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Mo1va1on:	
  Driving	
  Home	
  in	
  a	
  New	
  Town	
  

•  Shortest	
  s-­‐t	
  path	
  

•  Random	
  edge	
  costs	
  with	
  unknown	
  distribu1on	
  

•  Cost	
  realiza1on	
  observed	
  a\er	
  usage	
  (via	
  solu*on)	
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Explora1on	
  v/s	
  Exploita1on:	
  Bandit	
  Approach	
  

•  What	
  to	
  exploit:	
  Bandit	
  with	
  best	
  current	
  es1mate.	
  

•  What	
  to	
  explore:	
  All	
  bandits.	
  	
  

•  When	
  to	
  explore/exploit:	
  Explore	
  with	
  frequency	
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  to	
  Explore	
  

Combinatorial	
  sebng:	
  bandits	
  =	
  s-­‐t	
  paths?	
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Outline	
  

•  Introduc1on:	
  
– Problem	
  defini1on	
  
– Review	
  of	
  bandit	
  results	
  and	
  direct	
  extensions	
  

•  Simple	
  policy	
  =	
  Solu1on	
  Cover	
  

•  Near-­‐op1mal	
  policy	
  =	
  Op1mality	
  Cover	
  

•  Computa1onal	
  Issues	
  

•  Simula1on	
  Results	
  

Learning	
  in	
  Combinatorial	
  Op1miza1on:	
  What	
  and	
  How	
  to	
  Explore	
   4	
  



Base	
  Problem	
  and	
  Nota1on	
  

•  Base	
  combinatorial	
  op1miza1on	
  problem:	
  

	
  

•  Stochas1c	
  version:	
  B	
  distributed	
  according	
  to	
  known	
  F	
  

–  Solve	
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online learning problems, from the raking and selection perspective. Ryzhov and Powell (2011)

study information collection in settings where the decision maker selects individual arcs from a

directed graph, and Ryzhov and Powell (2012) consider a more general setting where selection is

made from a polyhedron (in Section 7 we specialize some of our results to such a setting, from a

bandit perspective). See also Ryzhov et al. (2012), and the references within.

3 Problem Formulation

Model primitives and basic assumptions. We consider the problem of an agent who must select

and implement solutions to a series of instances of a given combinatorial optimization problem.

Without loss of generality, we assume that such a problem is that of cost minimization. Instances

are presented sequentially through time, and we use n to index them according to their arrival

times, so n = 1 corresponds to the first instance, and n = N to the last, where N denotes the

(possibly unknown) total number of instances. Each instance is uniquely characterized by a set of

cost-coe�cients, i.e., instance n 2 N is associated with cost-coe�cients Bn := (ba,n : a 2 A) 2 R|A|,

and the full instance is defined as f(Bn), where

f(B) : z⇤(B) := min

(

X

a2S
ba : S 2 S

)

B 2 R|A|, (1)

S is a family of subsets of elements of a given ground set A, and ba is the cost associated with a

ground element a 2 A. We let S⇤(B) be the set of optimal solutions to (1) and z⇤(B) be its optimal

objective value (cost).

We assume that each element ba,n 2 Bn is a random variable, independent and identically dis-

tributed across instances, and independent of other components in Bn. We let F (·) denote the

common distribution of Bn for n 2 N, which we assume is initially unknown. We assume, how-

ever, that upper and lower bounds on its range are known upfront. That is, it is known that

la  ba,n  ua a.s., for all a 2 A and n 2 N.

We assume that, in addition to not knowing F (·), the agent does not observe Bn prior to im-

plementing a solution. Instead, we assume that Bn is only revealed partially and after a solution

is implemented. More specifically, we assume that if solution Sn 2 S is implemented, only cost-

coe�cients associated with ground elements in Sn (i.e., {ba,n : a 2 Sn}) are observed by the agent

and after the associated cost is incurred. Finally, we assume that the agent is interested in mini-

mizing the expected cumulative cost associated with implementing a sequence of solutions.

Full information problem and regret. Consider the case of a clairvoyant agent with prior

knowledge about F (·). Such an agent, while still not capable of anticipating the value of Bn, can

solve for the solution that minimizes the expected cumulative cost: for instance n 2 N (by the
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Sequen1al	
  Op1miza1on	
  with	
  On-­‐line	
  Feedback	
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linearity of the objective function), it is optimal to implement Sn 2 S⇤(EF {Bn}), where EF {·}
denotes expectation with respect to F . Note that such a solution set is independent of n.

In practice, the agent does not know F upfront, and must learn about it through the feedback

collected from implementing di↵erent solutions. Let F := {Fn : n 2 N} denote the filtration gen-

erated by such a feedback (i.e., Fn = �({ba,m : a 2 Sm , m < n})). We restrict our attention to

non-anticipative (i.e., F-adapted) policies. Let ⇡ := (Sn)
1
n=1 denote an admissible policy, where

Sn : Fn ! S maps the available “history” to a solution in S. For any given F and N , the expected

cumulative cost incurred by policy ⇡ is given by

J⇡(F,N) :=
N
X

n=1

EF

(

X

a2Sn

ba,n

)

.

In practice, no admissible policy can achieve the expected cumulative cost of a clairvoyant agent,

and hence we measure the performance of a policy in terms of its regret: for a given policy ⇡, F ,

and N , the regret is defined as

R⇡(F,N) := J⇡(F,N)�N z⇤ (EF {Bn}) .

