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1 Introduction

In 1990 Cook, Kannan and Schrijver [8] introduced a family of cuts for a Mixed Integer Linear Program
(MILP) which they called split cuts. These cuts are a special case of Balas’ disjunctive cuts [4] which arise
from a particular two term disjunction. Split cuts are also related to intersection cuts introduced by Balas
in 1971 [3]. A precise correspondence between split cuts and intersection cuts has been established for 0− 1
MILPs by Balas and Perregaard [5] and for general MILPs by Andersen, Cornuejols and Li [1, 2].

The split closure of a MILP is the convex set defined by the intersection of all of its split cuts. Cook,
Kannan and Schrijver [8] proved that the split closure of a MILP is a polyhedron. Andersen, Cornuejols and
Li [1, 2] have given an alternate proof of this fact. Unfortunately, neither of these proofs is constructive in
the sense that they do not provide a method for constructing the split closure for a given MILP.

Another family of cutting planes related to split cuts is the one introduced by Köppe and Weismantel in
2004 [9]. This family of cuts is based on a mixed integer version of the Farkas’ Lemma and they were related
to split cuts by Bertsimas and Weismantel in 2005 [6].

By using an algebraic characterization of split cuts introduced by Caprara and Letchford [7] we are able
to show that every cut from [9] is dominated by the split cut to which it is related. Furthermore, by using
this relationship and a result from [1, 2] we are able to construct a finite set of split cuts that define the split
closure, hence providing a constructive proof of its polyhedrality. The key step of this proof is using the
characterization from [7] to note that every non-dominated split cut for a particular relaxation of a MILP
can be associated to an element in a lattice introduced in [9].

The rest of the paper is organized as follows. In section 2 we introduce some notation, the algebraic
characterization of split cuts from [7] and some results from [1, 2] we will use later. Then, in section 3 we
present a simplified characterization of split cuts for a particular relaxation of the MILP. Finally, in section
4 we use this simplified characterization show that the cutting planes introduced in [9] are dominated by
split cuts and develop the constructive proof of the polyhedrality of the split closure.

2 Split Cuts

We study the feasible region of a Mixed Integer Linear Programming (MILP) problem given by

PI := {x ∈ P ⊆
� n : xj ∈ � ∀ j ∈ NI}

where N = {1, . . . , n}, NI ⊆ N and P is a rational polyhedron given by

P := {x ∈
� n : Ax ≤ b}

where A ∈
� m×n, b ∈

� m, M = {1, . . . , m}, r = rank(A) and ai· corresponds to row i of A. We will assume
that P 6= ∅, but we will not assume r = n allowing for P to contain a line. We also allow for P to be not
full dimensional.

Now, let
B∗

r := {B ⊆ M : |B| = r and {ai·}i∈B are linearly independent}.

Then, for every B ∈ B∗
r we define the following relaxation of P

P (B) := {x ∈
� n : aT

i·x ≤ bi ∀ i ∈ B}.

Note that B∗
n corresponds to the bases of P , so for simplicity we will refer to B ∈ B∗

r as a basis even
when r < n, noting that in this later case, feasible bases will not define extreme points of P . In any case we
will define x̄(B) to be a particular, but arbitrarily selected, solution to aT

i·x = bi, ∀ i ∈ B.
We will study split disjunctions D(π, π0) of the form πT x ≤ π0 ∨ πT x ≥ π0 + 1 where (π, π0) ∈ � n+1.

We denote the set of points satisfying split disjunction D(π, π0) as

FD(π,π0) := {x ∈
� n : πT x ≤ π0 ∨ πT x ≥ π0 + 1}
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and conv(P ∩ FD(π,π0)) as the disjunctive hull defined by P and D(π, π0). Similarly for B ∈ B∗
r we define

the basic disjunctive hull defined by B and D(π, π0) as conv(P (B) ∩ FD(π,π0)).
We say that a disjunction D(π, π0) is valid for PI if PI ⊆ FD(π,π0) (

� n. We are interested in the
following set of disjunctions, which are always valid for PI .

Πn
0 (NI) := {(π, π0) ∈ ( � n \ {0}) × � : πj = 0, j /∈ NI}

We also define the projection of Πn
0 (NI) into the π variables as

Πn(NI) := {π ∈ � n \ {0} : πj = 0, j /∈ NI}.

With this, the split closure of PI is defined as

SC :=
⋂

(π,π0)∈Πn

0
(NI)

conv(P ∩ FD(π,π0)).

