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This paper studies two Mixed Integer Linear Programming (MILP) formulations for piecewise

linear functions considered in Li et al. (2009). Although the ideas used to construct one of

these formulations are theoretically interesting and could eventually provide a computational

advantage, we show that their use in modeling piecewise linear functions yields a poor

MILP formulation. We specifically show that neither of the formulations in Li et al. (2009)

have a favorable strength property shared by all standard MILP formulations for piecewise

linear functions. We also show that both formulations in Li et al. (2009) are significantly

outperformed computationally by standard MILP formulations.

Key words: Mathematics:Piecewise linear; Programming:Integer;

History:

1 Introduction

Two Mixed Integer Linear Programming (MILP) formulations for modeling a univariate

piecewise linear function f were considered in Li et al. (2009). The first formulation (given

by (1)–(3) in Li et al.) uses “Big-M” type constraints, so we denote it by BigM. The

second formulation (given by (23)–(33) in Li et al.) uses a number of binary variables that

is logarithmic in the number of segments in which f is affine, so we denote it by LiLog.

Based on computational results that show that LiLog outperforms BigM, Li et al. declare

LiLog to be superior to other MILP formulations for piecewise linear functions. The ideas

used to construct LiLog are very interesting and have some potential practical applications.

However, in this paper we show that BigM and LiLog lack a favorable strength property
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shared by all standard MILP formulations for piecewise linear functions. We additionally

show that both formulations are significantly outperformed computationally by standard

MILP formulations.

In Section 2 we describe the formulations considered in Li et al. (2009) and in Section 3

we show that neither of these formulations has a favorable strength property shared by all

standard MILP formulations for piecewise linear functions. In Section 4 we present results

of computational experiments that compare the Li et al. formulations to two other standard

formulations.

2 Piecewise Linear Models Introduced by Li et. al

For a0 < a1 < . . . < aK let f : [a0, aK ] ⊂ R→ R be a univariate continuous function that is

affine in [ai−1, ai] for each i ∈ {1, . . . , K} and is defined by

f(x) :=
{
mix+ ci x ∈ [di−1, di] ∀i ∈ {1, . . . , K}. (1)

We now describe two formulations of z = f(x) for f defined in (1) that are considered

in Li et al. (2009). We refer the reader to Li et al. (2009) for a detailed explanation of these

formulations.

The first formulation, denoted by BigM, is

ai−1 − (aK − a0)(1− yi) ≤ x ≤ ai + (aK − a0)(1− yi) ∀i ∈ {1, . . . , K} (2a)

mix+ ci −M(1− yi) ≤ z ≤ mix+ ci +M(1− yi) ∀i ∈ {1, . . . , K} (2b)

K∑
i=1

yi = 1 , yi ∈ {0, 1} ∀i ∈ {1, . . . , K}, (2c)

where

M :=
K

max
i=1

max{miaK + ci,mia0 + ci} −
K

min
i=1

min{miaK + ci,mia0 + ci}.
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The second one, denoted by LiLog is∑K−1

j=0
ajµ1,j ≤ x (3a)∑K−1

j=0
aj+1µ1,j ≥ x (3b)∑K−1

j=0

(
f(aj)−mi+1(aj − a0)

)
µ1,j +mi+1µ2,j = z (3c)∑K−1

j=0
µ1,j = 1 (3d)

∑K−1

j=0
|σ(B(j))|µ1,j +

dlog2 Ke∑
l=1

z1,l = 0 (3e)

−ul ≤ z1,l ∀l ∈ {1, . . . , dlog2Ke}, (3f)

ul ≥ z1,l ∀l ∈ {1, . . . , dlog2Ke},
(3g)∑K−1

j=0
(−1)2−B(j)lµ1,j − (1− ul) ≤ z1,l ∀l ∈ {1, . . . , dlog2Ke} (3h)∑K−1

j=0
(−1)2−B(j)lµ1,j + (1− ul) ≥ z1,l ∀l ∈ {1, . . . , dlog2Ke} (3i)∑K−1

j=0
µ2,j + a0 = x (3j)

∑K−1

j=0
|σ(B(j))|µ2,j +

dlog2 Ke∑
l=1

z2,l = 0 (3k)

−(aK − a0)ul ≤ z2,l ∀l ∈ {1, . . . , dlog2Ke}, (3l)

(aK − a0)ul ≥ z2,l ∀l ∈ {1, . . . , dlog2Ke},
(3m)∑K−1

j=0
(−1)2−B(j)lµ2,j − (aK − a0)(1− ul) ≤ z2,l ∀l ∈ {1, . . . , dlog2Ke} (3n)∑K−1

j=0
(−1)2−B(j)lµ2,j + (aK − a0)(1− ul) ≥ z2,l ∀l ∈ {1, . . . , dlog2Ke} (3o)