The regret represents the additional expected cumulative cost incurred by policy ⇡ relative to that

incurred by a clairvoyant agent that knows F upfront (note that regret is always non-negative).

Remark 3.1. Although the regret also depends on the combinatorial optimization problem through

A and S, we omit this dependence to simplify the notation.

Our exposition benefits from connecting the regret to the number of instances in which suboptimal

solutions are implemented. To make this connection explicit, consider an alternative representation

of the regret. For S 2 S, let �F
S denote the expected optimality gap associated with implementing

S, when costs are distributed according to F . That is,

�F
S :=

X

a2S
EF {ba,n}� z⇤ (EF {Bn}) .

(Note that the expected optimality gap associated with S⇤ 2 S⇤ (EF {Bn}) is zero.) For S 2 S, let

Tn(S) := |{m < n : Sm = S}|

denote the number of times that the agent has implemented solution Sm = S prior to instance n.

Similarly, for a 2 A, let

Tn(a) := |{m < n : a 2 Sm}|

denote the number of times that the agent has selected element a prior to instance n (henceforth,
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Performance	
  of	
  Non-­‐an1cipa1ve	
  Policy	
  

•  Regret	
  rela1ve	
  to	
  clairvoyant	
  	
  agent:	
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  gap	
  of	
  solu1on	
  S:	
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  of	
  implementa1ons	
  of	
  solu1on	
  S:	
  

•  Alterna1ve	
  form:	
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Tradi1onal	
  Bandit	
  Approach	
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  in	
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  to	
  Explore	
  

•  Feasible	
  solu1ons	
  are	
  singletons:	
  	
  

•  Consistent	
  policies	
  explore	
  all	
  solu1on	
  with	
  frequency	
  lnN/N	
  

•  Op1mal	
  regret	
  can	
  be	
  achieved	
  asympto1cally	
  

–  Op1mal	
  Regret	
  is	
  propor1onal	
  to	
  	
  

•  Naïve	
  adapta1on:	
  explore	
  every	
  path	
  with	
  frequency	
  lnN/N ?	
  

–  Regret	
  propor1onal	
  to	
  	
  	
  	
  	
          !	
  

MultiͲarmed�Bandit�Problem
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• MAB�(Thompson�33,�Robbins�52)

• Restrict�attention�to�consistent policies:�for�allܨ�

• Known�results:

Lai�and�Robbins�85 e.g.�Auer�et�al�02
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we say ground element a 2 A is selected or tried at instance n if a 2 Sn). Note that Tn(a) and

Tn(S) are Fn-adapted for all a 2 A, S 2 S, and n 2 N. Using this notation we have that

R⇡(F,N) =
X

S2S
�F

S EF {TN+1(S)} . (2)

Known results for the non-combinatorial case. Traditional multi-armed bandits correspond

to settings where S is formed by singleton subsets of A (i.e., S = {{a} : a 2 A}), thus the com-

binatorial structure is absent. In their seminal work, Lai and Robbins (1985) (henceforth, LR)

establish an asymptotic lower bound on the regret attainable by any “admissible” policy in the tra-

ditional setting, and provide policies achieving asymptotic e�ciency. To avoid considering policies

that perform well in a particular setting at the expense of performing poorly in others, LR restrict

attention to policies that perform consistently well for any reward distribution F within a certain

class. Formally, a policy ⇡ is said to be consistent if

R⇡(F,N) = o(N↵) 8↵ > 0, (3)

for every F on a class of regular distributions1. LR show that consistent policies must explore (pull)

each element (arm) in A at least order lnN times, hence, by (2), their regret must also be of at

least order lnN .

Theorem 3.2 (Lai and Robbins (1985)). Let S = {{a} : a 2 A}, then for any consistent policy

⇡ and for any a 2 A we have

lim inf
N!1

PF

⇢

TN+1(a)

lnN
� Ka

�

= 1, (4)

where Ka is a positive finite constant depending on F . In addition, we have

lim inf
N!1

R⇡(F,N)

lnN
�

X

a2A
�F

{a}Ka, (5)

for any consistent policy ⇡ and regular distribution F .

In the above, Ka is the inverse of Kullback-Leibler distance (see e.g., Cover and Thomas (2006))

between the original distribution F and a distribution than makes a optimal.

Di↵erent policies have been shown to attain the logarithmic behavior in (5), and in general, there

is a trade-o↵ between computational complexity and larger leading constants. For instance, the

index-based UCB1 algorithm introduced by Auer et al. (2002) is simple to compute and provides

a finite-time theoretical performance guarantee. For a 2 A, define K̃a := 8/(�F
{a})

2.

1These are distributions satisfying certain continuity and indistinguishability conditions: see proof of Proposition
5.2.

9

Lai	
  and	
  Robbins	
  85	
  

8	
  



Performance	
  of	
  Naïve	
  Adapta1on	
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•  Op1mal	
  cost	
  =	
  0.03	
  k	
  

•  Non-­‐nega1ve	
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  =	
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  all	
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  #	
  of	
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–  Exponen1al	
  on	
  k	
  and	
  |A	
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•  Solu1on:	
  explore	
  all	
  arcs	
  with	
  a	
  path	
  

cover	
  of	
  size	
  k+1	
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Figure 1: Graph for Example 4.1.

