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Abstract. In 1990 Cook, Kannan and Schrijver introduced the split closure
of a Mixed Integer Linear Program (MILP) and proved it to be a polyhedron.
Recently, Andersen, Cornuejols and Li (2002) gave a precise relationship be-
tween split cuts and intersection cuts introduced by Balas in 1971. This allowed
them to give an alternate proof of the polyhedrality of the split closure. Un-
fortunately, neither of these proofs is constructive. Also recently, Köppe and
Weismantel (2004) introduced a family of cuts based on a mixed integer Farkas’
Lemma. These cuts have been related to split cuts by Bertsimas and Weisman-
tel in 2005. By using an algebraic characterization of split cuts by Caprara and
Letchford (2003) we are able show that every cut from the family introduced by
Köppe and Weismantel is dominated by the split cut to which it is related. Fur-
thermore, by using this relationship and a result from Andersen, Cornuejols and
Li (2002) we are able to give a constructive proof of the polyhedrality of the split
closure.
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1 Introduction

In 1990 Cook, Kannan and Schrijver [8] introduced a family of cuts for a Mixed
Integer Linear Program (MILP) which they called split cuts. These cuts are
a special case of Balas’ disjunctive cuts [4] which arise from a particular two
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term disjunction. Split cuts are also related to intersection cuts introduced by
Balas in 1971 [3]. A precise correspondence between split cuts and intersection
cuts has been established for 0− 1 MILPs by Balas and Perregaard [5] and for
general MILPs by Andersen, Cornuejols and Li [1, 2].

The split closure of a MILP is the intersection of all of its split cuts. Cook,
Kannan and Schrijver [8] proved that the split closure of a MILP is a polyhedron.
Andersen, Cornuejols and Li [1, 2] have given an alternate proof of this fact.
Unfortunately, neither of these proofs is constructive in the sense that they do
not provide a method for constructing the split closure for a given MILP.

Another family of cutting planes related to split cuts is the one introduced
by Köppe and Weismantel in 2004 [10]. This family of cuts is based on mixed
integer version of the Farkas’ Lemma and they were related to split cuts by
Bertsimas and Weismantel in 2005 [6].

By using an algebraic characterization of split cuts introduced by Caprara
and Letchford [7] we are able to show that every cut from [10] is dominated by
the split cut to which it is related. Furthermore, by using this relationship and
a result from [1, 2] we are able to construct a finite set of split cuts that define
the split closure, hence providing a constructive proof of its polyhedrality. The
key step of this proof is using the characterization from [7] to note that every
non-dominated split cut for a particular relaxation of a MILP can be associated
to an element in an integer lattice introduced in [10].

To make this paper more self contained we include proofs of most of the
external results. All of these proofs are slightly different or more detailed than
original ones, but most of them are not different enough to be really consid-
ered alternate proofs. The exception to this last statement are the properties
of intersection cuts, for which we present an alternate algebraic proof. For a
geometric insight into these properties we refer to the original geometric proofs
of Andersen, Cornuejols and Li [1, 2]. For this reason, we will use a notation as
close as possible as the original notation used in [1, 2].

The rest of the paper is organized as follows. In section 2 we introduce
some notation, the algebraic characterization of split cuts from [7] and some
results from [1, 2] we will use later. Then, in section 3 we present a simplified
characterization of split cuts for a particular relaxation of the MILP, present
the alternate proofs of known properties of intersection cuts and show that
basic split cuts are nothing more than intersection cuts. Finally, in section 4
we use this simplified characterization show that the cutting planes introduced
in [10] are dominated by split cuts and develop the constructive proof of the
polyhedrality of the split closure.

2 Split Cuts

We study the feasible region of a Mixed Integer Linear Programming (MILP)
problem given by

PI := {x ∈ P ⊆ � n : xj ∈ � ∀ j ∈ NI} (1)
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where N = {1, . . . , n}, NI ⊆ N and P is a rational polyhedron given by

P := {x ∈ � n : Ax ≤ b} (2)

where A ∈ � m×n, b ∈ � m, M = {1, . . . ,m}, r = rank(A) and ai· corresponds
to row i of A. We will assume that P 6= ∅, but we will not assume r = n allowing
for P to contain a line. We also allow for P to be not full dimensional.

Now, let

B∗r := {B ⊆M : |B| = r and {ai·}i∈B are linearly independent}. (3)

Then, for every B ∈ B∗r we define the following relaxation of P

P (B) := {x ∈ � n : aTi·x ≤ bi ∀ i ∈ B}. (4)

Note that B∗n corresponds to the bases of P , so for simplicity we will refer
to B ∈ B∗r as a basis even when r < n, noting that in this later case, feasible
bases will not define extreme points of P . What will be true, even if r < n, is
that for any basis B ∈ B∗r we can write P (B) as:

P (B) = x̄(B) + L(B) + C(B) (5)

where x̄(B) is any particular solution of the system aTi·x = bi, ∀ i ∈ B, L(B) is
the subspace defined by the system aTi·x = 0, ∀ i ∈ B and C(B) is the polyhedral
cone given by {x ∈ � n : aTi·x ≤ 0 ∀ i ∈ B}. Note that C(B) is a simplicial cone,
i.e. its extreme rays are linearly independent. We also have that P (B) is
the translation of polyhedral cone L(B) + C(B). We will denote this type of
polyhedra as conic polyhedra and in particular when L(B) = ∅ we will denote
them as simple conic polyhedra.

We will study split disjunctions D(π, π0) of the form πTx ≤ π0 ∨ πTx ≥ π0 + 1
where (π, π0) ∈ � n+1. We denote the set of points satisfying split disjunction
D(π, π0) as

FD(π,π0) := {x ∈ � n : πTx ≤ π0 ∨ πTx ≥ π0 + 1} (6)

and conv(P ∩FD(π,π0)) as the disjunctive hull defined by P and D(π, π0). Sim-
ilarly for B ∈ B∗r we define the basic disjunctive hull defined by B and D(π, π0)
as conv(P (B) ∩ FD(π,π0)).

We say that a disjunction D(π, π0) is valid for PI if PI ⊆ FD(π,π0) (
� n.

We are interested in the following set of disjunctions, which are always valid for
PI .

