Learning in Combinatorial Optimization: What and How to Explore

Juan Pablo Vielma

Sloan School of Business, Massachusetts Institute of Technology

Universidad Adolfo Ibañez, Santiago, Chile. October, 2013.

Joint work with D. Saure and S. Modaresi (also J. Orlin and B. Johannes)
Supported by NSF grant CMMI-1233441

Motivation: Driving Home in a New Town

- Shortest s-t path
- Random edge costs with unknown distribution
- Cost realization observed after usage (via solution)

Exploration v/s Exploitation: Bandit Approach

- What to exploit: Bandit with best current estimate.
- What to explore: All bandits.
- When to explore/exploit: Explore with frequency $\frac{\ln N}{N}$

Combinatorial setting: bandits = s-t paths?

Outline

- Introduction:
- Problem definition
- Review of bandit results and direct extensions
- Simple policy = Solution Cover
- Near-optimal policy = Optimality Cover
- Computational Issues
- Simulation Results

Base Problem and Notation

- Base combinatorial optimization problem:

$$
f(B): z^{*}(B):=\min \left\{\sum_{a \in S} b_{a}: S \in \mathcal{S}\right\}
$$

- feasible solutions (e.g. paths)

$$
\mathcal{S} \subseteq \mathcal{P}(A), \quad B=\left(b_{a}\right)_{a \in A} \in \mathbb{R}^{A}
$$

ground sets (e.g. ares) \uparrow

- Stochastic version: B distributed according to known F
- Solve $f\left(\mathbb{E}_{F}(B)\right)$

Sequential Optimization with On-line Feedback

- Sequence of instances $\left\{B_{n}\right\}_{n=1}^{N}=\left\{\left(b_{a, n}\right)_{a \in A}\right\}_{n=1}^{N}$, for unknown N
- B_{n} independent, distributed according to initially unknown F
- Only a-priori information on $F: b_{a, n} \geq l_{a}$ a.s. $\forall a, n$
- Need to implement $S_{n} \in \mathcal{S}$ before B_{n} is revealed
- B_{n} is partially revealed after S_{n} is implemented: $\left\{b_{a, n}: a \in S_{n}\right\}$
- Goal: Non-anticipative policy $\pi:=\left(S_{n}\right)_{n=1}^{\infty}$:
- S_{n} adapted to $\mathcal{F}_{n}=\sigma\left(\left\{b_{a, m}: a \in S_{m}, m<n\right\}\right)$

Performance of Non-anticipative Policy

- Regret relative to clairvoyant agent:

$$
R^{\pi}(F, N):=\sum_{n=1}^{N} \mathbb{E}_{F}\left\{\sum_{a \in S_{n}} b_{a, n}\right\}-N z^{*}\left(\mathbb{E}_{F}\left\{B_{n}\right\}\right)
$$

- Expected optimality fap of solution S :

$$
\left.\Delta_{S}^{F}:=\sum_{a \in S} \mathbb{E}_{F}\left\{b_{a, n}\right\}-z^{*}\left(\mathbb{E}_{F}^{\text {cess }}\left\{B_{n}^{\text {of }}\right\}\right\}\right)^{\text {gairvoyant agent }}
$$

- Number of implementations of solution S :

$$
T_{n}(S):=\left|\left\{m<n: S_{m}=S\right\}\right|
$$

- Alternative form: $R^{\pi}(F, N)=\sum_{S \in \mathcal{S}} \Delta_{S}^{F} \mathbb{E}_{F}\left\{T_{N+1}(S)\right\}$.

$$
\text { independent of policy } \uparrow
$$

Traditional Bandit Approach

- Feasible solutions are singletons: $\mathcal{S}=\{a\}_{a \in A}$
- Consistent policies explore all solution with frequency $\ln N / N$

$$
\liminf _{N \rightarrow \infty} \mathbb{P}_{F}\left\{\frac{T_{N+1}(a)}{\ln N} \geq K_{a}\right\}=1 \quad \text { Lai and Robbins } 85
$$

- Optimal regret can be achieved asymptotically

$$
\underbrace{\sum_{a \in A} \Delta_{\{a\}}^{F} K_{a} \leq \frac{R^{\pi}(F, N)}{\ln N}}_{\text {ai and Robbins } 85} \leq \underbrace{\sum_{a \in A} \Delta_{\{a\}}^{F} \tilde{K}_{a}+o(1)}_{\text {e.g. Auer et al } 02}
$$

- Optimal Regret is proportional to $|A| \ln N$
- Naïve adaptation: explore every path with frequency $\ln N / N$?
- Regret proportional to $|\mathcal{S}| \ln N$!