µ1,j, µ2,j ≥ 0 ∀j ∈ {0, . . . , K − 1} (3p)

u ∈ {0, 1}dlog2 me (3q)∑dlog2 Ke

l=1
2l−1ul ≤ K − 1, (3r)

where B : {0, . . . ,m− 1} → {0, 1}dlog2 me is the binary expansion of a number given by

B(i) := v ∈ {0, 1}dlog2 me s.t. i =

dlog2 me∑
l=1

2l−1vl
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and σ : {0, 1}dlog2 me → 2{1,...,dlog2 me} is the support of a binary vector given by

σ(v) =
{
l ∈ {1, . . . , dlog2me} : vl = 1

}
.

We note that LiLog is original to Li et al. (2009) and BigM is presented in Li et al. (2009)

as the “current method” for modeling piecewise linear functions. However, we are not aware

of BigM being used in any other publication. We also note that in Li et al. (2009) the right

hand side of (3r) is equal to K, which is most likely the result of a typo as this can be

trivially strengthened to K − 1.

3 Strength of Formulations

An MILP formulation for a univariate piecewise linear function f : [a0, aK ] → R is Q :=

{(x, y, λ, µ) ∈ P : µ ∈ {0, 1}q} such that q ∈ Z+, P is a polyhedron and proj(x,y)(Q) =

gr(f) := {(x, y) : f(x) = y}, where proj(x,y)(·) is the projection onto the (x, y) variables. An

MILP formulation Q is said to be sharp (Jeroslow and Lowe, 1984) if its linear programming

(LP) relaxation P is such that proj(x,y)(P ) = conv(gr(f)). Sharp formulations provide the

best possible LP relaxation bounds so the sharpness property is crucial for the efficient

solution of these problems using branch-and-bound. An MILP formulation is locally ideal

(Padberg, 2000) if P has integral extreme points. The locally ideal property can provide an

additional advantage because it implies the sharpness property (e.g. Vielma et al., 2008). The

sharpness property is shared by essentially every standard MILP formulation for piecewise

linear functions (This is shown in Vielma et al. (2008) when considering the modeling of

epi(f) := {(x, y) : f(x) ≤ y} and the extension to modeling gr(f) is direct) and most

of them are also locally ideal. We now show that neither BigM nor LiLog is sharp. To

achieve this we will use the fact that for a sharp formulation we have that y ≥ g(x) for

all (x, y) ∈ proj(x,y)(P ), where g := convenv[a0,aK ](f) is the lower convex envelope of f over

[a0, aK ].

For BigM we use the piecewise linear function f : [0, 4]→ R defined by

f(x) :=

{
3x x ∈ [0, 1]

2x+ 1 x ∈ [1, 4],
(4)
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for which g(1) = 2.25 for g = convenv[0,4](f). BigM for this function is

−4(1− λ0) ≤ x ≤ 1 + 4(1− λ0)

1− 4(1− λ1) ≤ x ≤ 4 + 4(1− λ1)

3x− 12(1− λ0) ≤ y ≤ 3x+ 12(1− λ0)

2x+ 1− 12(1− λ1) ≤ y ≤ 2x+ 1 + 12(1− λ1)

λ0 + λ1 = 1 , λ0, λ1 ∈ {0, 1}

which has λ0 = λ1 = 0.5, x = 1, and y = −3 < 2.25 as a feasible solution to its LP relaxation.

For LiLog we use the piecewise linear function f : [0, 4]→ R defined by

f(x) :=


4x x ∈ [0, 1]

3x+ 1 x ∈ [1, 2]

2x+ 3 x ∈ [2, 3]

x+ 6 x ∈ [3, 4],
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for which g(1) = 2.5 for g = convenv[0,4](f). LiLog for this function is

r1 + 2r2 + 3r3 ≤ x ≤ r0 + 2r1 + 3r2 + 4r3

r1 + 3r2 + 6r3 + 4w0 + 3w1 + 2w2 + w3 = y

r0 + r1 + r2 + r3 = 1

r1 + r2 + 2r3 + z1 + z2 = 0

−u′1 ≤ z1 ≤ u′1

−u′2 ≤ z2 ≤ u′2

r0 − r1 + r2 − r3 − (1− u′1) ≤ z1 ≤ r0 − r1 + r2 − r3 + (1− u′1)