Πn
0 (NI) := {(π, π0) ∈ ( � n \ {0})× � : πj = 0, j /∈ NI} (7)

We also define the projection of Πn
0 (NI) onto the π variables as

Πn(NI) := {π ∈ � n \ {0} : πj = 0, j /∈ NI}. (8)
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With this, the split closure of PI is defined as

SC :=
⋂

(π,π0)∈Πn0 (NI)

conv(P ∩ FD(π,π0)). (9)

Similarly, for B ∈ B∗k we define the basic split closure as

SC(B) :=
⋂

(π,π0)∈Πn0 (NI)

conv(P (B) ∩ FD(π,π0)). (10)

A split cut is an inequality valid for SC and hence valid for PI . Similarly a
basic split cut is an inequality valid for SC(B) for some B ∈ B∗r . It is known
that basic split cuts are exactly the same as intersection cuts (see, for example,
[1, 2]).

If δTx ≤ δ0 and {γlTx ≤ γl0}ql=1 are inequalities valid for SC, we will say

that δTx ≤ δ0 is dominated by {γlTx ≤ γl0}ql=1 if and only if

{x ∈ P : γi
T
x ≤ γi0 ∀i ∈ {1, . . . , q}} ⊆ {x ∈ P : δTx ≤ δ0}. (11)

Similarly, if the inequalities are valid for SC(B) for some B ∈ B∗r , we will

say that δTx ≤ δ0 is dominated by {γlTx ≤ γl0}ql=1 if and only if

{x ∈ P (B) : γi
T
x ≤ γi0 ∀i ∈ {1, . . . , q}} ⊆ {x ∈ P (B) : δTx ≤ δ0}. (12)

In particular, we will say that a split cut or basic split cut δTx ≤ δ0 is non-
trivial if and only if it is not dominated by the trivial inequality 0Tx ≤ 1. In
other words, non-trivial split cuts and non-trivial basic split cuts are cuts that
are not already valid for P and P (B) respectively.

Any split cut δTx ≤ δ0 is a valid inequality for conv(P ∩ FD(π,π0)) for some
(π, π0) ∈ Πn

0 (NI), so we will concentrate on characterizing split cuts for a fixed,
but arbitrary (π, π0) ∈ Πn

0 (NI). We will refer to these split cuts for a fixed
(π, π0) ∈ Πn

0 (NI) as a split cut for D(π, π0). Similarly we will also talk about
basic split cuts for D(π, π0) and B for some basis B ∈ B∗r .

For any (π, π0) ∈ Πn
0 (NI) we have that P ∩ FD(π,π0) is the disjoint union of

sets P1(π, π0) and P2(π, π0) given by

P1(π, π0) := {x ∈ � n : Ax ≤ b, πTx ≤ π0} (13)

P2(π, π0) := {x ∈ � n : Ax ≤ b, −πTx ≤ −π0 − 1} (14)

either of which could be empty. Note that P1(π, π0) and P2(π, π0) respectively
correspond to the Left and Right polyhedra of [7].

The following characterization is constructed by using Farkas’ Lemma and
the fact that an inequality is valid for conv(P ∩FD(π,π0)) if and only if it is valid
for P1(π, π0) and P2(π, π0). This approach was first proposed by Cook, Kannan
and Schrijver [8], but was not used to give a characterization of split cuts. This
characterization can also be seen as a slight simplification of the reverse polar
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characterization of Balas [4] for the particular case of split disjunctions. It has
been implicitly used for 0−1 MILPs by Balas and Perregaard [5] and for general
MILPs by Andersen, Cornuejols and Li [1, 2], but to the best of our knowledge
it was explicitly introduced for the first time by Caprara and Letchford [7].

Proposition 1. Let (π, π0) ∈ Πn
0 (NI). Then for any µ1

0, µ
2
0 ∈

�
+ and µ1, µ2 ∈ � m

+

which are solutions solutions to the system

∑

i∈M
µ2
i ai· −

∑

i∈M
µ1
i ai· = π (15)

∑

i∈M
µ2
i bi −

∑

i∈M
µ1
i bi − µ2

0 = π0 (16)

µ1
0 + µ2

0 = 1 (17)

we have that δ(µ, π, π0)Tx ≤ δ0(µ, π, π0) given by

δ(µ, π, π0) := µ1
0π +

∑

i∈M
µ1
i ai· = −µ2

0π +
∑

i∈M
µ2
i ai· (18)

δ0(µ, π, π0) := µ1
0π0 +

∑

i∈M
µ1
i bi = −µ2

0(π0 + 1) +
∑

i∈M
µ2
i bi (19)

is a split cut for D(π, π0). Conversely, any non-trivial split cut for D(π, π0)
is dominated by δ(µ, π, π0)Tx ≤ δ0(µ, π, π0) for some µ1

0, µ
2
0 ∈

�
+ and µ1, µ2 ∈� m

+ which are solutions to (15)-(17) that also satisfy

µ2
0 ∈ (0, 1). (20)

The validity of this characterization can be established from [4], in which a
higher dimensional characterization of conv(P ∩ FD(π,π0)) is introduced. It can
also be proved without using this higher dimensional characterization [7].

To rigorously prove the validity of the characterization in Proposition 1 we
will use the following version of the Inhomogeneous Farkas’ Lemma.

Proposition 2 (Farkas’ Lemma). Let γ ∈ � n, γ0 ∈
�

and Q = {x ∈ � n :
Ex ≤ f} with E ∈ � m×n and f ∈ � m. Then γTx ≤ γ0 is a valid inequality for
Q if and only if there exists µ ∈ � m

+ such that one of the following conditions
hold

1. γ = ETµ and γ0 > µT f .

2. γ = ETµ and γ0 = µT f .

3. 0 = ETµ and 0 > µT f .

Furthermore, {x ∈ Q : γTx = γ0} 6= ∅ if and only if alternative 2 holds and
alternative 3 is equivalent to Q = ∅.
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This version of Farkas’ Lemma can easily be proved using linear program-
ming duality. For a discussion of different versions of Farkas’ Lemma we refer
to [12] page 39. In particular Proposition 2 is a slight specialization of Farkas
Lemma III in page 41 of [12].

To determine the appropriate alternative of Farkas’ Lemma we first need to
study the faces induced by split cut δTx ≤ δ0. These faces are the ones induced
by δTx ≤ δ0 on conv(P ∩FD(π,π0)), P1(π, π0) and P1(π, π0), which are given by

F (δ, δ0) := {x ∈ conv(P ∩ FD(π,π0)) : δTx = δ0} (21)

Fk(δ, δ0) := {x ∈ Pk(π, π0) : δTx = δ0} k ∈ {1, 2}. (22)

From these definitions we have that F (δ, δ0) = conv(F1(δ, δ0) ∪ F2(δ, δ0)).
Furthermore, we the have that

Lemma 1. Let (π, π0) ∈ Πn
0 (NI ) and δTx ≤ δ be a non-trivial split cut for

D(π, π0). If Pk(π, π0) 6= ∅ for k ∈ {1, 2} then there exists a split cut γTx ≤ γ0

for D(π, π0) such that

1. δTx ≤ δ is dominated by γTx ≤ γ0.