For this example, the regret of UCB1 is proportional to
4k+1

(k+1)3/2
p
⇡
lnN , which can be quite large even for moderate

values of k. Broadly speaking, this algorithm picks the solution

with the best cost estimate bS,n while making sure that cost

estimates are updated with LR’s prescribed frequency lnN/N .

Because UCB1 is not aware of the combinatorial structure of

the problem, it estimates the cost of solution S 2 S via imple-

menting such a solution. However, in practice, the cost estimate

of S 2 S can be derived from those of a 2 S (see Section 8 for

tweaked versions of UCB1 incorporating this fact). Next, we

present a di↵erent approach aiming to ensure the exploration

frequency prescribed in LR on a rather more direct fashion.

A simple policy. Let Bn :=
�

ba,n, a 2 A
�

be the average observed cost of ground elements before

implementing a solution to instance n, where

ba,n :=
1

Tn(a)

X

m<n : a2Sm

ba,m. (7)

Let E be a cover of A, i.e., E ✓ S such that each a 2 A belongs to at least one S 2 E . Note

that implementing all S 2 E provides feedback on the cost of every a 2 A. Since N might not be

known upfront, to induce the exploration frequency lnN/N , we propose a policy that divides the

time horizon into cycles with exponentially growing lengths. Each cycle consists of an exploration

phase followed by an exploitation phase. Within the exploration phase of each cycle, the simple

policy implements each solution S 2 E at most once. After the exploration phase of each cycle, and

if there is enough time to do so, the algorithm trusts the cost estimates and exploits any solution

with minimum estimate cost until the end of that cycle. To formally describe this policy, for i 2 N
and i � 2, define the starting point of cycle i as

ni := max
n

bei/Hc, ni�1 + 1
o

,

where n1 = 1 and the tuning parameter H is a positive finite constant that regulates the frequency

of exploration. Define � := {ni : i 2 N} to be the set of starting points of all cycles. The proposed

simple policy, which we denote as ⇡s(E), is summarized in Algorithm 1.

Remark 4.2. Note that reversing the order of the update of the exploitation set and the exploration

phase in Algorithm 1 does not a↵ect the performance bound in Theorem 4.3 (below). In practice,

however, this leads to marginal improvements in performance.

Note that even if we take E = S, the regret associated with ⇡s(S) should improve upon that of
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of S 2 S can be derived from those of a 2 S (see Section 8 for

tweaked versions of UCB1 incorporating this fact). Next, we

present a di↵erent approach aiming to ensure the exploration

frequency prescribed in LR on a rather more direct fashion.

A simple policy. Let Bn :=
�

ba,n, a 2 A
�

be the average observed cost of ground elements before

implementing a solution to instance n, where

ba,n :=
1

Tn(a)

X

m<n : a2Sm

ba,m. (7)

Let E be a cover of A, i.e., E ✓ S such that each a 2 A belongs to at least one S 2 E . Note

that implementing all S 2 E provides feedback on the cost of every a 2 A. Since N might not be

known upfront, to induce the exploration frequency lnN/N , we propose a policy that divides the

time horizon into cycles with exponentially growing lengths. Each cycle consists of an exploration

phase followed by an exploitation phase. Within the exploration phase of each cycle, the simple

policy implements each solution S 2 E at most once. After the exploration phase of each cycle, and

if there is enough time to do so, the algorithm trusts the cost estimates and exploits any solution

with minimum estimate cost until the end of that cycle. To formally describe this policy, for i 2 N
and i � 2, define the starting point of cycle i as

ni := max
n

bei/Hc, ni�1 + 1
o

,

where n1 = 1 and the tuning parameter H is a positive finite constant that regulates the frequency

of exploration. Define � := {ni : i 2 N} to be the set of starting points of all cycles. The proposed

simple policy, which we denote as ⇡s(E), is summarized in Algorithm 1.

Remark 4.2. Note that reversing the order of the update of the exploitation set and the exploration

phase in Algorithm 1 does not a↵ect the performance bound in Theorem 4.3 (below). In practice,

however, this leads to marginal improvements in performance.

Note that even if we take E = S, the regret associated with ⇡s(S) should improve upon that of
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lnN , which can be quite large even for moderate

values of k. Broadly speaking, this algorithm picks the solution

with the best cost estimate bS,n while making sure that cost

estimates are updated with LR’s prescribed frequency lnN/N .

Because UCB1 is not aware of the combinatorial structure of

the problem, it estimates the cost of solution S 2 S via imple-

menting such a solution. However, in practice, the cost estimate

of S 2 S can be derived from those of a 2 S (see Section 8 for

tweaked versions of UCB1 incorporating this fact). Next, we

present a di↵erent approach aiming to ensure the exploration

frequency prescribed in LR on a rather more direct fashion.
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be the average observed cost of ground elements before

implementing a solution to instance n, where

ba,n :=
1

Tn(a)
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Let E be a cover of A, i.e., E ✓ S such that each a 2 A belongs to at least one S 2 E . Note

that implementing all S 2 E provides feedback on the cost of every a 2 A. Since N might not be

known upfront, to induce the exploration frequency lnN/N , we propose a policy that divides the

time horizon into cycles with exponentially growing lengths. Each cycle consists of an exploration

phase followed by an exploitation phase. Within the exploration phase of each cycle, the simple

policy implements each solution S 2 E at most once. After the exploration phase of each cycle, and

if there is enough time to do so, the algorithm trusts the cost estimates and exploits any solution

with minimum estimate cost until the end of that cycle. To formally describe this policy, for i 2 N
and i � 2, define the starting point of cycle i as

ni := max
n

bei/Hc, ni�1 + 1
o

,

where n1 = 1 and the tuning parameter H is a positive finite constant that regulates the frequency

of exploration. Define � := {ni : i 2 N} to be the set of starting points of all cycles. The proposed

simple policy, which we denote as ⇡s(E), is summarized in Algorithm 1.