Similarly, for B ∈ B∗
k we define the basic split closure as

SC(B) :=
⋂

(π,π0)∈Πn

0
(NI)

conv(P (B) ∩ FD(π,π0)).

A split cut is an inequality valid for SC and hence valid for PI . Similarly a basic split cut is an inequality
valid for SC(B) for some B ∈ B∗

r . It is known that basic split cuts are exactly the same as intersection cuts
(see, for example, [1, 2]).

If δT x ≤ δ0 and γT x ≤ γ0 are two inequalities valid for SC, we will say that δT x ≤ δ0 is dominated by
γT x ≤ γ0 if and only if

{x ∈ P : γT x ≤ γ0 } ⊆ {x ∈ P : δT x ≤ δ0}.

Similarly, if the inequalities are valid for SC(B) for some B ∈ B∗
r , we will say that δT x ≤ δ0 is dominated

by γT x ≤ γ0 if and only if

{x ∈ P (B) : γT x ≤ γ0 } ⊆ {x ∈ P (B) : δT x ≤ δ0}.

In particular, we will say that a split cut or basic split cut δT x ≤ δ0 is non-trivial if and only if it is not
dominated by the trivial inequality 0T x ≤ 1. In other words, non-trivial split cuts and non-trivial basic split
cuts are cuts that are not already valid for P and P (B) respectively.

Any split cut δT x ≤ δ0 is a valid inequality for conv(P ∩ FD(π,π0)) for some (π, π0) ∈ Πn
0 (NI), so we will

concentrate on characterizing split cuts for a fixed, but arbitrary (π, π0) ∈ Πn
0 (NI). We will refer to these

split cuts for a fixed (π, π0) ∈ Πn
0 (NI) as a split cut for D(π, π0). Similarly we will also talk about basic split

cuts for D(π, π0) and B for some basis B ∈ B∗
r .

For any (π, π0) ∈ Πn
0 (NI) we have that P ∩ FD(π,π0) is the disjoint union of sets P1(π, π0) and P2(π, π0)

given by

P1(π, π0) := {x ∈
� n : Ax ≤ b, πT x ≤ π0}

P2(π, π0) := {x ∈
� n : Ax ≤ b, −πT x ≤ −π0 − 1}

either of which could be empty. Note that P1(π, π0) and P2(π, π0) respectively correspond to the Left and
Right polyhedra of [7].

The following characterization is constructed by using Farkas’ Lemma and the fact that an inequality is
valid for conv(P ∩ FD(π,π0)) if and only if it is valid for P1(π, π0) and P2(π, π0). This approach was first
proposed by Cook, Kannan and Schrijver [8], but was not used to give a characterization of split cuts. This
characterization can also be seen as a slight simplification of the reverse polar characterization of Balas [4] for
the particular case of split disjunctions. It has been implicitly used for 0−1 MILPs by Balas and Perregaard
[5] and for general MILPs by Andersen, Cornuejols and Li [1, 2], but to the best of our knowledge it was
explicitly introduced for the first time by Caprara and Letchford [7].
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Proposition 1. Let (π, π0) ∈ Πn
0 (NI). Then, for any µ1

0, µ
2
0 ∈

�
+ and µ1, µ2 ∈

� m
+ which are solutions to

the system

∑

i∈M

µ2
i ai· −

∑

i∈M

µ1
i ai· = π (1)

∑

i∈M

µ2
i bi −

∑

i∈M

µ1
i bi − µ2

0 = π0 (2)

µ1
0 + µ2

0 = 1 (3)

we have that δ(µ, π, π0)
T x ≤ δ0(µ, π, π0) given by

δ(µ, π, π0) := µ1
0π +

∑

i∈M

µ1
i ai· = −µ2

0π +
∑

i∈M

µ2
i ai·

δ0(µ, π, π0) := µ1
0π0 +

∑

i∈M

µ1
i bi = −µ2

0(π0 + 1) +
∑

i∈M

µ2
i bi

is a split cut for D(π, π0). Conversely, any non-trivial split cut for D(π, π0) is dominated by

δ(µ, π, π0)
T x ≤ δ0(µ, π, π0) for some µ1

0, µ
2
0 ∈

�
+ and µ1, µ2 ∈

� m
+ which are solutions to (1)–(3) also satis-

fying

µ2
0 ∈ (0, 1) (4)

µ1
i · µ

2
i = 0 ∀i ∈ M. (5)

The validity of this characterization can be established from [4], in which a higher dimensional characteri-
zation of conv(P ∩FD(π,π0)) is introduced. For proofs without using this higher dimensional characterization
see [7] and [10].