2. Fk(γ, γ0) 6= ∅ for k ∈ {1, 2}.

Proof. If both Fk(δ, δ0)’s are empty then F (δ, δ0) = ∅ by changing δ0 to max{δTx :
x ∈ conv(P ∩ FD(π,π0))} < δ0 we can reduce to the case when only one of the
Fk(δ, δ0)’s is empty.

For the case where one Fk(δ, δ0) is empty we will assume that F1(δ, δ0) 6= ∅
and F2(δ, δ0) = ∅ as the other case is analogous.

If F2(δ, δ0) = ∅ then δTx ≤ δ0 does not touch P2(π, π0). To obtain γTx ≤ γ0

we will tilt δTx ≤ δ0 until it does touch P2(π, π0).
Applying Farkas’ Lemma to P1(π, π0) and P2(π, π0) we get alternatives 2

and 1 respectively. By combining them we get that there exist µ1, µ2 ∈ � m
+ ,

µ1
0, µ

2
0 ∈

�
+ such that

∑

i∈M
µ1
i ai· + µ1

0π = δ =
∑

i∈M
µ2
i ai· − µ2

0π (23)

∑

i∈M
µ1
i bi + µ1

0π0 = δ0 >
∑

i∈M
µ2
i bi − µ2

0(π0 + 1). (24)

By eliminating δ and δ0 from (23)-(24) and reordering we get

(µ1
0 + µ2

0)π =
∑

i∈M
µ2
i ai· −

∑

i∈M
µ1
i ai· (25)

(µ1
0 + µ2

0)π0 + µ2
0 >

∑

i∈M
µ2
i bi −

∑

i∈M
µ1
i bi. (26)

Given that δTx ≤ δ0 is a non-trivial split cut and hence by Farkas’ Lemma
it is not equivalent to or dominated by a non-negative linear combination of
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the original constraints we have that µk0 > 0 for k ∈ {1, 2}. Then, if we keep
µ1

0 + µ2
0 constant while decreasing µ2

0 until (26) is complied at equality or µ2
0

reaches zero we will get µ̄1
0, µ̄

2
0 ∈

�
+ such that

(µ̄1
0 + µ̄2

0)π =
∑

i∈M
µ2
i ai· −

∑

i∈M
µ1
i ai·. (27)

and either µ̄2
0 = 0 or

(µ̄1
0 + µ̄2

0)π0 + µ̄2
0 =

∑

i∈M
µ2
i bi −

∑

i∈M
µ1
i bi. (28)

Let γ, γ0 be such that

γ =
∑

i∈M
µ1
i ai· + µ̄1

0π (29)

γ0 =
∑

i∈M
µ1
i bi + µ̄1

0π0. (30)

Then if µ̄2
0 = 0 we have

γ =
∑

i∈M
µ2
i ai· (31)

γ0 ≥
∑

i∈M
µ2
i bi. (32)

and if not

γ =
∑

i∈M
µ2
i ai· − µ̄2

0π (33)

γ0 =
∑

i∈M
µ2
i bi − µ̄2

0(π0 + 1). (34)

In both cases by using Farkas’ lemma we see that γTx ≤ γ0 is valid for
P1(π, π0) and P2(π, π0) so it is a split cut. Now, as µ̄1

0 > µ1
0, from (23)-(24) and

(29)-(30) we have that

{x ∈ � n : πTx ≥ π0, γ
Tx ≤ γ0} ⊆ {x ∈

� n : πTx ≥ π0, δ
Tx ≤ δ0}. (35)

We also have that δTx ≤ δ0 is valid for P1(π, π0) so

{x ∈ P : πTx ≤ π0} ⊆ {x ∈
� n : δTx ≤ δ0}. (36)

By combining (35)-(36) we get

{x ∈ P : γTx ≤ γ0} ⊆ {x ∈
� n : δTx ≤ δ0} (37)

and hence {x ∈ P : γTx ≤ γ0} ⊆ {x ∈ P : δTx ≤ δ0}.
As δTx ≤ δ0 is non-trivial and dominated by γTx ≤ γ0 we have that µ̄2

0 6= 0
and then Fk(γ, γ0) 6= ∅ for k ∈ {1, 2}.
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With this we can now prove Proposition 1.

Proof of Proposition 1. Using Farkas’ Lemma and (18)-(19) we have that
δ(µ, π, π0)Tx ≤ δ0(µ, π, π0) is valid for Pk(π, π0) for k ∈ {1, 2} and hence it
is valid for conv(P ∩ FD(π,π0)).

For the converse, lets suppose that δTx ≤ δ0 is a non-trivial split cut for
D(π, π0) and lets distinguish between the cases Pk(π, π0) 6= ∅ for k ∈ {1, 2} and
Pk(π, π0) = ∅ for exactly one k ∈ {1, 2}.

If Pk(π, π0) 6= ∅ for k ∈ {1, 2} from Lemma 1 δTx ≤ δ0 is dominated by
γTx ≤ γ0 where γTx ≤ γ0 is a valid inequality for Pk(π, π0) for k ∈ {1, 2}
that induces non-empty faces in both these polyhedra. Then by Farkas’ Lemma
alternative 2 we have that there exist µ1

0, µ
2
0 ∈

�
+ and µ1, µ2 ∈ � m

+ such that

γ = µ1
0π +

∑

i∈M
µ1
i ai· = −µ2

0π +
∑

i∈M
µ2
i ai· = δ(µ, π, π0) (38)

γ0 = µ1
0π0 +

∑

i∈M
µ1
i bi = −µ2

0(π0 + 1) +
∑

i∈M
µ2
i bi= δ0(µ, π, π0). (39)

As δTx ≤ δ0 is a non-trivial split cut for D(π, π0) we have that γTx ≤ γ0 is
a non-trivial split cut for D(π, π0). Then, by Farkas’ Lemma γTx ≤ γ0 is not
a non-negative linear combination of the original constraints and hence µk0 > 0
for k ∈ {1, 2}. Then by scaling (38)-(39) by λ = 1/(µL0 +µR0 ) and renaming the
variables we obtain a solution to

λγ = µ1
0π +

∑

i∈M
µ1
i ai· = −µ2

0π +
∑

i∈M
µ2
i ai· = δ(µ, π, π0) (40)

λγ0 = µ1
0π0 +

∑

i∈M
µ1
i bi = −µ2

0(π0 + 1) +
∑

i∈M
µ2
i bi= δ0(µ, π, π0) (41)

that complies with (17) and (20).
By eliminating λγ and λγ0 from (40)-(41) and reordering we get that the mul-

tipliers also comply with (15)-(16). Finally from (40)-(41) we get that γTx ≤ γ0

is equivalent to δ(µ, π, π0)Tx ≤ δ0(µ, π, π0). Then δTx ≤ δ0 is dominated by
δ(µ, π, π0)Tx ≤ δ0(µ, π, π0).