Performance of Naïve Adaptation

- Instance for $\mathrm{k}=3$ with $l_{a}=0$
- $\mathbb{E}\left(b_{e_{i}}\right)=0.03, \quad \mathbb{E}\left(b_{p_{i, j}}\right)=\mathbb{E}\left(b_{q_{i, j}}\right)=0.1$
- $|A|=(\mathrm{k}+2)(\mathrm{k}+3) / 2$
- Optimal cost $=0.03 \mathrm{k}$
- Non-negative costs = explore all paths
- Regret $=$ \# of paths $\times \ln N$:

$$
\frac{4^{k+1}}{(k+1)^{3 / 2} \sqrt{\pi}} \ln N
$$

- Exponential on k and $|A|$!

A Simple Policy Based on Solution Covers

- What to Exploit: Optimal solution to $f\left(\bar{B}_{n}\right)$ with

$$
\bar{b}_{a, n}:=\frac{1}{T_{n}(a)} \sum_{m<n: a \in S_{m}} b_{a, m}
$$

- How to Explore: Solution cover \mathcal{E} of A

$$
\mathcal{E} \subseteq \mathcal{S} \text { s.t. } A \subseteq \bigcup_{S \in \mathcal{E}} S
$$

- When to Explore: with frequency $\ln N / N$
- Cycles with exponentially increasing lengths

Cycles: Exploration Frequency and Performance

- Traditional bandit algorithm of Auer et al 02 = UCB1:

$$
S_{n} \in \underset{S \in \mathcal{S}}{\operatorname{argmin}}\left\{\bar{b}_{S, n}-\sqrt{2 \ln (n-1) / T_{n}(S)}\right\} \quad \bar{b}_{S, n}:=\frac{1}{T_{n}(S)} \sum_{m<n: S_{m}=S} \sum_{a \in S} b_{a, m} .
$$

current cost sodversoptimization problemareqepyoneiniodenalty

- Exploration/Exploitation cycles with exponential lengths

A Simple Policy with regret $\leq|A| \ln N$

Algorithm 1 Simple policy $\pi_{s}(\mathcal{E})$
Set $i=0$, and \mathcal{E} a minimal cover of A
for $n=1$ to N do
update $\left\{\begin{array}{l}\text { if } n \in \Phi \text { then } \\ \text { Set } i=i+1 \\ \text { Set } S^{*} \in \mathcal{S}^{*}\left(\bar{B}_{n}\right) \\ \text { end if } \quad \uparrow \text { optimal set }\end{array}\right.$
explore $\left\{\begin{array}{l}\text { if } T_{n}(a)<i \text { for some } a \in S, \text { for some solution } S \in \mathcal{E} \text { then } \\ \text { Implement such a solution, i.e., set } S_{n}=S\end{array}\right.$
else

Are Solution Covers Enough?

- Non-negative costs
- Solutions = k+2 = cover size
- Regret of simple policy with cover is $(k M+\varepsilon) \ln N$
- Regret of simple policy with

$$
\mathcal{E}=\{(f, g, h),(e)\} \text { is } \varepsilon \ln N
$$

- Explore only what is necessary to confirm optimality.

Efficient Exploration = Optimality Cover Problem

$$
\begin{aligned}
& O C P(B): \min \sum_{S \in \mathcal{S}} \Delta_{S}^{F}(B) y_{S} \\
& \text { s.t. } \quad x_{a} \leq \sum_{S \in \mathcal{S}: a \in S} y_{S}, \quad a \in A \\
& \sum_{a \in S}\left(l_{a}\left(1-x_{a}\right)+b_{a} x_{a}\right) \geq z^{*}(B), \quad S \in \mathcal{S} \\
& x_{a}, y_{S} \in\{0,1\}, \quad a \in A, S \in \mathcal{S},
\end{aligned}
$$

- What to explore: arcs needed to guarantee optimality.
- How to explore: use a min-regret cover of these arcs.