Remark 4.2. Note that reversing the order of the update of the exploitation set and the exploration

phase in Algorithm 1 does not a↵ect the performance bound in Theorem 4.3 (below). In practice,

however, this leads to marginal improvements in performance.

Note that even if we take E = S, the regret associated with ⇡s(S) should improve upon that of
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menting such a solution. However, in practice, the cost estimate
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Let E be a cover of A, i.e., E ✓ S such that each a 2 A belongs to at least one S 2 E . Note

that implementing all S 2 E provides feedback on the cost of every a 2 A. Since N might not be

known upfront, to induce the exploration frequency lnN/N , we propose a policy that divides the

time horizon into cycles with exponentially growing lengths. Each cycle consists of an exploration

phase followed by an exploitation phase. Within the exploration phase of each cycle, the simple

policy implements each solution S 2 E at most once. After the exploration phase of each cycle, and

if there is enough time to do so, the algorithm trusts the cost estimates and exploits any solution

with minimum estimate cost until the end of that cycle. To formally describe this policy, for i 2 N
and i � 2, define the starting point of cycle i as

ni := max
n

bei/Hc, ni�1 + 1
o

,

where n1 = 1 and the tuning parameter H is a positive finite constant that regulates the frequency

of exploration. Define � := {ni : i 2 N} to be the set of starting points of all cycles. The proposed

simple policy, which we denote as ⇡s(E), is summarized in Algorithm 1.

Remark 4.2. Note that reversing the order of the update of the exploitation set and the exploration

phase in Algorithm 1 does not a↵ect the performance bound in Theorem 4.3 (below). In practice,

however, this leads to marginal improvements in performance.

Note that even if we take E = S, the regret associated with ⇡s(S) should improve upon that of
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information about a 2 A can be collected by implementing di↵erent solutions, and thus by incurring

potentially di↵erent costs. Even if, as in the traditional setting, one is to collect information on all

elements in A, there are many possibilities for doing so (e.g., one might implement all solutions in

S). Thus, e�cient exploration in our setting also involves answering the question of how to collect

the required information. Second, in the combinatorial setting, ground elements are not upfront

identical due to bounds on the range of F . Moreover, even in the case where elements are a-priori

identical (e.g., la = c for all a 2 A, for some c 2 R), feasible solutions combine elements so that

solutions might not be identical upfront. In Section 5 we show that, thanks to this property, not

all solutions need to be implemented periodically. More importantly, we show that not all elements

of A need to be probed periodically. Thus, the question of what to explore proves to be key in

limiting the exploration e↵orts, and therefore the regret.

4 How to Explore: E�cient Covers

Consider applying algorithm UCB1 in Auer et al. (2002) to the combinatorial setting via envisioning

all S 2 S as separate arms. After an initialization phase on which each element of S is implemented

once to obtain an initial estimate of its cost, UCB1 implements solution

Sn 2 argmin
S2S

n

bS,n �
p

2 ln(n� 1)/Tn(S)
o

on instance n, where bS,n denotes the average observed cost of solution S prior to instance n. That

is,

bS,n :=
1

Tn(S)

X

m<n :Sm=S

X

a2S
ba,m.

As mentioned earlier, in many situations of interest, the regret of this algorithm scales exponentially

with |A|, as illustrated by the following example.

Example 4.1. Consider the digraph G = (V,A) for V = {vi,j : i, j 2 {1, . . . , k + 1}, i  j} and

A = {ei}ki=1 [ {pi,j : i  j  k} [ {qi,j : i  j  k} where ei = (vi,i, vi+1,i+1), pi,j = (vi,j , vi,j+1),

and qi,j = (vi,j , vi+1,j). This digraph is depicted in Figure 1 for k = 3. Let S be composed of all

paths from node s := v1,1 to node t := vk+1,k+1.

Set la = 0 and ua = 1 for every arc a 2 A, and let F be such that EF {bei,n} = 0.03, and

EF
�

bpi,j ,n
 

= EF
�

bqi,j ,n
 

= 0.1, for all i 2 {1, . . . , k} and i  j  k, n 2 N. The shortest

(expected) path is S⇤(EF {Bn}) = (e1, e2, . . . , ek) with expected length (cost) z⇤(EF {Bn}) = 0.03 k,

and |S| corresponds to the number of s � t paths, which is equal to 1
k+2

�2(k+1)
(k+1)

�

⇠ 4k+1

(k+1)3/2
p
⇡

(Stanley 1999).
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Algorithm 1 Simple policy ⇡s(E)

Set i = 0, and E a minimal cover of A
for n = 1 to N do

if n 2 � then
Set i = i+ 1
Set S⇤ 2 S⇤ �Bn

�

[Update exploitation set]
end if
if Tn(a) < i for some a 2 S, for some solution S 2 E then
Implement such a solution, i.e., set Sn = S [Exploration]

else
Implement Sn = S⇤ [Exploitation]

end if
end for

traditional bandit algorithms: because cost estimation is conducted on elements of A, the simple

policy implements at most |A| solutions during the exploration phase of each cycle. Our first result

provides a performance guarantee for ⇡s(E) for any cover E .

