solution for this
new objective function may be sub-optimal for the original objective function, but if this
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is the case, we can use the lemma to obtain strict lower bounds for terms
∑

i αixi and∑
j βjyj in an optimal solution. We can then use this idea to obtain an optimal solution

to our original problem by solving a sequence of ILP models with a linear objective as
follows.

For a given lower bound lb for terms
∑

i αixi and
∑

j βjyj we construct the ILP
model with a linear objective given by

max
∑
i

αixi +
∑
j

βjyj (3a)

∑
i

αixi ≥ LB (3b)∑
j

βjyj ≥ LB (3c)

N∑
i=1

ak,ixi +

M∑
j=1

bk,jyj ≤ dk ∀k = 1, . . . ,K (3d)

xi, yj ∈ N (3e)

We refer to this model as (LIN). In order to obtain the solution of our original
problem, we start solving this ILP with lb = 1. Next, we update this value by letting
lb = min{

∑
i αix

∗
i ,
∑

j βjy
∗
j } + 1, where (x∗, y∗) is an optimal solution of the previous

run, and we re-solve the ILP with the new parameter. We repeat this until the ILP
becomes infeasible. The best solution found (in terms of the original objective function
(
∑

i αixi)(
∑

j βjyj)) is an optimal solution of our original problem.
It is important to note that we assume that optimal solution of the bilinear problem

does not have objective value equal to zero. In this case, the original bilinear problem is
infeasible or it has an unbounded solution if and only if (LIN) is infeasible or unbounded,
respectively. Thus, we can safely use lb = 1. If the optimal value of the bilinear problem
is equal to zero, then (LIN) will be infeasible. Hence, a final step is required to check
the existance of a solution with either xi = 0 for all i such that αi > 0, or yj = 0 for all
j such that βj > 0.

Note that in each iteration, the original objective function might not improve. Hence,
one way to enhance this approach is to modify the ILP model to ensure that the new
solution will always increase the original objective function. This is achieved as follows.

Let best and T be two parameters. The following formulation allows us to find
a solution such that either (i) each term

∑
i αixi and

∑
j βjyj are lower bounded by

lb+T or (ii) each term
∑

i αixi and
∑

j βjyj is lower bounded by lb+t for some t < T
and (

∑
i αixi)(

∑
j βjyj) > best. If T is large enough, the original objective function
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increases at each step:

max
∑
i

αixi +
∑
j

βjyj (4a)

∑
i

αixi ≥
T∑

t=0

st(LB + t) (4b)

∑
j

βjyj ≥
T∑

t=0

st(LB + t) (4c)

∑
i

αixi +
∑
j

βjyj ≥
T−1∑
t=0

st

(
(LB + t) +

⌈
best + 1

lb + t

⌉)
(4d)

T∑
t=0

st = 1 (4e)

N∑
i=1

ak,ixi +

M∑
j=1

bk,jyj ≤ dk ∀k = 1, . . . ,K (4f)

xi, yj ∈ N (4g)

st ∈ {0, 1} (4h)

The aim of introducing the s variables is to find an incumbent solution or to in-
crease lb in T units. Constraints (4b) and (4c) ensure that if st = 1 for some t then
terms

∑
i αixi and

∑
j βjyj are greater than or equal to lb+t. Finally, constraint (4d)

assures that the original objective function will increase for t < T . This is because if
terms

∑
i αixi and

∑
j βjyj are greater than or equal to lb + t, and the sum of both

terms is greater than or equal to (LB + t) + dbest+1
lb+t e, then by Lemma 1 the product

(
∑

i αixi)(
∑

j βjyj) should be greater than or equal to (LB+ t) · dbest+1
lb+t e > best. If no

increment in the objective function is obtained for t < T , then for all feasible solutions of
this problem we have that sT = 1, so the terms

∑
i αixi and

∑
j βjyj are lower bounded

by lb + T . We refer to this model as (LIN+).
As before, in order to obtain the solution of our original problem, we start solving

this formulation with best = 0 and lb = 1. Next, we update these values with best =
(
∑

i αixi)(
∑

j βjyj) and lb = min{
∑

i αixi,
∑

j βjyj} + 1, if a better solution has been
found, or we update lb=lb+T , if not. Then, we re-solve the formulation with the new
parameters until no feasible solution exists.

3. Testing instances

To compare our ILP approaches with the linearization (2), we test them over two
different problem: a nonlinear bipartite matching problem, and a real product bundling
problem.

Bipartite graph problem

The first set of problems has been created to compare these different approaches.
Given a complete bipartite graph G = (L ∪ R,L × R), for each vertex v we set a price
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pv and a weight wv, and for each edge (u, v) we set a maximum weight Muv. The
problem is to select quantities xu, u ∈ L and yv, v ∈ R such that the objective function
(
∑

u∈L puxu)(
∑

v∈R pvyv) is maximized, subject to wuxu + wvyv ≤ Muv for each edge
uv ∈ L×R.

Product bundling problem

Our second set of problems comes from a major food company that is evaluating
the possibility of delivering its products directly to small grocers, avoiding its current
wholesalers and distributors. Because of distribution and storage logistics, the producer
would like to select product bundles [11, 12] that maximize the total sale of products
through bundles, subject to constraints on client’s demands.

Because bundles are more convenient for the producer, we can expect the price of
products obtained through the bundle to be equal or smaller than their individual prices.
Hence, we can assume that clients will cover their demands by first buying as many units
of the bundle as possible without exceeding their demand for an individual product
and cover the remaining demand with individual purchases. Under this assumption, a
mathematical programming model for obtaining the bundle design that maximizes the
number of bundles sold can be constructed as follows.