We will also use the following results from [1, 2].

Proposition 2. Let (π, π0) ∈ Πn
0 (NI). Then

conv(P ∩ FD(π,π0)) =
⋂

B∈B∗

r

conv(P (B) ∩ FD(π,π0)).

Corollary 1. SC =
⋂

B∈B∗

r

SC(B).

Given that B∗
r is finite, from Corollary 1 we have that proving that SC is a polyhedron reduces to

proving that SC(B) is a polyhedron for all B ∈ B∗
r . This was exactly the approach used in [1, 2] to prove

the polyhedrality of SC. In this same spirit we now study the characterization of basic split cuts to give a
constructive proof of the polyhedrality of SC(B).

3 Basic Split Cuts

In this section we study basic split cuts for a particular basis B ∈ B∗
r . We will use Proposition 1 to give a

family of inequalities that contains all non-dominated basic split cuts for B and does not explicitly depend
on (π, π0).

For a particular basis B ∈ B∗
r we denote by B̄ the r × n submatrix of A defined by this basis and by b̄

the corresponding r-dimensional righthand side.
By defining y− = max{−y, 0}, y+ = max{y, 0} and f(y) = y − byc for any y ∈

�
and assuming that

these operations together with |y| are applied component wise for y ∈
� r we have that
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Proposition 3. For B ∈ B∗
r and µ̄ ∈

� r define the following inequalities:

1. δ1(µ̄, B)T x ≤ δ1
0(µ̄, B) given by

(µ̄−)T (B̄x − b̄) + (1 − f(µ̄T b̄))(µ̄T B̄x − bµ̄T b̄c) ≤ 0 (6)

2. δ2(µ̄, B)T x ≤ δ2
0(µ̄, B) given by

(µ̄+)T (B̄x − b̄) − f(µ̄T b̄)(µ̄T B̄x − bµ̄T b̄c) + f(µ̄T b̄) ≤ 0 (7)

3. δ3(µ̄, B)T x ≤ δ3
0(µ̄, B) given by

1

2

(

|µ̄|T (B̄x − b̄) + (1 − 2f(µ̄T b̄))(µ̄T B̄x − bµ̄T b̄c) + f(µ̄T b̄)
)

≤ 0 (8)

Also, for π ∈ Πn(NI) define the following linear system over µ̄ ∈
� r

B̄T µ̄ = π. (9)

Then

1. If µ̄ is a solution to (9) then, for all k ∈ {1, 2, 3} we have that δk(µ̄, B)T x ≤ δk
0 (µ̄, B) is valid for

conv(P (B) ∩ FD(π,bµ̄T b̄c)). Furthermore, δ1(µ̄, B) = δ2(µ̄, B) = δ3(µ̄, B) and δ1
0(µ̄, B) = δ2

0(µ̄, B) =

δ3
0(µ̄, B).

2. If µ̄ is the unique solution to (9) and µ̄T b̄ /∈ � then for any k ∈ {1, 2, 3}

conv(P (B) ∩ FD(π,bµ̄T b̄c)) = {x ∈ P (B) : δk(µ̄, B)x ≤ δk
0 (µ̄, B)}

( P (B). (10)

3. If (9) is infeasible or the unique solution µ̄ to (9) is such that µ̄T b̄ ∈ � then

conv(P (B) ∩ FD(π,bµ̄T b̄c)) = P (B).

4. conv(P (B) ∩ FD(π,π0)) = P (B) for all π0 6= bµ̄T b̄c.

Proof. To prove this proposition we will use Proposition 1 for the special case P = P (B) for the given
B ∈ B∗

r . For this case, condition (5) of Proposition 1 for (π, π0) allow us to combine µ1 and µ2 into µ̄ ∈
� r.