Theorem 4.3. There exists a positive finite constant Hs such that for any H � Hs, N > 0, and

cover E, the regret of ⇡s(E) admits the following bound

R⇡s(E)(F,N)

lnN
 min {|E| , |A|}�F

maxH + o(1),

where �F
max := max

�

�F
S : S 2 S

 

.

Theorem 4.3 implies that policy ⇡s(E) e↵ectively conducts exploration on a cover contained in

E that is minimal with respect to inclusion. In this regard, one should not consider any cover E
with more than |A| elements (e.g., one can select E = {Sa}a2A where Sa 2 S is any solution such

that a 2 Sa)2. Thus, selecting small covers should result on a regret of Algorithm 1 proportional

to at most |A| lnN in the worst case, and potentially much smaller in practice. For instance, in

Example 4.1, |A| = (k+2)(k+3)/2, but we can easily construct a cover E of size k+1. Then, the

regret of Algorithm 1 is at most order k lnN , while the best estimate of the regret growth of, e.g.,

UCB1, is 4k+1

(k+1)3/2
p
⇡
lnN .

Regarding the issue of when and what to explore, policy ⇡s (as well as most multi-armed bandit

algorithms) applies LR’s frequency lnN/N , and explores every ground element in A. However, while

classical bandit algorithms answer the question of how to explore by implementing all solutions in

S, Algorithm 1 implements a cover that is minimal with respect to inclusion. Ultimately, answers to

the questions above are inconclusive unless contrasted to a fundamental lower bound on performance

for the combinatorial bandit setting. We develop such a bound next.

2In fact, one could refine this policy to adaptively select E as the “cheapest” cover of A: see the discussion in
Section 9.
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5 What to Explore: A Limit on Achievable Performance

In this section we show that a consistent policy might not need to collect information on all elements

of A. To illustrate this fact consider the following example.

Example 5.1. Let G = (V,A) be the digraph depicted in Figure 2 and let S be composed of all

paths from node s to node t. Set la = 0 and ua = 1 for every arc a 2 A, and F to be such that

EF {be,n} = c, EF {bg,n} = 0, EF {bf,n} = EF {bh,n} = c+"
2 , and EF {bpi,n} = EF {bqi,n} = M for

n 2 N and for all i 2 {1, . . . , k} where 0 < " ⌧ c ⌧ M . The shortest (expected) path in this digraph

is (e).

s t

...

e

f

g

h

p1 q1

pk qk

p2 q2

Figure 2: Graph for Example 5.1.

In Example 5.1, |S| = (k+2) and the smallest possible cover

of A is E = S. Then both Algorithm 1 and UCB1 have regrets

proportional to k lnN and hence Algorithm 1 does not seem

to improve upon traditional algorithms. However, a careful

analysis of this instance reveals that we do not need to collect

information on all elements of A to identify the optimal solution

(e), thus E in Algorithm 1 might not need to be a cover after

all. Indeed, all paths except optimal path (e) share arcs {f, h},
whose expected costs su�ce to guarantee the optimality of the

shortest path. Then a possible answer to the issue of what to

explore is just arcs f , h, and optimal arc/path e. This obser-

vation suggests that setting E to be path (e) plus any other

path that contains both f and h will result on Algorithm 1

having a regret proportional to at most M lnN for every k 2 N
(note that path (e) does not add to the regret). Moreover, the

“cheapest” way to explore f and h is by implementing path

(f, g, h). Thus, setting E = {(f, g, h) , (e)} in Algorithm 1 in-

duces a regret proportional to at most " lnN while UCB1 and Algorithm 1 with a cover have regrets

proportional to (kM + ") lnN .

The analysis above shows that we may not need to explore every element of A. To understand ex-

actly what needs to be explored, we extend the fundamental performance limit of LR for traditional

multi-armed bandits to the combinatorial setting.

Following the argument in the traditional bandit setting, consistent policies must explore those

subsets of ground elements that have a chance to be part of an optimal solution. We can formally

define such subsets as follows, where for simplicity of exposition, we assume S⇤ (EF {Bn}) is a

singleton containing S⇤ (EF {Bn}). Let D contain all subsets D of suboptimal ground elements
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5 What to Explore: A Limit on Achievable Performance

In this section we show that a consistent policy might not need to collect information on all elements

of A. To illustrate this fact consider the following example.

Example 5.1. Let G = (V,A) be the digraph depicted in Figure 2 and let S be composed of all

paths from node s to node t. Set la = 0 and ua = 1 for every arc a 2 A, and F to be such that

EF {be,n} = c, EF {bg,n} = 0, EF {bf,n} = EF {bh,n} = c+"
2 , and EF {bpi,n} = EF {bqi,n} = M for

n 2 N and for all i 2 {1, . . . , k} where 0 < " ⌧ c ⌧ M . The shortest (expected) path in this digraph

is (e).
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Figure 2: Graph for Example 5.1.
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Consider a special case of formulation (11) where KD = H for all D 2 D: one can show that

(F ) is homogeneous in H. Thus, without loss of generality, one can take H = 1 and interpret LBP

as the problem of finding a set of solutions with minimum regret that covers at least one critical

subset C 2 C. For a given cost-coe�cient vector B, such a formulation, which we denote as the

Optimality Cover Problem (henceforth, OCP), solves for a minimum additional cost solution set

whose feedback su�ces to guarantee the optimality of S⇤(B).