For the remaining case we will assume P2(π, π0) = ∅ as the other case is
analogous. In this case πTx ≤ π0 is a split cut for D(π, π0) as it is trivially
valid for Pk(π, π0) for k ∈ {1, 2}. We may assume that πTx ≤ π0 is not valid
for P or else we would have conv(P ∩ FD(π,π0)) = P in which case there would
be no non-trivial split cuts for D(π, π0). On the other hand, we also have
that conv(P ∩ FD(π,π0)) = P1(π, π0) so δTx ≤ δ0 is valid for P1(π, π0). Then
δTx ≤ δ0 is dominated by πTx ≤ π0.

Now as P2(π, π0) = ∅ we have alternative 3 of Farkas’ Lemma for P2(π, π0)
and hence there exists µ2

0 ∈
�

+ and µ2 ∈ � m
+ such that

0 = −µ2
0π +

∑

i∈M
µ2
i ai· (42)

0 > −µ2
0(π0 + 1) +

∑

i∈M
µ2
i bi. (43)
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As P 6= ∅ we do not have alternative 3 of Farkas’ Lemma for P and hence
µ2

0 > 0. Then dividing (42)-(43) by µ2
0, reordering terms and renaming µ2 we

get µ2 ∈ � m
+ such that

π =
∑

i∈M
µ2
i ai· (44)

π0 + 1 >
∑

i∈M
µ2
i bi. (45)

Now, as πTx ≤ π0 is not valid for P we have that

∑

i∈M
µ2
i bi > π0. (46)

Hence there exists µ2
0 ∈ (0, 1) such that

∑

i∈M
µ2
i bi − µ2

0 = π0. (47)

By letting µ1
0 = 1 − µ2

0 and µ1 = 0 we have that πTx ≤ π0 is equivalent to
δ(µ, π, π0)Tx ≤ δ0(µ, π, π0) and the result follows.

We will also use the following results from [1, 2].

Proposition 3. Let (π, π0) ∈ Πn
0 (NI). Then

conv(P ∩ FD(π,π0)) =
⋂

B∈B∗r

conv(P (B) ∩ FD(π,π0)). (48)

Corollary 1. SC =
⋂

B∈B∗r
SC(B).

We will prove Proposition 3 by refining Proposition 1 as follows.

Proposition 4. Let (π, π0) ∈ Πn
0 (NI). Any non-trivial split cut for D(π, π0) is

dominated by {δ(µ(l), π, π0)Tx ≤ δ0(µ(l), π, π0)}ql=1 for some for some q ∈ � + \
{0} and µ(l) = (µ1

0(l), µ2
0(l), µ1(l), µ2(l)) ∈ � 2m+2

+ solutions to (15)-(17),(20)
that further comply with

µ1
i (l) · µ2

i (l) = 0 ∀i ∈M (49)

{ai·}{i :∃ k∈{0,1} such that µki (l)>0} are linearly independent (50)

|{i : ∃ k ∈ {0, 1} such that µki (l) > 0}| ≤ rank(A). (51)

Proof. Let δTx ≤ δ0 be a non-trivial split cut for D(π, π0) and let µ be the
solution to (15)-(17),(20) from Proposition 1 such that δTx ≤ δ0 is dominated
by δ(µ, π, π0)Tx ≤ δ0(µ, π, π0).

9



Now, system (15)-(17) plus the non-negativity constraints is a standard form
linear problem over µ which we will denote by (SFP). After possibly remov-
ing redundant constraints we have that basic solutions to (SFP) have at most
rank(A) + 2 non-zero components. Then, when (20) holds, extra requirements
(49)-(51) are equivalent to requiring µ to be a basic solution to (SFP). Then if
our particular µ is a basic solution for (SFP) we are done. If not, as µ is feasible
for (SFP), we have that µ is a convex combination of basic feasible solution
{µ(l)}ql=1 for some q ∈ � + \ {0, 1}. Let α ∈ � q

+ be such that

q∑

l=1

αl = 1 (52)

µ =

q∑

l=1

αlµ(l). (53)

Given that (δ(µ, π, π0), δ0(µ, π, π0)) is linear in µ, we have that

(δ(µ, π, π0), δ0(µ, π, π0)) =

q∑

l=1

αl(δ(µ(l), π, π0), δ0(µ(l), π, π0)). (54)

Then, by Farkas’ Lemma we have that δTx ≤ δ0 is dominated by
{δ(µ(l), π, π0)Tx ≤ δ0(µ(l), π, π0)}ql=1.

Proposition 4 shows us that, besides the original constraints of P , the only
inequalities needed to describe conv(P ∩ FD(π,π0)) are split cuts constructed
from at most rank(A) linearly independent constraints, hence Proposition 3
holds. We note that the proof of Proposition 4 is similar to the algebraic proof
of Proposition 3 presented in [1, 2]. Furthermore, the fact that any non-trivial
split cut for D(π, π0) is dominated by δ(µ, π, π0)Tx ≤ δ0(µ, π, π0) for some µ ∈� 2m+2

+ solution (15)-(17),(20),(49) was directly proved in [7].
Given that B∗r is finite, from Corollary 1 we have that proving that SC is

a polyhedron reduces to proving that SC(B) is a polyhedron for all B ∈ B∗r .
This was exactly the approach used in [1, 2] to prove the polyhedrality of SC.
In this same spirit we now study the characterization of basic split cuts to give
a constructive proof of the polyhedrality of SC(B).

3 Basic Split Cuts

In this section we study basic split cuts for a particular basis B ∈ B∗r . We will
use Proposition 1 to give a family of inequalities that contain all non-dominated
basic split cuts for B and does not explicitly depend on (π, π0). We will also
show that a basic split cut for D(π, π0) and basis B coincides with with the
intersection cut for D(π, π0) and basis B and present algebraic proof of some
known properties of intersection cuts.
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For a particular basis B ∈ B∗r we denote by B̄ the r × n submatrix of A
defined by this basis and by b̄ the corresponding r-dimensional righthand side.