An Adaptive Policy with "Near-Optimal" Regret

Algorithm 2 Adaptive policy π_{a}	
	Set $i=0, C=A$, and \mathcal{E} a minimal cover of A for $n=1$ to N do
	$\left\{\begin{array}{l} \text { if } n \in \Phi \text { then } \\ \text { Set } i=i+1 \\ \text { Set } S^{*} \in \mathcal{S}^{*}\left(\bar{B}_{n}\right) \end{array}\right.$
exploitation set	$\begin{aligned} & \text { if }(C, \mathcal{E}) \notin \Gamma\left(\bar{B}_{n}\right) \text { then } \\ & \text { Set }(C, \mathcal{E}) \in \Gamma^{*}\left(\bar{B}_{n}\right) \\ & \text { end if } \\ & \text { end if } \end{aligned}$
$\text { explore }\{$	$\left\{\begin{array}{l} \text { if } T_{n}(a)<i \text { for some } a \in C \text { then } \\ \text { Try such an element, i.e., set } S_{n}=S \text { with } S \in \mathcal{E} \text { such that } a \in S \\ \text { else } \end{array}\right.$
$\text { exploit }\{$	$\left\{\begin{array}{l} \text { Implement } S_{n}=S^{*} \\ \text { end if } \end{array}\right.$

Implementation: Solving OCP

$$
\begin{aligned}
O C P(B): & \min \\
& \sum_{S \in \mathcal{S}} \Delta_{S}^{F}(B) y_{S} \\
\text { s.t. } & x_{a} \leq \sum_{S \in \mathcal{S}: a \in S} y_{S}, \quad a \in A
\end{aligned}
$$

Exponential \# of variables
and constraints $\left\{\begin{array}{l}\sum_{a \in S}\left(l_{a}\left(1-x_{a}\right)+b_{a} x_{a}\right) \geq z^{*}(B), \quad S \in \mathcal{S} \\ x_{a}, y_{S} \in\{0,1\}, \quad a \in A, S \in \mathcal{S},\end{array}\right.$

- Theoretical Complexity of OCP = Bad news?
- OCP is not guaranteed to be in NP!
- OCP is in NP when $f(B)$ is in P
- OCP for matroids is in P, but for shortest path is NP-hard

Good News on Solving OCP

- If $f(B)$ has a IP formulation $\left\{y^{S}\right\}_{S \in \mathcal{S}}=\left\{y \in\{0,1\}^{|A|}: M y \leq d\right\}$ then OCP can be "effectively" solved by branch-and-cut.
$\min \sum_{i=1}^{|A|}\left(\sum_{a \in A} b_{a} y_{a}^{i}-z^{*}(B)\right)$
s.t.

$$
x_{a} \leq \sum_{i=1}^{|A|} y_{a}^{i}, \quad a \in A
$$

Separation by solving $f(B)$

$$
M y^{i} \leq d, \quad i \in\{1, \ldots,|A|\}
$$

$$
\longrightarrow \sum_{a \in S}\left(l_{a}\left(1-x_{a}\right)+b_{a} x_{a}\right) \geq z^{*}(B), \quad S \in \mathcal{S}
$$

Polynomial \# of variables $\longrightarrow x_{a}, y_{a}^{i} \in\{0,1\}, \quad a \in A, i \in\{1, \ldots,|A|\}$.

$f(B)$ with LP $=$ OCP with Compact IP

- Example: Shortest path.

$$
\min \quad \sum_{i=1}^{|A|}\left(\sum_{a \in A} b_{a} y_{a}^{i}-z^{*}(B)\right)
$$

$$
\text { s.t. } \quad x_{a} \leq \sum_{i=1}^{|A|} y_{a}^{i}, \quad a \in A
$$

Feasible Paths $\left\{\sum_{a \in \delta_{\text {out }}(v)} y_{a}^{i}-\sum_{a \in \delta_{\text {in }}(v)} y_{a}^{i}=\{0,1,-1\}, \quad v \in V, i \in\{1, \ldots,|A|\}\right.$
$\underset{\text { LP duality }}{\text { Optimality with }}\left\{\begin{aligned} l_{(u, v)}\left(1-x_{(u, v)}\right)+b_{(u, v)} x_{(u, v)} & \geq w_{u}-w_{v}, \quad(u, v) \in A \\ z^{*}(B) & \leq w_{s}-w_{t}\end{aligned}\right.$

$$
\begin{aligned}
x_{a}, y_{a}^{i} & \in\{0,1\}, & & a \in A, i \in\{1, \ldots,|A|\} \\
w_{v} & \in \mathbb{R}, & & v \in V,
\end{aligned}
$$

Numerical Experiments: Overview

- Long and short term experiments:
- Different benchmarks
- Instances:
- Shortest paths
- Steiner trees
- Also knapsack and abstract set cover.