r0 + r1 − r2 − r3 − (1− u′2) ≤ z2 ≤ r0 + r1 − r2 − r3 + (1− u′2)

w0 + w1 + w2 + w3 = x

w1 + w2 + 2w3 + δ1 + δ2 = 0

−4u′1 ≤ δ1 ≤ 4u′1

−4u′2 ≤ δ2 ≤ 4u′2

w0 − w1 + w2 − w3 − 4(1− u′1) ≤ δ1 ≤ w0 − w1 + w2 − w3 + 4(1− u′1)

w0 + w1 − w2 − w3 − 4(1− u′2) ≤ δ2 ≤ w0 + w1 − w2 − w3 + 4(1− u′2)

u′1 + 2u′2 ≤ 3

r0, r1, r2, r3, w0, w1, w2, w3 ≥ 0

u′1, u
′
2 ∈ {0, 1}

which has x = 1, r0 = r1 = 0.5, r2 = r3 = 0, u′1 = 0.5, u′2 = 0, w0 = w1 = w2 = 0, w3 = 1,

z1 = −0.5, z2 = 0, δ1 = −2.0, δ2 = 0 and y = 1.5 < 2.5 as a feasible solution to its LP

relaxation.

4 Computational Results

We now present a computational comparison between BigM, LiLog and two standard MILP

formulations. Most standard MILP formulations for piecewise linear functions are stud-

ied in Vielma et al. (2008). From these formulations we selected the Convex Combination

Model and Logarithmic Convex Combination Model as a representative sample. The Convex
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Combination Model appears as early as Dantzig (1960) and is included in many textbooks

(Dantzig, 1963; Garfinkel and Nemhauser, 1972; Nemhauser and Wolsey, 1988). Although

it is a sharp formulation, it is the only formulation studied in Vielma et al. (2008) that is

not locally ideal and it has one of the worst computational performances. Hence it is an

example of a classical, but relatively weak formulation. The Logarithmic Convex Combina-

tion Model is a sharp and locally ideal formulation introduced in Vielma and Nemhauser

(2008a,b) that has a number of binary variables and constraints that is logarithmic in the

number of segments in which the modeled function is affine. It has one of the best com-

putational performances in Vielma et al. (2008) and hence is an example of a state of the

art formulation. We denote the Convex Combination and Logarithmic Convex Combination

Models by CC and Log respectively.

The first set of instances are from Li et al. and consists of a series of Mixed Integer

Nonlinear Programming (MINLP) problems that were obtained by linearizing some Nonlin-

ear Nonconvex Programming (NNP) problems. These MINLPs were obtained by replacing

the nonconvex portions of the NNPs by univariate piecewise linear approximations and cor-

respond to Examples 1 and 2 in Li et al. To solve these instances we used Bonmin 1.0.1

(Bonami et al., 2008) with CPLEX 11 (ILOG, 2008) as an MILP subsolver on a 2.4GHz

workstation with 2GB of RAM. We selected the Hybrid solver from Bonmin because most of

the time it significantly outperforms the other Bonmin solvers. Table 1 shows the solve times

in seconds for the different instances, which are identified according to their parameters (e.g.

Example 1 in Li et al. has three possible sets of parameter that we identify as 1a, 1b and

1c) and the resolution of the piecewise linear approximations (e.g. Example 2 in Li et al.

included approximations with piecewise linear functions with 32 and 64 segments).

Example 1a Example 1b Example 1c Example 2
segments 64 256 64 128 256 64 128 256 32 64
Log 1.1 3.3 0.2 0.4 0.7 0.3 0.4 0.7 6.1 11.2
CC 4.8 12.1 1.0 1.6 3.2 1.8 2.1 5.7 24.1 59.5
LiLog 4.3 23.5 1.1 2.2 5.4 1.2 2.5 5.6 116.0 129.2
BigM 1.9 19.2 1.0 2.5 17.5 1.0 4.5 15.8 214.0 306.0

Table 1: Solve times for MINLPs using Bonmin’s hybrid algorithm [s].

We see that LiLog is rarely faster than CC and is always at least three times slower than

Log. In fact, for the instances from Example 2 the solve times of both LiLog and BigM
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are more than twice the time of CC and over an order of magnitude the time of Log. For

most instances and formulations, Bonmin solved the problems at the root branch-and-bound

node. The exception was Example 2 for which CC required 1406 nodes for 64 segments, LiLog

required 4997 and 6362 nodes for 32 and 64 segments respectively and BigM required 43776

and 42852 nodes for 32 and 64 segments respectively.