By defining y− = max{−y, 0}, y+ = max{y, 0} and f(y) = y − byc for
any y ∈ �

and assuming that these operations together with |y| are applied
component wise for y ∈ � r we have that

Proposition 5. For B ∈ B∗r and µ̄ ∈ � r define the following inequalities:

1. δ1(µ̄, B)Tx ≤ δ1
0(µ̄, B) given by

(µ̄−)T (B̄x− b̄) + (1− f(µ̄T b̄))(µ̄T B̄x− bµ̄T b̄c) ≤ 0 (55)

2. δ2(µ̄, B)Tx ≤ δ2
0(µ̄, B) given by

(µ̄+)T (B̄x− b̄)− f(µ̄T b̄)(µ̄T B̄x− bµ̄T b̄c) + f(µ̄T b̄) ≤ 0 (56)

3. δ3(µ̄, B)Tx ≤ δ3
0(µ̄, B) given by

1

2

(
|µ̄|T (B̄x− b̄) + (1− 2f(µ̄T b̄))(µ̄T B̄x− bµ̄T b̄c) + f(µ̄T b̄)

)
≤ 0 (57)

Also, for π ∈ Πn(NI ) define the following linear system over µ̄ ∈ � r

B̄T µ̄ = π. (58)

Then

1. If µ̄ is a solution to (58) then, for all k ∈ {1, 2, 3} we have that
δk(µ̄, B)Tx ≤ δk0 (µ̄, B) is valid for conv(P (B)∩FD(π,bµ̄T b̄c)). Furthermore,

δ1(µ̄, B) = δ2(µ̄, B) = δ3(µ̄, B) and δ1
0(µ̄, B) = δ2

0(µ̄, B) = δ3
0(µ̄, B).

2. If µ̄ is the unique solution to (58) and µ̄T b̄ /∈ � then for any k ∈ {1, 2, 3}

conv(P (B) ∩ FD(π,bµ̄T b̄c)) = {x ∈ P (B) : δk(µ̄, B)x ≤ δk0 (µ̄, B)}
( P (B). (59)

3. If (58) is infeasible or the unique solution µ̄ to (58) is such that µ̄T b̄ ∈ �
then

conv(P (B) ∩ FD(π,bµ̄T b̄c)) = P (B). (60)

4. conv(P (B) ∩ FD(π,π0)) = P (B) for all π0 6= bµ̄T b̄c.

Proof. To prove this proposition we will use Proposition 1 for the special case
P = P (B) for the given B ∈ B∗r . For this case, condition (49) of Proposition
1 for (π, π0) allow us to combine µ1 and µ2 into µ̄ ∈ � r. We can then write
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conditions (15)-(17),(20) of Proposition 1 in variables µ̄ and the original µ1
0, µ

2
0

as:

B̄T µ̄ =
∑

i∈B
µ̄iai· = π (61)

µ̄T b =
∑

i∈B
µ̄ibi = π0 + µ2

0 (62)

µ1
0 + µ2

0 = 1 (63)

µ2
0 ∈ (0, 1) (64)

Then, from (61),(62),(64) and Proposition 1 we have that for P = P (B)
there can be a non-trivial split cut for D(π, π0) only if (58) is feasible and the
unique solution µ̄ to (58) is such that µ̄T b̄ /∈ � and π0 = bµ̄T b̄c. This proves
parts 3 and 4 by noting that, besides the original constraints of P (B), the only
necessary inequalities for the description of conv(P (B)∩FD(π,π0)) are non-trivial
split cuts.

Now, if µ̄ is a solution to (58), by the identities µ1
i = µ̄−i , µ2

i = µ̄+
i ,

µ2
0 = f(µ̄T b̄), µ1

0 = 1−f(µ̄T b̄) and π0 = bµ̄T b̄c we have that δk(µ̄, B) = δ(µ, π, π0)
and δk0 (µ̄, B) = δ0(µ, π, π0) for k ∈ {1, 2}. Hence for k ∈ {1, 2} we have that
δk(µ̄, B)Tx ≤ δk0 (µ̄, B) is valid for conv(P (B) ∩ FD(π,π0)). By noting that (57)
is the average of (55) and (56) we have part 1.

Finally, we already know that under the conditions of part 2 the first equality
of (59) holds. To prove that the strict containment holds we will show that for
any k ∈ {1, 2, 3}, δk(µ̄)x̄(B) > δk0 (µ̄). First, by multiplying B̄x̄(B) = b̄ by µ̄T

and using µ̄T b̄ /∈ � we have that µ̄T B̄x̄(B) − bµ̄T b̄c > 0. By multiplying this
last strict inequality by (1− f(µT b̄)) > 0 and B̄x̄(B) = b̄ by µ− ≥ 0 and adding
them together we have that δ1(µ̄)x̄(B) > δ1

0(µ̄). The result follows from the
equivalence of δk(µ̄, B)Tx ≤ δk0 (µ̄, B) for k ∈ {1, 2, 3}.

With this characterization we can prove the following properties of basic
split cuts which correspond to known properties of intersection cuts for split
disjunctions.

Proposition 6. conv(P (B) ∩ FD(π,π0)) 6= P (B) if and only if any of the fol-
lowing equivalent conditions hold

1. πTx(B) ∈ (π0, π0 + 1) and π is in the linear span of {ai·}i∈B.

2. πTx(B) ∈ (π0, π0 + 1) and πTx is constant over x ∈ x(B) + L(B).

3. πTx(B) ∈ (π0, π0 + 1) and πT y = 0 for all y ∈ L(B).

4. πTx ∈ (π0, π0 + 1) for all x ∈ x(B) + L(B).

Proof. Direct from linear algebra and Proposition 5 by noting that when (58)
has a solution µ̄ then πTx(B) = µ̄T b̄.
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Propositions 5 and 6 suggest the following definitions

Definition 1. For any B ∈ B∗r and µ̄ ∈ � r such that µ̄ is the unique solution for
(58) for some π ∈ Πn(NI) we define δ(µ̄, B)Tx ≤ δ0(µ̄, B) to be the inequality
defined by δk(µ̄, B)Tx ≤ δk0 (µ̄, B) for any k ∈ {1, 2, 3}.

And for any B ∈ B∗r and (π, π0) ∈ Πn
0 (NI) such that (π, π0) complies with

any of conditions 1-4 of Proposition 6 we define δ(π, π0, B)Tx ≤ δ0(π, π0, B) to
be δ(µ̄, B)Tx ≤ δ0(µ̄, B) for µ̄ unique solution to (58) for B and π.