We can then write conditions (1)–(3),(4) of Proposition 1 in variables µ̄ and the original µ1
0, µ

2
0 as:

B̄T µ̄ =
∑

i∈B

µ̄iai· = π (11)

µ̄T b =
∑

i∈B

µ̄ibi = π0 + µ2
0 (12)

µ1
0 + µ2

0 = 1

µ2
0 ∈ (0, 1) (13)

Then, from (11),(12),(13) and Proposition 1 we have that for P = P (B) there can be a non-trivial split
cut for D(π, π0) only if (9) is feasible and the unique solution µ̄ to (9) is such that µ̄T b̄ /∈ � and π0 = bµ̄T b̄c.
This proves parts 3 and 4 by noting that, besides the original constraints of P (B), the only necessary
inequalities for the description of conv(P (B) ∩ FD(π,π0)) are non-trivial split cuts.

Now, if µ̄ is a solution to (9), by the identities µ1
i = µ̄−

i , µ2
i = µ̄+

i , µ2
0 = f(µ̄T b̄), µ1

0 = 1 − f(µ̄T b̄)
and π0 = bµ̄T b̄c we have that δk(µ̄, B) = δ(µ, π, π0) and δk

0 (µ̄, B) = δ0(µ, π, π0) for k ∈ {1, 2}. Hence for
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k ∈ {1, 2} we have that δk(µ̄, B)T x ≤ δk
0 (µ̄, B) is valid for conv(P (B) ∩ FD(π,π0)). By noting that (8) is the

average of (6) and (7) we have part 1.
Finally, we already know that under the conditions of part 2 the first equality of (10) holds. To prove

that the strict containment holds we will show that for any k ∈ {1, 2, 3}, δk(µ̄)x̄(B) > δk
0 (µ̄). First, by

multiplying B̄x̄(B) = b̄ by µ̄T and using µ̄T b̄ /∈ � we have that µ̄T B̄x̄(B) − bµ̄T b̄c > 0. By multiplying this
last strict inequality by (1− f(µT b̄)) > 0 and B̄x̄(B) = b̄ by µ− ≥ 0 and adding them together we have that
δ1(µ̄)x̄(B) > δ1

0(µ̄). The result follows from the equivalence of δk(µ̄, B)T x ≤ δk
0 (µ̄, B) for k ∈ {1, 2, 3}.

We note that parts 2–4 of Proposition 3 can be seen to be equivalent to known properties of intersection
cuts which are usually stated and proved with respect to (π, π0) instead of µ̄. These details are explored in
[10].

Using Proposition 3 for B ∈ B∗
r and µ̄ ∈

� r the unique solution to (9) for some π ∈ Πn(NI) we define
δ(µ̄, B)T x ≤ δ0(µ̄, B) to be the inequality defined by δk(µ̄, B)T x ≤ δk

0 (µ̄, B) for any k ∈ {1, 2, 3}. We note
that δ(µ̄, B)T x ≤ δ0(µ̄, B) does not explicitly depend on (π, π0), but it does implicitly depend on π.

4 Mixed Integer Lattices and Polyhedrality of the Split Closure

In this section we show that every non-dominated basic split cut for a particular basis B ∈ B∗
r can be

associated to an element of the lattice used by [9]. Then we construct a finite set of inequalities defining
SC(B).

We start by summarizing the results from [9] in Proposition 4. For this we let B̄I ∈
� r×|NI| and

B̄C ∈
� r×(n−|NI|) be the submatrices of B̄ corresponding to the integer and the continuous variables of

PI respectively and for µ̄ ∈
� r we let dµ̄−e ∈

� r be the vector with components dµ̄−
i e. We also use the

following definition of a lattice.

Definition 1. Let {vi}i∈V ⊆
� r be a finite set of linear independent vectors. The lattice generated by

{vi}i∈V is L := {µ ∈
� r : µ =

∑

i∈V kiv
i ki ∈ � }. The set {vi}i∈V is called a basis of L.

Proposition 4. For every B ∈ B∗
r

1. L(B) := {µ̄ ∈
� r : B̄I

T µ̄ ∈ � |NI |, B̄C
T µ̄ = 0} is a lattice.

2. If µ̄ ∈ L(B) is such that µ̄T b /∈ � then the inequality defined by

dµ̄−eT (B̄x − b̄) + (1 − f(µ̄T b̄))(µ̄T B̄x − bµ̄T b̄c) ≤ 0 (14)

is valid for {x ∈ P (B) : xj ∈ � ∀ j ∈ NI}. Furthermore this inequality is not satisfied by x̄(B).

Proof. See Proposition 2 and Theorem 3 of [9] for the case r = n. The case r < n is analogous.

Bertsimas and Weismantel [6] related split cuts to inequality (14) by showing that every µ̄ ∈ L(B) such
that µ̄T b /∈ � induces a valid split disjunction for PI . We will now see that in fact, the only split disjunctions
necessary for the description of SC(B) are the ones induced by elements of L(B).

