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Motivation: Driving Home in a New Town

e Shortest s-t path

 Random edge costs with unknown distribution

e Cost realization observed after usage (via solution)
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Exploration v/s Exploitation: Bandit Approach

 What to exploit: Bandit with best current estimate.
X * What to explore: All bandits.

* When to explore/exploit: Explore with frequency _II}VN

Combinatorial setting: bandits = s-t paths?
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Outline

Introduction:

— Problem definition
— Review of bandit results and direct extensions

Simple policy = Solution Cover
Near-optimal policy = Optimality Cover
Computational Issues

Simulation Results
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Base Problem and Notation

* Base combinatorial optimization problem:

f(B):z*(B) := min{Zba : S € S}

acsS

1,_ feasible solutions (e.g. paths)

SCP(A), B=(by),ecs€R?
ground sets (e.g. arcs) —T costs

e Stochastic version: B distributed according to known F

— Solve f(Egr(B))
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Sequential Optimization with On-line Feedback

« Sequence of instances {Bn},_, = {(ba,n)aeA}fj:l, for unknown N
* b independent, distributed according to initially unknown £

* Only a-priori informationon F': bsn >1, a.s. Va,n

* Needtoimplement S, € S before B, is revealed

* B is partially revealed after S, is implemented: {ban : a € Sn}

o0 .
n=1 -

* Goal: Non-anticipative policy © := (S,,)

— S adaptedto F, = c({bgm : @ € Sy, m < n})
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Performance of Non-anticipative Policy

* Regret relative to clairvoyant agent:

mEN) L B (Y, bonHY = @ (1)

Expscted opfimality,gap of sblution S: 1
AE Zaes E - {ba,n} _ (Echsgc;fﬂa.lrvoyant agent

 Number of implementations of solution S:
T.(S) :=[{m<n: 85, =S5}

AL ER {Tn1(S)}

* Alternative form: R™(F,N) = Z

SeS

independent of policy policy dependent
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Traditional Bandit Approach

Feasible solutions are singletons: S = {a}aEA

Consistent policies explore all solution with frequency InN/N

Tnyi(a)

liminf Pgp { .
n

N—o0

> Ka} = 1 Laiand Robbins 85

Optimal regret can be achieved asymptotically

R’IT(FJ N) F
> MK < R < 2 Ay Kato(l)
acA acA
\ Y } \ Y }
Lai and Robbins 85 e.g. Auer et al 02

— Optimal Regret is proportional to|A| In N

Naive adaptation: explore every path with frequency InN/N ?

— Regret proportional to|S|In NV !
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Performance of Naive Adaptation

Instance for k=3 with

la =0
~ E(be,) =0.03, E(by,,) =E(bg,)=0.1

— |A] = (k+2)(k+3)/2
 Optimal cost =0.03 k
* Non-negative costs = explore all paths

— Regret = # of paths x In/V :

4k:—|—1
VNG In N

— Exponentialonkand |4 | !

e Solution: explore all arcs with a path
cover of size k+1
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A Simple Policy Based on Solution Covers

« What to Exploit: Optimal solution to J (En) with

- 1
ban 1= T (a) Z ba,m.-

m<n:a€Sm

* How to Explore: Solution cover &£ of A

£CSst. AQUSEgS

* When to Explore: with frequency In/N/ N

— Cycles with exponentially increasing lengths
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Cycles: Exploration Frequency and Performance

* Traditional bandit algorithm of Auer et al 02 = UCB1.:

. [T — 1
Sp € arggm {bS,n —/2In(n — 1)/Tn(S)} bs.n = G Z Zb%m.

current cost SﬂIMQ)meization pr(IblemreeeptorpE'dmdenalty

m<n:Sm,=S a€S

Exploration/Exploitation cycles with exponential lengths

M icle “

Y ’L—

— Re-compute optimal solution to tBypﬁcplaiymat@pet cycle.

CyC1Aé Sycle cle |(]3nake ;Llﬁe al% aécN}ave pheen e&glored {Tm/es, then explf)}
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A Simple Policy with regret < |A|InN

Algorithm 1 Simple policy 74(&)

Set © = 0, and £ a minimal cover of A
for n=1to N do
(if n € ® then
update < Set 7/ = 7/ —I— 1 -
optimum Set S* € 8* (B,,)
vend if L optimal set
" if T}, (a) < i for some a € S, for some solution S € £ then

explore 5 Tmplement such a solution, i.e., set S, = S
> else

exploit < Implement S,, = 5*
-~ end if
end for
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Are Solution Covers Enough?

* Non-negative costs
e Solutions = k+2 = cover size .

 Regret of simple policy with

coveris (kM +¢)In N

* Regret of simple policy with

E={(f,g,h),(e)}iseln N

* Explore only what is necessary
to confirm optimality.
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Efficient Exploration = Optimality Cover Problem

OCP(B): min (ZAg(B) s B
Ses
s.it. lx, < Z ys, a€ A
SeS:aes

Y (la(1 = 24) + baza) > 2*(B), S € s]

acS
Tq, ys € {0,1}, a€ A SeS,

 What to explore: arcs needed to guarantee optimality.