Corollary 2. For any B ∈ B∗r and (π, π0) ∈ Πn
0 (NI) such that (π, π0) complies

with any of conditions 1-4 of Proposition 6 and µ̄ unique solution to (58) we
have that

1. δ(π, π0, B)Tx ≤ δ0(π, π0, B) is the unique non-trivial basic split cut for B
and D(π, π0) and δ(π, π0, B)Tx > δ0(π, π0, B) for all x ∈ x(B) + L(B).

2. If P1(π, π0, B) 6= ∅ then

F1 = {x ∈ P1(π, π0, B) : πTx = π0, a
T
i·x = bi ∀i ∈ B s.t. µ̄i < 0} (65)

and if P2(π, π0, B) 6= ∅ then

F2 = {x ∈ P2(π, π0, B) : πTx = π0 + 1, aTi·x = bi ∀i ∈ B s.t. µ̄i > 0}
(66)

where Fk = {x ∈ Pk(π, π0, B) : δ(π, π0, B)Tx = δ0(π, π0, B)}

3. If Pk(π, π0, B) 6= ∅ for k ∈ {1, 2} then

{ai·}{i∈B : µ̄i<0} ∪ {π} are linearly independent (67)

{ai·}{i∈B : µ̄i>0} ∪ {π} are linearly independent. (68)

Proof. 1 is direct from Propositions 5 and 6. 2 comes from using characteriza-
tions δk(µ̄)Tx ≤ δk0 (µ̄) of δ(π, π0, B)Tx ≤ δ0(π, π0, B) for k ∈ {1, 2} and using
(58). 3 comes direct from (58), the fact that {ai·}i∈B are linearly independent
and that if Pk(π, π0, B) 6= ∅ for k ∈ {1, 2} then there exists i, j ∈ B such that
µ̄i < 0 and µ̄j > 0.

We now show that basic split cuts are in fact intersection cuts.
In general, an intersection cut [3] is a cut based on the intersection of the

extreme rays of P (B) for some B ∈ B∗r with a convex set C that contains
x̄(B)+L(B) in its interior but does not contain any integer feasible solutions in
its interior. For a description of this general intersection cut see [3] or [9] page
203.

In particular, given a valid split disjunctionD(π, π0) such that πTx ∈ (π0, π0 + 1)
for all x ∈ x̄(B)+L(B) we have that C = {x ∈ � n : π0 ≤ πTx ≤ π0+1} complies
with the requirements of an intersection cut.

We then have the following definition of an intersection cut for a split dis-
junction from [1, 2].
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Definition 2. Lets chose the extreme rays of P (B) to be {ri}i∈B such that

aTi·r
k =

{
−1 if k=i

0 o.w.
(69)

If D(π, π0) is such that π0 < πTx < π0 + 1 for all x ∈ x(B) + L(B) then the
unique intersection cut for P (B) and D(π, π0) is

∑

i∈B
βi(bi − aTi·x) ≥ 1 (70)

where

βi :=





−(πT ri)/ε1 if πT ri < 0

(πT ri)/ε2 if πT ri > 0

0 o.w.

(71)

with ε1 := πT x̄(B)− bπT x̄(B)c and ε2 := bπT x̄(B)c+ 1− πT x̄(B).

Note that the requirements for the existence of an intersection cut for P (B)
and D(π, π0) are the same as the requirements for the existence of a non-trivial
basic split cut for B and D(π, π0). We in fact have that

Proposition 7. Under the requirements for the existence of an intersection cut
for P (B) and D(π, π0) we have that intersection cut (70) is equivalent to basic
split cut δ(π, π0, B)Tx ≤ δ0(π, π0, B).

Proof. Let µ̄ be the unique solution to (58) such that µ̄T b̄ /∈ � ; which exists
under the requirements for the existence of an intersection cut for P (B) and
D(π, π0). Multiplying (58) by ri and using (69) we get:

πT ri = −µ̄i (72)

and by using (58) and the fact that B̄x̄(B) = b̄ we have that

ε1 = f(µ̄T b̄) and ε2 = 1− f(µ̄T b̄). (73)

By multiplying (70) by −ε1ε2,using these identities and reordering we obtain
that (70) is equivalent to

∑

i∈B
µ̄i>0

µ̄i(a
T
i·x− bi)− f(µ̄T b̄)

∑

i∈B
µ̄i(a

T
i·x− bi) ≤ −f(µ̄T b̄) + f(µ̄T b̄)2 (74)

and by using the definition of B̄ and reordering again we get that (70) is equiv-
alent to

(µ̄+)T (B̄x− b̄)− f(µ̄T b̄)(µ̄T B̄x− bµ̄T b̄c) + f(µ̄T b̄) ≤ 0 (75)

which is equal to (56) and hence equivalent to δ(π, π0, B)Tx ≤ δ0(π, π0, B).
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4 Mixed Integer Lattices and Polyhedrality of
the Split Closure

In this section we show that every non-dominated basic split cut for a particular
basis B ∈ B∗r can be associated to an element of the integer lattice used by [10].
Then we construct a finite set of inequalities defining SC(B).

We start by summarizing the results from [10] in Proposition 8. For this we
let B̄I ∈

� r×|NI | and B̄C ∈
� r×(n−|NI|) be the submatrices of B̄ corresponding

to the integer and the continuous variables of PI respectively and we use the
following definition of an integer lattice.

Definition 3. Let {vi}i∈V ⊆
� r be a finite set of linear independent vectors.

The integer lattice generated by {vi}i∈V is L := {µ ∈ � r : µ =
∑

i∈V kiv
i ki ∈ � }.

The set {vi}i∈V is called a basis of L. (See chapter 6 in [6] or chapter I.7 in
[11]).

Proposition 8. For every B ∈ B∗r
1. L(B) := {µ̄ ∈ � r : B̄I

T µ̄ ∈ � |NI |, B̄C
T µ̄ = 0} is an integer lattice

2. If µ̄ ∈ L(B) is such that µ̄T b /∈ � then the inequality defined by

dµ̄−eT (B̄x− b̄) + (1− f(µ̄T b̄))(µ̄T B̄x− bµ̄T b̄c) ≤ 0 (76)

is valid for {x ∈ P (B) : xj ∈ � ∀ j ∈ NI}. Furthermore this inequality is
not satisfied by x̄(B).

Proof. See Proposition 2 and Theorem 3 of [10] for the case r = n. The case
r < n is analogous.