The second set of instances from Li et al. are MILPs resulting from problems with

univariate piecewise linear functions. These instances include Example 4 and a variant of

Example 1 from Li et al. constructed by replacing every nonlinearity (convex and nonconvex)

of the original NNP with a piecewise linear approximation. We note that for this variant we

did not treat the convex nonlinearities specially so that we could assess the performance of

the different formulations even in the case in which some of the piecewise linear functions

can actually be modeled as LPs. These instances were solved using CPLEX 11. Table 2

shows the results for these instances in the same format as Table 1.

Example 1a Example 1b Example 1c Example 4
segments 64 256 64 128 256 64 128 256 32 64 128
Log 0.03 0.07 0.04 0.03 0.10 0.02 0.03 0.11 0.10 0.24 0.47
CC 0.08 0.57 0.38 0.41 1.38 0.30 0.62 1.41 0.58 1.79 3.77
LiLog 0.45 2.86 0.37 1.47 4.60 0.34 1.41 8.96 6.21 34.09 260.68
BigM 1.35 73.34 1.40 8.75 66.90 1.16 7.60 46.78 11.22 56.35 428.06

Table 2: Solve times for MILPs from Li et al. (2009) [s].

For Example 1 the number of branch-and-bound nodes processed ranged from 8 to 21, 10

to 29, 209 to 2499 and 514 to 533 for Log, CC, LiLog and BigM respectively. For Example

4 the number of nodes processed ranged from 156 to 236, 200 to 455, 4732 to 75390 and

2077 to 13912 for Log, CC, LiLog and BigM respectively. The results are very similar to

those for the first set and agree with the fact that BigM and LiLog are weaker than standard

formulations for piecewise linear functions.

The final set of instances consists of the transportation problems with piecewise linear

cost functions studied in Vielma et al. (2008). These instances consider univariate piecewise

linear functions that are affine in K segments for K ∈ {4, 8, 16, 32} and include 100 randomly

generated instances for each K. We again used CPLEX 11 as an MILP solver and Table 3

shows the minimum, average, maximum and standard deviation of the solve times in seconds.

The table also shows the number of times the solves failed because the time limit of 10,000
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seconds was reached. We note that BigM was not considered for K = 16 and 32 because it

had already failed too many times for K = 8 and that the statistics for LiLog with K = 32

are marked with a dash (-) because it failed in every single instance.

min avg max std fail
Log 0.2 2.1 12 2.3 0
CC 0.3 4.6 23 4.3 0
LiLog 10.0 25.5 124 15.1 0
BigM 17.4 652.2 9951 1245.2 0

(a) 4 segments.

min avg max std fail
Log 0.6 12 84 11 0
CC 2.6 81 570 97 0
LiLog 88.9 2702 10000 3024 11
BigM 259.8 6380 10000 3742 44

(b) 8 segments.

min avg max std fail
Log 0.5 24 96 18 0
CC 3.9 351 3691 517 0
LiLog 848.0 9863 10000 982 97

(c) 16 segments.

min avg max std fail
Log 2.5 43 194 39 0
CC 67.5 1938 10000 2560 4
LiLog - - - - 100

(d) 32 segments.

Table 3: Solve times for univariate continuous functions [s].

For 4/8 segments the average number of branch-and-bound nodes processed were 587/2591,

964/17276, 2376/262575 and 113327/575189 for Log, CC, LiLog and BigM respectively. For

16/32 segments the average number of branch-and-bound nodes processed were 4428/5287,

28895/80224 and 343187/172903 for Log, CC and LiLog respectively. Of course, these num-

bers are meaningless for the cases in which most instances reached the time limit, such as

LiLog for 16/32 segments. We again see that BigM and LiLog are significantly slower than

CC and Log. In addition, the results from Table 3 can be compared with the results in

Vielma et al. (2008) to see that both BigM and LiLog are significantly slower than each of

the six formulations tested in Vielma et al. (2008) for this set of instances.

We finally note that these negative results only concern formulations BigM and LiLog

that Li et al. use to model piecewise linear functions. The results in Table 4 from Li et

al. suggest that their main ideas could be useful for other problems such as the unique

selection over a finite set of choices or other problems with SOS1 type constraints. In

particular, these ideas can be used to modify a standard MIP model for piecewise linear

functions to obtain a model with a logarithmic number of binary variables that is similar to

the logarithmic disaggregated convex combination model (DLog) introduced in Vielma et al.

(2008). Preliminary computational results show that the performance of the resulting model

is significantly better than LiLog and, although it is still much slower than DLog and Log,
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it can be significantly faster than standard models with a linear number of binary variables

such as CC.
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