OCP (B) : min
X

S2S
�F

S (B) yS (12a)

s.t. xa 
X

S2S:a2S
yS , a 2 A (12b)

X

a2S
(la(1� xa) + baxa) � z⇤(B), S 2 S (12c)

xa, yS 2 {0, 1} , a 2 A,S 2 S, (12d)

where with a slight abuse of notation, we make the dependence of �F
S on B explicit. By construc-

tion, a feasible solution (x, y) to this problem corresponds to incidence vectors of a set C ✓ A and

a cover E of such a set4. In what follows we refer to a solution (x, y) to OCP and the induced pair

of sets (C, E) interchangeably.

Constraints (12c) guarantee the optimality of S⇤(B) even if costs of elements outside C are set

to their lowest possible values (i.e., ba = la for all a /2 C), and constraints (12b) guarantee that E
covers C (i.e., a 2 S for some S 2 E , for all a 2 C). One can show that the former constraints

imply that C is in fact a critical subset, i.e., C 2 C. On the other hand, while the converse does not

hold in general (i.e., not all incidence vectors of critical subsets satisfy (12c)), all critical subsets

covering optimal elements of A do satisfy (12c). In addition, note that when solving (11), one

can impose yS = 1 for all S 2 S⇤(EF {Bn}) without a↵ecting the objective function, thus one can

restrict attention to critical subsets that cover optimal elements of A.

The above suggests a close connection between solutions to OCP and a restricted class of solutions

to LBP. In particular, it suggests that optimal solutions to OCP are also optimal to LBP. The next

Lemma formalizes this result.

Lemma 6.1. Let KD = 1 for all D 2 D in formulation LBP. An optimal solution (x, y) to

OCP (EF {Bn}) is also optimal to LBP.

The connection between these formulations goes beyond that indicated in Lemma 6.1. When

KD = 1 for all D 2 D, one can always select integral optimal solutions to (11), so that they

can be mapped into feasible solutions to OCP (via proper augmentation), and that the opposite

holds true as well. Thus, one can argue that these formulations are essentially equivalent. The key

4That is, (x, y) :=
�

xC , yE� where xC
a = 1 if a 2 C and zero otherwise and yE

S = 1 if S 2 E and zero otherwise.
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Algorithm 2 Adaptive policy ⇡a

Set i = 0, C = A, and E a minimal cover of A
for n = 1 to N do
if n 2 � then
Set i = i+ 1
Set S⇤ 2 S⇤ �Bn

�

[Update exploitation set]
if (C, E) /2 �(Bn) then
Set (C, E) 2 �⇤(Bn) [Update exploration set]

end if
end if
if Tn(a) < i for some a 2 C then
Try such an element, i.e., set Sn = S with S 2 E such that a 2 S [Exploration]

else
Implement Sn = S⇤ [Exploitation]

end if
end for

but G = 2).

Comparing the bound above with the lower bound in Theorem 5.4, one notes a gap in perfor-

mance. Such a mismatch emanates from various sources: some pertain our lower bound, and arise

from using formulation (11) to construct a valid lower bound; others pertain the upper bound, and

arise from: (i) adopting OCP as a valid proxy for formulation (11); and (ii) the inability of the

proposed policy to consistently reconstruct the optimal solution to OCP. In Section 9.2 we provide

a further analysis of the gap between the bounds in Theorems 5.4 and 6.2, and discuss means to

tighten the alluded mismatch.

7 Computational Issues

Policy ⇡s(·) as well as ⇡a need to solve the underlying combinatorial optimization problem f (B)

repeatedly, for many inputs B. Thus, tractability of said problems is essential for practical imple-

mentation. For this reason, we now consider some aspects concerning the potential implementability

of the proposed policies. In particular, we provide strong evidence suggesting that, at least for a

large class of combinatorial problems, the proposed policies scale reasonably well and should be

implementable for real-size instances.

The optimization problem f (B) has a generic combinatorial structure, and thus it could be

extremely hard to solve. For this reason, we concentrate on two broad classes of combinatorial

optimization problems that have reasonably e↵ective solution algorithms. The first class corre-

sponds to theoretically tractable problems that have polynomial time algorithms. Among this

class, we are especially interested in those that have Linear Programming (LP) formulations such

as shortest path, network flow, matching, and spanning tree problems (Schrijver 2003). The second
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•  Theore1cal	
  Complexity	
  of	
  OCP	
  =	
  Bad	
  news?	
  

–  	
  OCP	
  is	
  not	
  guaranteed	
  to	
  be	
  in	
  NP!	
  

–  OCP	
  is	
  in	
  NP	
  when	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  in	
  P	
  

–  OCP	
  for	
  matroids	
  is	
  in	
  P,	
  but	
  for	
  shortest	
  path	
  is	
  NP-­‐hard	
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to LBP. In particular, it suggests that optimal solutions to OCP are also optimal to LBP. The next

Lemma formalizes this result.

Lemma 6.1. Let KD = 1 for all D 2 D in formulation LBP. An optimal solution (x, y) to

OCP (EF {Bn}) is also optimal to LBP.