Bertsimas and Weismantel [6] related split cuts to inequality (76) by showing
that every µ̄ ∈ L(B) such that µ̄T b /∈ � induces a valid split disjunction for
PI . We will now see that in fact, the only split disjunctions necessary for the
description of SC(B) are the ones induced by elements of L(B).

We have that L(B) precisely corresponds to all the µ̄ ∈ � r such that µ̄
is the unique solution to (58) for B and some π ∈ Πn(NI). Hence, every
non-dominated basic split cuts for B is associated to an element in L(B). Fur-
thermore, from Proposition 5 we get the following characterization of SC(B).

Proposition 9. For every B ∈ B∗r and µ̄ ∈ L(B) we have that δ(µ̄, B)Tx ≤ δ0(µ̄, B)
is a valid inequality for SC(B). Furthermore we have that

SC(B) =
⋂

µ̄∈L(B)

µ̄T b̄ /∈ �

{x ∈ P (B) : δ(µ̄, B)Tx ≤ δ0(µ̄, B)}. (77)

We then have that every element of L(B) that is associated to a cut given by
(76) is also associated to a non-dominated basic split cuts for B. Furthermore
we have that
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Proposition 10. Let µ̄ ∈ L(B) be such that µ̄T b /∈ � then cut (76) for µ̄ is
dominated by the basic split cut δ(µ̄, B)Tx ≤ δ0(µ̄, B).

Proof. The result follows directly from representation (55) of δ(µ̄, B)Tx ≤ δ0(µ̄, B)
and the facts that B̄x− b̄ ≤ 0 for all x ∈ P (B) and that dµ̄−e ≥ µ̄−.

We will now construct a finite subset of L(B) that suffices to characterize
SC(B). To do this we will need to study the intersection of L(B) with each
orthant separately. For any σ ∈ {0, 1}r let

L(B, σ) := {µ ∈ L(B) : (−1)σiµi ≥ 0, ∀ i ∈ {1, . . . , r}} (78)

be the intersection of L(B) with the orthant defined by σ. We then have that

L(B) =
⋃

σ∈{0,1}r
L(B, σ) (79)

Now, for each σ ∈ {0, 1}r, we construct a finite subset of L(B, σ), such that
the finite union of these sets suffices to characterize SC(B). To do this we will
need the following lemma

Lemma 2. Let σ ∈ {0, 1}r and let µ̄ ∈ L(B, σ) with µ̄ = α+β for α, β ∈ L(B, σ)
such that βT b ∈ � . Then δ(µ̄, B)Tx ≤ δ0(µ̄, B) is dominated by δ(α,B)Tx ≤ δ0(α,B).

Proof. We will use representation (57) of δ(µ̄, B)Tx ≤ δ0(µ̄, B) and
δ(α,B)Tx ≤ δ0(α,B). First note that

bµ̄T bc = bαT bc+ βT b (80)

f(µ̄T b) = f(αT b). (81)

Then

2(δ(µ̄, B)Tx− δ0(µ̄, B)) = |µ̄|T (B̄x− b̄) + (1− 2f(µ̄T b̄))(µ̄T B̄x− bµ̄T b̄c)
+ f(µ̄T b̄) (82)

= |α+ β|T (B̄x− b̄)
+ (1− 2f(αT b̄))(αT B̄x− bαT b̄c+ βT B̄x− βT b̄)
+ f(αT b̄) (83)

= |α|T (B̄x− b̄) + (1− 2f(αT b̄))(αT B̄x− bαT b̄c)
+ f(αT b̄) + |β|T (B̄x− b̄)
+ (1− 2f(αT b̄))(βT B̄x− βT b̄) (84)

where the first equality follows from using representation (57) of δ(µ̄, B)Tx ≤ δ0(µ̄, B)
scaled by 2, the second one follows from µ̄ = α + β and (80)-(81) and the
last equality follows from the fact when α and β are on the same orthant
|α+ β| = |α|+ |β|.
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Then, by using representation (57) of δ(α,B)T x ≤ δ0(α,B) scaled by 2 we
obtain

2(δ(µ̄, B)Tx− δ0(µ̄, B)) = 2(δ(α,B)Tx− δ0(α,B)) + |β|T (B̄x− b̄)
+ (1− 2f(αT b̄))βT (B̄x− b̄). (85)

Finally by noting that |β| = β+ + β− and β = β+ − β− we obtain

2(δ(µ̄, B)Tx− δ0(µ̄, B)) = 2(δ(α,B)Tx− δ0(α,B)) + 2f(αT b̄)β−
T

(B̄x− b̄)
+ (2− 2f(αT b̄))β+T (B̄x− b̄). (86)

The result follows from (86) as (2− 2f(αT b̄)) ≥ 0, f(αT b̄) ≥ 0 and B̄x− b̄ ≤ 0
for all x ∈ P (B).

We also need the following proposition.

Proposition 11. For any σ ∈ {0, 1}r there exists a finite integral generating
set for L(B, σ). That is, a finite set {vi}i∈V(σ) ⊆ L(B, σ) such that

L(B, σ) = {µ ∈ � r : µ =
∑

i∈V(σ)

kiv
i ki ∈ � +} (87)

Moreover this set can be constructed by a finite algorithm.

Proof. Let V ⊆ � n be the subspace of
� n generated by the columns of B̄T and

let
V 0 := {x ∈ V : xj = 0 ∀ /∈ NI} (88)

Let Q ∈ � l×n the matrix such that subspace V 0 is equal to {x ∈ � n : Qx = 0}.
Then

B̄TL(B) = {x ∈ � n : Qx = 0} (89)

By Theorem 6.4 in page 207 of [6] we have that B̄TL(B) is a lattice whose
basis {zi}Wi=1 ⊆

� n can be constructed using the integral normal form of Q. Let
{wi}Wi=1 ⊆

� r be such that each wi is the unique solution to

B̄Twi = zi (90)

Then {wi}Wi=1 ⊆
� r is a basis of L(B). Lets define the following linear operator

from
� W to

� r.

L(x) :=

W∑

i=1

xiw
i (91)

Let σ ∈ {0, 1}r, we that have that L(B, σ) is the image under L of

Cσ := {x ∈ � W : (−1)σi

(
W∑

i=1

xiw
iT ej

)
≥ 0 ∀j ∈ {1, . . . , r}} (92)
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where ej is now the j-th unit vector in
� r. Cσ is the set of all integer points in

a rational polyhedral cone, so by Theorem 8.1 in page 289 of [6] there exists a
finite set {ui}i∈U(σ) ⊆

� W such that

Cσ = {x ∈ � W : x =
∑

i∈U(σ)

kiu
i ki ∈ � +} (93)

Then by letting V(σ) = U(σ) and vi = L(ui) for all i ∈ V(σ) we have a finite
set {vi}i∈V(σ) such that (87) holds.