We have that L(B) precisely corresponds to all the µ̄ ∈
� r such that µ̄ is the unique solution to (9) for

B and some π ∈ Πn(NI). Hence, every non-dominated basic split cuts for B is associated to an element in
L(B). Furthermore, from Proposition 3 we get the following characterization of SC(B).

Proposition 5. For every B ∈ B∗
r and µ̄ ∈ L(B) we have that δ(µ̄, B)T x ≤ δ0(µ̄, B) is a valid inequality

for SC(B). Furthermore we have that

SC(B) =
⋂

µ̄∈L(B)

µ̄T b̄/∈ �

{x ∈ P (B) : δ(µ̄, B)T x ≤ δ0(µ̄, B)}.
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We then have that every element of L(B) that is associated to a cut given by (14) is also associated to
a non-dominated basic split cut for B. Furthermore we have that

Proposition 6. Let µ̄ ∈ L(B) be such that µ̄T b /∈ � then cut (14) for µ̄ is dominated by the basic split cut

δ(µ̄, B)T x ≤ δ0(µ̄, B).

Proof. The result follows directly from representation (6) of δ(µ̄, B)T x ≤ δ0(µ̄, B) and the facts that
B̄x − b̄ ≤ 0 for all x ∈ P (B) and that dµ̄−e ≥ µ̄−.

We will now construct a finite subset of L(B) that suffices to characterize SC(B). To do this we will
need to study the intersection of L(B) with each orthant separately. For any σ ∈ {0, 1}r let

L(B, σ) := {µ ∈ L(B) : (−1)σiµi ≥ 0, ∀ i ∈ {1, . . . , r}}

be the intersection of L(B) with the orthant defined by σ. We then have that

L(B) =
⋃

σ∈{0,1}r

L(B, σ)

Now, for each σ ∈ {0, 1}r, we construct a finite subset of L(B, σ), such that the finite union of these sets
suffices to characterize SC(B). To do this we will need the following lemma

Lemma 1. Let σ ∈ {0, 1}r and let µ̄ ∈ L(B, σ) with µ̄ = α + β for α, β ∈ L(B, σ) such that βT b ∈ � . Then

δ(µ̄, B)T x ≤ δ0(µ̄, B) is dominated by δ(α, B)T x ≤ δ0(α, B).

Proof. We will use representation (8) of δ(µ̄, B)T x ≤ δ0(µ̄, B) and δ(α, B)T x ≤ δ0(α, B). First note that

bµ̄T bc = bαT bc + βT b (15)

f(µ̄T b) = f(αT b). (16)

Then

2(δ(µ̄, B)T x − δ0(µ̄, B)) = |µ̄|T (B̄x − b̄) + (1 − 2f(µ̄T b̄))(µ̄T B̄x − bµ̄T b̄c)

+ f(µ̄T b̄)

= |α + β|T (B̄x − b̄)

+ (1 − 2f(αT b̄))(αT B̄x − bαT b̄c + βT B̄x − βT b̄)

+ f(αT b̄)

= |α|T (B̄x − b̄) + (1 − 2f(αT b̄))(αT B̄x − bαT b̄c)

+ f(αT b̄) + |β|T (B̄x − b̄)

+ (1 − 2f(αT b̄))(βT B̄x − βT b̄)

where the first equality follows from using representation (8) of δ(µ̄, B)T x ≤ δ0(µ̄, B) scaled by 2, the second
one follows from µ̄ = α + β and (15)–(16) and the last equality follows from the fact when α and β are on
the same orthant |α + β| = |α| + |β|.

Then, by using representation (8) of δ(α, B)T x ≤ δ0(α, B) scaled by 2 we obtain

2(δ(µ̄, B)T x − δ0(µ̄, B)) = 2(δ(α, B)T x − δ0(α, B)) + |β|T (B̄x − b̄)

+ (1 − 2f(αT b̄))βT (B̄x − b̄).