The connection between these formulations goes beyond that indicated in Lemma 6.1. When

KD = 1 for all D 2 D, one can always select integral optimal solutions to (11), so that they

can be mapped into feasible solutions to OCP (via proper augmentation), and that the opposite

holds true as well. Thus, one can argue that these formulations are essentially equivalent. The key

4That is, (x, y) :=
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a = 1 if a 2 C and zero otherwise and yE

S = 1 if S 2 E and zero otherwise.
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online learning problems, from the raking and selection perspective. Ryzhov and Powell (2011)

study information collection in settings where the decision maker selects individual arcs from a

directed graph, and Ryzhov and Powell (2012) consider a more general setting where selection is

made from a polyhedron (in Section 7 we specialize some of our results to such a setting, from a

bandit perspective). See also Ryzhov et al. (2012), and the references within.

3 Problem Formulation

Model primitives and basic assumptions. We consider the problem of an agent who must select

and implement solutions to a series of instances of a given combinatorial optimization problem.

Without loss of generality, we assume that such a problem is that of cost minimization. Instances

are presented sequentially through time, and we use n to index them according to their arrival

times, so n = 1 corresponds to the first instance, and n = N to the last, where N denotes the

(possibly unknown) total number of instances. Each instance is uniquely characterized by a set of

cost-coe�cients, i.e., instance n 2 N is associated with cost-coe�cients Bn := (ba,n : a 2 A) 2 R|A|,

and the full instance is defined as f(Bn), where

f(B) : z⇤(B) := min

(

X

a2S
ba : S 2 S

)

B 2 R|A|, (1)

S is a family of subsets of elements of a given ground set A, and ba is the cost associated with a

ground element a 2 A. We let S⇤(B) be the set of optimal solutions to (1) and z⇤(B) be its optimal

objective value (cost).

We assume that each element ba,n 2 Bn is a random variable, independent and identically dis-

tributed across instances, and independent of other components in Bn. We let F (·) denote the

common distribution of Bn for n 2 N, which we assume is initially unknown. We assume, how-

ever, that upper and lower bounds on its range are known upfront. That is, it is known that

la  ba,n  ua a.s., for all a 2 A and n 2 N.

We assume that, in addition to not knowing F (·), the agent does not observe Bn prior to im-

plementing a solution. Instead, we assume that Bn is only revealed partially and after a solution

is implemented. More specifically, we assume that if solution Sn 2 S is implemented, only cost-

coe�cients associated with ground elements in Sn (i.e., {ba,n : a 2 Sn}) are observed by the agent

and after the associated cost is incurred. Finally, we assume that the agent is interested in mini-

mizing the expected cumulative cost associated with implementing a sequence of solutions.

Full information problem and regret. Consider the case of a clairvoyant agent with prior

knowledge about F (·). Such an agent, while still not capable of anticipating the value of Bn, can

solve for the solution that minimizes the expected cumulative cost: for instance n 2 N (by the

7
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•  If	
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  IP	
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then	
  OCP	
  can	
  be	
  “effec1vely”	
  solved	
  by	
  branch-­‐and-­‐cut.	
  

7.1 Integer Programming Formulations for OCP

Independent of the theoretical complexity of OCP, formulation (12) of OCP is not amenable to

practical solutions; it is an IP with an exponential number of variables and constraints that would

likely need to be solved through an intricate Branch-and-Cut-and-Price procedure. However, using

simple IP techniques, we can reformulate (12) to obtain a formulation with a polynomial number

of variables. While this formulation still has an exponential number of constraints, such problems

are regularly solved in practice using e↵ective Branch-and-Cut procedures (Applegate et al. 2011,

Carvajal et al. 2013). If f (B) has an LP formulation we can further reduce the size to a polynomial

number of variables and constraints. This version can then be solved directly by a general purpose

state of the art IP solver such as CPLEX (IBM ILOG n.d.). Finally, by exploiting the specific

structure of f(B), we can construct even more e↵ective formulations for OCP. To describe these

formulations it is convenient to use the following notation.

Definition 7.2. Let I be an arbitrary finite set and x 2 {0, 1}|I|. We let the support of x be

supp(x) := {i 2 I : xi = 1}.

The following proposition introduces our first IP formulation for OCP that can be applied to any

combinatorial optimization problem with an IP formulation.

Proposition 7.3. Let yS be the incidence vector of S 2 S, M 2 Rm⇥|A|, and d 2 Rm be such that
�

yS
 

S2S =
n

y 2 {0, 1}|A| : My  d
o

. Then an IP formulation of OCP (B) is given by

min

|A|
X

i=1

 

X

a2A
bay

i
a � z⇤(B)

!

(13a)

s.t. xa 
|A|
X

i=1

yia, a 2 A (13b)

Myi  d, i 2 {1, . . . , |A|} (13c)
X

a2S
(la(1� xa) + baxa) � z⇤(B), S 2 S (13d)

xa, y
i
a 2 {0, 1} , a 2 A, i 2 {1, . . . , |A|} . (13e)

That is, if (x, y) is an optimal solution to (13), then (C, E) is an optimal solution to OCP (B),

where C = supp (x) and E =
�

supp
�

yi
� |A|

i=1
. Furthermore, for a given x 2 {0, 1}|A|, finding a

violated inequality (13d) or showing that it satisfies all these inequalities can be done by solving

f (B0) for b0a = la(1� xa) + baxa.

Proof. For any feasible solution (x, y) to (13) we have that x is the incidence vector of a critical

subset from (13d). Similarly, we have that any yi is the incidence vector of some S 2 S because of
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tributed across instances, and independent of other components in Bn. We let F (·) denote the

common distribution of Bn for n 2 N, which we assume is initially unknown. We assume, how-

ever, that upper and lower bounds on its range are known upfront. That is, it is known that

la  ba,n  ua a.s., for all a 2 A and n 2 N.