Numerical Experiments: Benchmark

- Long term (Remember UCB1: $\left.S_{n} \in \underset{S \in \mathcal{S}}{\operatorname{argmin}}\left\{\bar{b}_{S, n}-\sqrt{2 \ln (n-1) / T_{n}(S)}\right\}\right)$
- Extended UCB+

$$
S_{n} \in \underset{S \in \mathcal{S}}{\operatorname{argmin}}\left\{\max \left\{\sum_{a \in S} \bar{b}_{a, n}-\sqrt{2 \ln (n-1) /\left(\min _{a \in S}\left\{T_{n}(a)\right\}\right)}, \sum_{a \in S} l_{a}\right\}\right\}
$$

- UCB+

$$
S_{n} \in \underset{S \in \mathcal{S}}{\operatorname{argmin}}\left\{\sum_{a \in S} \max \left\{\bar{b}_{a, n}-\sqrt{(L+1) \ln (n-1) / T_{n}(a)}, l_{a}\right\}\right\}
$$

- Short term
- Knowledge gradient (exponential-gamma) Ryzhov et al. (2012)
- Gittins (Normal/Normal-Gamma) Lai (1987)

Long Term Experiments: Path 1

Long Term Experiments: Path 2

Long Term Experiments: Path 2

- Average number of selections for different arc classes.

Long Term Experiments: Path and Trees

- Random Layer($5,4,3$) graph (Ryzhov and Powell 2010)
- Steiner tree $(|A|=18)$

Long Term Experiments: Paths and Trees

- Random Layer(5,4,2) graph (Ryzhov and Powell 2010)
- Steiner tree $(|A|=18)$

Summary

- Traditional Exploration v/s Exploitation
- What to exploit
- When to explore
- Combinatorial Exploration v/s Exploitation
- What to explore: critical elements
- How to explore: optimality cover
- Implementable algorithm
- Exploration/Exploitation cycles
- Near-optimal long term performance
- Competitive short term performance
- Complexity of OCP: new challenges

Limit on Achievable Performance

- Let \mathcal{D} contain all subsets D of suboptimal elements that become part of every optimal solution if their costs are the lowest possible
- For any consistent policy π and set $D \in \mathcal{D}$

```
# times element a tried
\[
\begin{gathered}
\lim _{N \rightarrow \infty} \mathbb{P}_{F}\left\{\frac{\max \left\{T_{N+1}(a): a \in D\right\}}{\ln N} \geq K_{D}\right\}=1 \\
\text { distance between } F \text { and } F^{\prime}
\end{gathered}
\]
```

- What needs to be explored? Critical subsets

$$
\mathcal{C}:=\{C \subseteq A: \forall D \in \mathcal{D}, \exists a \in C \text { s.t. } a \in D\}
$$

Limit on Achievable Performance

- For any consistent policy π

$$
\liminf _{N \rightarrow \infty} \frac{R^{\pi}(F, N)}{\ln N} \geq \kappa(F)
$$

where

$$
\begin{array}{cll}
L B P: \quad \kappa(F):=\min & \sum_{S \in \mathcal{S}} \Delta_{S}^{F} y_{S} & \text { (min regret) } \\
\text { s.t. } & \max \left\{x_{a}: a \in D\right\} \geq K_{D}, \quad D \in \mathcal{D} & \text { (exp on critical subset) } \\
& x_{a} \leq \sum_{S \in \mathcal{S}: a \in S} y_{S}, \quad a \in A & \text { (solution cover) } \\
& x_{a}, y_{S} \in \mathbb{R}_{+}, \quad a \in A, S \in \mathcal{S} \quad & \text { (non-negativity) }
\end{array}
$$

Proposed Policy

- For H_{a} such that for all $H>H_{a}$ and any $N>0$

$$
\frac{R^{\pi_{a}}(F, N)}{\ln N} \leq G \Delta_{\max }^{F} H+o(1)
$$

Size of minimal solution to OCP

- Gap in performance between lower and upper bounds

$$
\kappa(F) \leq \frac{R^{\pi_{a}}(F, N)}{\ln N} \leq G \Delta_{\max }^{F} H+o(1)
$$