* How to explore: use a min-regret cover of these arcs.
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|II

An Adaptive Policy with “Near-Optimal” Regret

Algorithm 2 Adaptive policy 7,

Set : =0, C' = A, and £ a minimal cover of A
for n=1to N do
7if n € @ then
update Set 1 =1 +1 o
exploration &< Set S* € §* (By)
)

exploitation f(C,€) ¢ T'(B,) then
set Set (C, &) e T*(B,)
end if
\end if L optimal set of OCP

Try such an element, i.e., set S,, =S with § € £ such that a € S
else
exploit { Implement S,, = S*
end if
end for

if T),(a) < i for some a € C then
explore
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Implementation: Solving OCP

OCP(B): min Y AE(B)ys

SesS
s.t. x4 < Z ys, a€A
SeS:aes
D (a1 = 34) + bgza) > 2*(B), SE€S
Exponential # of variables ey
and constraints Ta. Ys € {07 1}’ aeASeES,

Theoretical Complexity of OCP = Bad news?
— OCP is not guaranteed to be in NP!
— OCPisin NP when f(B) isinP

— OCP for matroids is in P, but for shortest path is NP-hard
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Good News on Solving OCP

* If f(B) hasa IP formulation {y°}_¢ = {y e {0, 1} My < d}

then OCP can be “effectively” solved by branch-and-cut.

A
min Z (Z bay! — z*(B)>

1=1 \a€A
4]
s.t. xagz:yfl, a €A
=1
Separation by solving f(B) My < d. e {1, |A]}
|_>Z (lo(1 = 24) + baa) > 2*(B), S€S
acsS
Polynomial # of variables —» Ta, ¥. € {0,1}, ac Ajic{l1,...,|Al}.

Learning in Combinatorial Optimization: What and How to Explore 17



f(B) with LP = OCP with Compact IP

e Example: Shortest path.

Al

min Z (Z bay’ — z*(B)>
=1 \a€A

Al

s.t. Tq < Zya, a€A

Feasible Paths { Z yfz - Z ?Ja ={0,1,—-1}, veV,ie{l,.

a€dout(v) a€din (V)

Optimality with {l(u,v)(l - x(u,v)) + b(u,v)aj(u,v) 2> Wy — Wy, (u,v) € A

LP duality 2(B) < wy — w
Ta, ¥, € {0,1}, acAie{l,.. .,
Wy € R, velV,
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Numerical Experiments: Overview

* Long and short term experiments:

— Different benchmarks

* |nstances:
— Shortest paths
— Steiner trees

— Also knapsack and abstract set cover.
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Numerical Experiments: Benchmark

 Longterm (Remember UCB1: S, € arg;rr;in {Bs,n —/2In(n — 1)/Tn(5)})
S

— Extended UCB+

Sy € argmin {max {Zba,n — \/2 In(n — 1)/(%16151 {T,(a)}), Z la}}

S€S acs acs

— UCB+

S,, € argmin {Zmax {Ea,n — \/(L + 1) In(n —1)/T,(a), la}}

SeS acS

e Shortterm

— Knowledge gradient (exponential-gamma) Ryzhov et al. (2012)

— Gittins (Normal/Normal-Gamma) Lai (1987)
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Long Term Experiments: Path 1

/1

41,1

SARCHIRGHIG S N

1400+
P3 3 =
Forelrany o

20001 £y tended UCB"| +
/C;) 1800+
93 d33 1600+

* 1200+

1000+

Regret

do3

600 -

q
1.3 400

Learning in Combinatorial Optimization: What and How to Explore

21



Long Term Experiments: Path 2
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Long Term Experiments: Path 2

* Average number of selections for different arc classes.
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Long Term Experiments: Path and Trees

Random Layer(5,4,3) graph (Ryzhov and Powell 2010)
e Steiner tree (|A|=18)
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Long Term Experiments: Paths and Trees

Random Layer(5,4,2) graph (Ryzhov and Powell 2010)

e Steiner tree (|A|=18)
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Summary

Traditional Exploration v/s Exploitation
— What to exploit

— When to explore

Combinatorial Exploration v/s Exploitation
— What to explore: critical elements

— How to explore: optimality cover

Implementable algorithm
— Exploration/Exploitation cycles
— Near-optimal long term performance

— Competitive short term performance

Complexity of OCP: new challenges
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Limit on Achievable Performance

 Let D contain all subsets D of suboptimal elements that become part of

every optimal solution if their costs are the lowest possible

* For any consistent policy randsetD € D

# times element a tried —¢

max {Tny1(a) :a € D}
In N

ZKD}l

_1

Iim Pgp {

N—o0

distance between F and F’

 What needs to be explored? Critical subsets

C={CCA:VDeD,daecCst. ac D}

Learning in Combinatorial Optimization: What and How to Explore 27



Limit on Achievable Performance

* For any consistent policy

R™(F, N)
lim inf : > g(F
N—o0 In N o ( )
where
: : : F
LBP: K(F):=min Z As Ys (min regret)
SeS
s.t. max{z, :a € D} > Kp, D €D (expon critical subset)
Ty Z ys. a€ A (solution cover)
SES:aesS
T ys € Ry, neA,SeS (non-negativity)
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Proposed Policy

* For H, suchthatforallH > H,andany N > 0

RW“(};JV) F
= 7 /A H

Size of minimal solution to OCP ——

 Gap in performance between lower and upper bounds

R™(F,N) F
F) < < H
K’( ) — In N <G Amaa’: + 0(1)
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