Let P be a set of products. A bundle of products is an integer vector x = (xp)p∈P ∈
N|P | where xp indicates the number of units of product p in the bundle. Let C be a set
of clients, Dc,p be the demand of client c ∈ C for product p ∈ P and yc be the number
of bundles bought by client c ∈ C. A mathematical programming model for an optimal
bundle design is given by

max
∑
c∈C

∑
p∈P

xp · yc (5a)

xp · yc ≤ Dc,p ∀c ∈ C, p ∈ P (5b)

xp ∈ N ∀p ∈ P (5c)

yc ∈ N ∀c ∈ C (5d)

Note that equation (5b) is not linear and hence our ILP approaches cannot be applied
directly. However, using standard linearization techniques (e.g. [7]) it is possible to
linearize such constraints in a compact way that is not available for the objective function:

yc ≤
⌊
Dcp

i

⌋
+

(
kp −

⌊
Dcp

i

⌋)|b(i)| − ∑
j:b(i)j=1

wp,j

 ∀c ∈ C, ∀p ∈ P, i = 1, . . . , kp

(6a)

xp =

dlog kpe∑
i=0

2iwp,i ∀p ∈ P (6b)

wp,i ∈ {0, 1} ∀p ∈ P, i = 1, . . . , dlog kpe
(6c)

where b(i) is a vector containing the binary representation of the integer i (i.e. i =∑
j 2b(i)j ) and |b(i)| is the number of non-zero bits in b(i). In these constraints, note
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that xp = i if and only if the term (|b(i)| −
∑

j:b(i)j=1 wp,j) is equal to 0. Hence, these

constraints assure that if xp = i then yc ≤ bDcp

i c, so xp · yc ≤ Dcp. Note that this
technique cannot be applied to the original objective function or to constraints of the
form yc · xp ≤ z where z is a variable. However, because formulation (2) has already
linearized terms xp · yp it can enforce constraints (5b) by adding linear constraints of the

form
∑dlog kpe

r=0 2rzp,q,r ≤ Dc,p and hence does not require adding (6).

4. Computational results

We implement these formulations using IBM ILOG CPLEX 12.2 and we test them
in a Intel Xeon server with 8 Gb of RAM. In both problems, we compare our approach
to the model obtained by replacing a set of variables by its binary decomposition, as
explained in Section 1. We denote the models obtained by this decomposition by (BIN).

Bipartite graph problem

For the first problem, we use a complete bipartite graph of 50 vertices on each part,
and we select random weights wv and prices pv following a Poisson probabilistic dis-
tribution of mean 4. The maximum weight on the arcs Mu,v is also selected randomly
following a Poisson distribution of mean λ, where λ is equal to 8, 16 and 32. Note that for
higher values of λ, the space of feasible solutions is increased, obtaining a harder problem
to solve. We compare solution times of ten random instances for each value of λ, and
we report average times and number of iterations in Table 1. In the case of formulation
(LIN+), a large value of parameter T leads us to fewer (but slower) iterations. In these
experiments we use T = 50, which shows a good performance for these datasets.

It can be seen that formulation (BIN) is significantly slower in each case. Furthermore,
in the larger problems, formulations (BIN) requires a large number of variables and
constraints, resulting in an Out of Memory (OOM) error in the solver. Additionally,
we see that in some instance formulation (LIN) requires a large number of iterations to
finish, while formulation (LIN+) requires fewer iterations, but each iteration is harder to
solve.

Product bundling problem

For the product bundling problem, we test the performance of our approaches on
two sets of instances. The first set of instances are randomly generated with |C| = 10
and |P | = 30. In order to generate these instances, we first fix Dc,p = 0 with uniform
probability ρ. Secondly, among the values not fixed to zero, we fix Dc,p according to a
Poisson distribution of parameter λ. The results on these instances are shown in Table
2.

It can be seen that the problem becomes easier to solve for instances with a large
number of zeros on the demand matrix. Also, with highly non-homogeneous matrices
(e.g. λ = 200) problem becomes easier to solve for formulation (BIN), mainly because
the LP relaxation of the problem is close to the optimal value. As before, formulation
(BIN) is unable to solve large instances of this problem. In contrast, formulations (LIN)
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and (LIN+) could deal with problems of these sizes, but they require a long time to solve
them.

Our second set of instances for this problem is constructed using real data from a
major food company, and we select subsets of clients and products of different sizes
to compare the performance of our three formulations. Results are shown in Table 3.
Results are similar to that obtained with randomly generated data. However, for instance
w10x60 (BIN) is significantly faster than (LIN) and (LIN+). One possible reason for this
is that linearization (6) hurts the effectiveness of our ILP approaches. Another reason
could be that, because demand values Dc,p are very large for this instance, the solution
of this problem includes 1 client that buys 29283 units. Both ILP approaches found
this solution in the first iteration. However, most of the time is expended proving the
optimality of this solution. Larger values for T provide fewer but longer iterations,
obtaining a similar time. Nevertheless, instance w10x60d has the same demand matrix
as w10x60 but divided by 12 (which represents packs of a dozen of products), and now
(LIN+) is faster than (BIN). As before, (BIN) is unable to solve our largest instance.

5. Impact on a real case

These models were used to construct bundles of food products for a major food
company in Chile. We use the data of weekly demand on 497 products of 760 small
retailers with a total weekly demand of approximately 2 million SKUs. In addition to the
original constraints, constraints were added on the size and final price of the bundle. To
construct a bundle, a subset of 10-12 products was selected using hierarchical clustering
with Euclidean distance, and solved using these formulations. After the selection of
the first bundle, we update the demand and construct a new bundle using the same
procedure. The ILP model took approximately 5-10 hours per problem. Five bundles
were constructed using this procedure, each one of them with more than 150 potential
clients. In the end, 29.75% of the total demand could be potentially delivered using these
five bundles.
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