Finally by noting that |β| = β+ + β− and β = β+ − β− we obtain

2(δ(µ̄, B)T x − δ0(µ̄, B)) = 2(δ(α, B)T x − δ0(α, B)) + 2f(αT b̄)β−T
(B̄x − b̄)

+ (2 − 2f(αT b̄))β+T
(B̄x − b̄). (17)

The result follows from (17) as (2 − 2f(αT b̄)) ≥ 0, f(αT b̄) ≥ 0 and B̄x − b̄ ≤ 0 for all x ∈ P (B).
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Now, for any σ ∈ {0, 1}r let {vi}i∈V(σ) ⊆ L(B, σ) be a finite integral generating set of L(B, σ) (see [6]
page 286). That is, a finite set {vi}i∈V(σ) such that

L(B, σ) = {µ ∈
� r : µ =

∑

i∈V(σ)

kiv
i ki ∈ � +}

The existence of this set comes from using Theorem 8.1 in [6] page 289 together with an appropriate
linear transformation. A detailed proof is presented in [10]. We note that the proof of the existence of this
finite generating set is constructive.

For every i ∈ V(σ) let mi = min{m ∈ � + \ {0} : m b̄T vi ∈ � }. For example if b̄T vi = c/d with c ∈ �
and d ∈ � + \ {0} relatively prime we have that mi = d.

Now, for every σ ∈ {0, 1}r we define the following finite subset of L(B, σ).

L0(B, σ) := {µ ∈ L(B, σ) : µ =
∑

i∈V(σ)

riv
i ri ∈ {0, . . . , mi − 1}}

We also define the following finite subset of L(B).

L0(B) :=
⋃

σ∈{0,1}r

L0(B, σ)

We now state our main result.

Theorem 1. For any B ∈ B∗
r we have that SC(B) is a polyhedron defined by the original inequalities of

P (B) and the following finite set of inequalities

δ(µ̄, B)T x ≤ δ0(µ̄, B) ∀ µ̄ ∈ L0(B) s.t. µ̄T b /∈ � .

Proof. Because of Proposition 5 the only thing that needs to be proved is that, for any µ̄ ∈ L(B),
δ(µ̄, B)T x ≤ δ0(µ̄, B) is dominated by δ(α, B)T x ≤ δ0(α, B) for some α ∈ L0(B).

Let µ̄ ∈ L(B). Let σ ∈ {0, 1}r be such that µ̄ ∈ L(B, σ) and {ki}i∈V(σ) ⊆ � + be such that
µ̄ =

∑

i∈V(σ) kiv
i. For all i ∈ V(σ) ki = nimi + ri for some ni, ri ∈ � +, 0 ≤ ri < mi. Thus

∑

i∈V(σ)

kiv
i =

∑

i∈V(σ)

riv
i +

∑

i∈V(σ)

nimiv
i (18)

but
b̄T (

∑

i∈V(σ)

nimiv
i) =

∑

i∈V(σ)

nimib̄
T vi ∈ � . (19)

Let
α =

∑

i∈V(σ)

riv
i

and
β =

∑

i∈V(σ)

nimiv
i

Because µ̄, α, β ∈ L(B, σ), (18) and (19), by Lemma 1 we have that δ(µ̄, B)T x ≤ δ0(µ̄, B) is dominated
by δ(α, B)T x ≤ δ0(α, B). The result follows by noting that α ∈ L0(B, σ) ⊆ L0(B).

Combining Theorem 1 with Corollary 1 and the fact that B∗
r is a finite set we have

Corollary 2. SC is a polyhedron.
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Note that by applying Theorem 1 to every B ∈ B∗
r we not only prove that there exists a finite set of

inequalities defining SC, but Theorem 1 can actually be used to develop a finite algorithm to obtain SC.
We note that the constructed set of inequalities is not minimal for the description of SC or SC(B).

In fact, it can be proved [10] that Theorem 1 still holds if in the definition of L0(B, σ) we further require
the ri’s to be relatively prime. We also note that finite integral generating sets are not needed in order
to characterize SC(B). Specifically, we have the following proposition which can be proven in a manner
analogous to the proof of Theorem 1.

Proposition 7. Let {wi}i∈W(σ) ⊆
� r be the extreme rays of the conic hull of L(B, σ) and let them be scaled

such that they are primitive vectors of the lattice L(B). Also, for every i ∈ W(σ) let

mi = min{m ∈ � + \ {0} : m b̄T wi ∈ � }. Define L̃0(B, σ) as the set of primitive vectors of the lattice L(B)
in {

∑

i∈W(σ) riw
i : 0 ≤ ri < mi ∀i ∈ W(σ)}. We then have that L0(B, σ) can be replaced by L̃0(B, σ) in

Theorem 1 and the result still holds.
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