The finite algorithm for constructing the finite integral generating set can
be extracted from this proof and the proof of Theorem 8.1 of [6] which is also
constructive.

Now, for any σ ∈ {0, 1}r let {vi}i∈V(σ) be a finite integral generating set of
L(B, σ).

For every i ∈ V(σ) let mi = min{m ∈ � + \ {0} : m b̄T vi ∈ � }. For example
if b̄T vi = c/d with c ∈ � and d ∈ � + \{0} relatively prime we have that mi = d.

Now, for every σ ∈ {0, 1}r we define the following finite subset of L(B, σ).

L0(B, σ) := {µ ∈ L(B, σ) : µ =
∑

i∈V(σ)

riv
i ri ∈ {0, . . . ,mi − 1}} (94)

We also define the following finite subset of L(B).

L0(B) :=
⋃

σ∈{0,1}r
L0(B, σ) (95)

We now state our main result.

Theorem 1. For any B ∈ B∗r we have that SC(B) is a polyhedron defined by
the original inequalities of P (B) and the following finite set of inequalities

δ(µ̄, B)Tx ≤ δ0(µ̄, B) ∀ µ̄ ∈ L0(B) s.t. µ̄T b /∈ � . (96)

Proof. Because of Proposition 9 the only thing that needs to be proved is that,
for any µ̄ ∈ L(B), δ(µ̄, B)Tx ≤ δ0(µ̄, B) is dominated by δ(α,B)T x ≤ δ0(α,B)
for some α ∈ L0(B).

Let µ̄ ∈ L(B). Let σ ∈ {0, 1}r be such that µ̄ ∈ L(B, σ) and {ki}i∈V(σ) ⊆ � +

be such that µ̄ =
∑

i∈V(σ) kiv
i. For all i ∈ V(σ) ki = nimi + ri for some

ni, ri ∈ � +, 0 ≤ ri < mi. Thus

∑

i∈V(σ)

kiv
i =

∑

i∈V(σ)

riv
i +

∑

i∈V(σ)

nimiv
i (97)

but
b̄T (

∑

i∈V(σ)

nimiv
i) =

∑

i∈V(σ)

nimib̄
T vi ∈ � . (98)
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Let
α =

∑

i∈V(σ)

riv
i (99)

and
β =

∑

i∈V(σ)

nimiv
i (100)

Because µ̄, α, β ∈ L(B, σ), (97) and (98), by Lemma 2 we have that
δ(µ̄, B)Tx ≤ δ0(µ̄, B) is dominated by δ(α,B)T x ≤ δ0(α,B). The result follows
by noting that α ∈ L0(B, σ) ⊆ L0(B).

Combining Theorem 1 with Corollary 1 and the fact that B∗r is a finite set
we have

Corollary 3. SC is a polyhedron.

Note that by applying Theorem 1 to every B ∈ B∗r we not only prove that
there exists a finite set of inequalities defining SC, but Theorem 1 can actually
be used to develop a finite algorithm to obtain SC.

We note that the constructed set of inequalities is not minimal for the de-
scription of SC or SC(B). In fact we have that

Proposition 12. Let

L̄0(B, σ) = {µ ∈ L(B, σ) :µ =
∑

i∈V(σ)

riv
i ri ∈ {0, . . . ,mi − 1}

and {ri}i∈V are relatively prime } (101)

and
L̄0(B) :=

⋃

σ∈{0,1}r
L̄0(B, σ) (102)

then
SC(B) =

⋂

µ̄∈L̄0(B)

µ̄T b/∈ �

{x ∈ P (B) : δ(µ̄, B)Tx ≤ δ0(µ̄, B)} (103)

To prove this Proposition we will need the following lemma.

Lemma 3. Let µ̄ ∈ L(B, σ) with µ̄ = kα for α ∈ L(B, σ) and k ∈ � +. Then
δ(µ̄, B)Tx ≤ δ0(µ̄, B) is dominated by δ(α,B)Tx ≤ δ0(α,B).

Proof. The result true if µ̄T b̄ ∈ � as then δ(µ̄, B)Tx ≤ δ0(µ̄, B) is trivial, so we
will assume that µ̄T b̄ /∈ � .

Let π = µ̄T B̄, π0 = µ̄T b̄, π̃ = αT B̄ and π̃0 = ᾱT b̄. From the proof of Propo-
sition 7 we have that δ(µ̄, B)Tx ≤ δ0(µ̄, B) is equivalent to the intersection cut
for D(π, π0) and B and that δ(α,B)T x ≤ δ0(α,B) is equivalent to the intersec-
tion cut for D(π̃, π̃0) and B. Then it suffices to prove that the intersection cut
for D(π, π0) and B is dominated by intersection cut for D(π̃, π̃0) and B. By
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using identifications (72) and (73) we have that the intersection cut for D(π, π0)
and B is given by ∑

i∈B
β̄i(bi − aTi·x) ≥ 1 (104)

with

β̄i :=





µ̄i/f(µ̄T b̄) if µ̄i > 0

(−µ̄i)/(1− µ̄T b̄) if µ̄i < 0

0 o.w.

. (105)

Similarly the intersection cut for D(π̃, π̃0) and B is given by

∑

i∈B
β̃i(bi − aTi·x) ≥ 1 (106)

with

β̃i :=





αi/f(αT b̄) if αi > 0

(−αi)/(1− αT b̄) if αi < 0

0 o.w.

. (107)

By using the identity bµ̄T b̄c = kbαT b̄c+ bkf(αT b̄)c we have that

kbαT b̄c ≤ bµ̄T b̄c ≤ kbαT b̄c+ k − 1 (108)

From which we obtain that f(µ̄T b̄) ≤ kf(αT b̄) and 1−f(µ̄T b̄) ≤ k(1− f(αT b̄)).
By noting that µ̄i = kαi we have

β̃i ≤ β̄i ∀i ∈ B. (109)

Then any x ∈ P (B) that complies with (106) also complies with (104) and hence
(104) is dominated by (106).

With this we can prove Proposition 12.

Proof of Proposition 12. Direct from Theorem 1, Lemma 3 and noting that if
µ =

∑
i∈V(σ) riv

i ∈ L0(B, σ) is such that {ri}i∈V(σ) are not relatively prime we

have that µ = kµ̃ for k ∈ � + \ {0, 1} and some µ̃ ∈ L0(B, σ).
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