We assume that, in addition to not knowing F (·), the agent does not observe Bn prior to im-

plementing a solution. Instead, we assume that Bn is only revealed partially and after a solution

is implemented. More specifically, we assume that if solution Sn 2 S is implemented, only cost-

coe�cients associated with ground elements in Sn (i.e., {ba,n : a 2 Sn}) are observed by the agent

and after the associated cost is incurred. Finally, we assume that the agent is interested in mini-

mizing the expected cumulative cost associated with implementing a sequence of solutions.

Full information problem and regret. Consider the case of a clairvoyant agent with prior

knowledge about F (·). Such an agent, while still not capable of anticipating the value of Bn, can

solve for the solution that minimizes the expected cumulative cost: for instance n 2 N (by the

7

Separa1on	
  by	
  solving	
  

Polynomial	
  #	
  of	
  variables	
  

17	
  



Proof. The only di↵erence between formulations (14) and (13) is that instead of explicitly enforcing

criticality through (13d) formulation (14) does so through strong duality. Indeed, (14d) assures

that w is a dual feasible solution to the LP formulation of f(B) and (14e) forces the objective of

this solution to be greater than z⇤ (B). With this, we have that the optimal solution of f(B0) for

B0 = diag(l)(1� x) + diag(b)x is greater than or equal to z⇤ (B).

Formulation (14) has O(|A|2) variables and O (|A|+m) constraints. If m is polynomial on

the size of the input of f (B), then we should be able to solve (14) directly with a state of the

art IP solver. If m is exponential, but the constraints in the LP formulation can be separated

e↵ectively we should still be able to solve (14) with a Branch-and-Cut algorithm. A standard

example of this class of problems is the spanning tree problem. However, in the case of span-

ning trees, we can additionally use a known polynomial sized extended formulation of the form
n

x 2 {0, 1}|A| : 9y 2 Rp, Cx+Dy  d
o

(Martin 1991). Similar techniques can be used to con-

struct polynomial sized formulations for other problems and to further improve formulation (14).

We now show how such techniques can be used to construct a linear sized formulation of OCP (B)

for shortest path problems. For more information on advanced IP formulation techniques we refer

the interested reader to Vielma (2012).

Proposition 7.5. Let f (B) correspond to a shortest s� t path problem in a digraph G = (V,A).

Define Â = A [ {(t, s)} and let �̂out and �̂in denote the outbound and inbound arcs in digraph

Ĝ = (V, Â). An optimal solution (x, p, w) to

min

|A|
X

i=1

 

X

a2A
bay

i
a � z⇤(B)

!

(15a)

s.t. xa 
|A|
X

i=1

yia, a 2 A (15b)

X

a2�out(v)

yia �
X

a2�in(v)

yia = {0, 1,�1} , v 2 V, i 2 {1, . . . , |A|} (15c)

l(u,v)(1� x(u,v)) + b(u,v)x(u,v) � wu � wv, (u, v) 2 A (15d)

z⇤(B)  ws � wt (15e)

xa, y
i
a 2 {0, 1} , a 2 A, i 2 {1, . . . , |A|} (15f)

wv 2 R, v 2 V, (15g)

is such that (C, E) is an optimal solution to OCP (B), where C = {a 2 A : xa = 1} and E ✓ S is

a set of paths for which pa = |{S 2 E : a 2 S}|. Such a set E can be constructed from p in time

O(|A||V |).

Proof. The first di↵erence between formulations (15) and (14) is the specialization of the LP duality
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Numerical	
  Experiments:	
  Overview	
  

•  Long	
  and	
  short	
  term	
  experiments:	
  
– Different	
  benchmarks	
  

•  Instances:	
  

–  Shortest	
  paths	
  

–  Steiner	
  trees	
  

–  Also	
  knapsack	
  and	
  abstract	
  set	
  cover.	
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Numerical	
  Experiments:	
  Benchmark	
  

Learning	
  in	
  Combinatorial	
  Op1miza1on:	
  What	
  and	
  How	
  to	
  Explore	
  

•  Long	
  term	
  	
  (	
  Remember	
  UCB1:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )	
  

–  Extended	
  UCB+	
  

–  UCB+	
  

	
  

•  Short	
  term	
  

–  Knowledge	
  gradient	
  (exponen1al-­‐gamma)	
  Ryzhov	
  et	
  al.	
  (2012)	
  

–  Gibns	
  (Normal/Normal-­‐Gamma)	
  Lai	
  (1987)	
  

8.1.1 Benchmark Policies

Our benchmark policies are several versions of UCB1, adapted to provide an improved performance

on our specific settings. Remember that UCB1 implements a solution

Sn 2 argmin
S2S

{b(S, n)� k(S, n)}

for instance n, where b(S, n) = b̄S,n and k(S, n) =
p

2 ln(n� 1)/Tn(S). Estimate b(S, n) is meant

to be the “best” estimate of the expected cost of S and k(S, n) is a correction factor that penalizes

the lack of periodic refreshment of the expected cost estimate. With this interpretation, there are

a few straightforward improvements to UCB1 for the combinatorial setting.

A first improvement comes from using a more recent expected cost estimate (b̄S,n only uses

information obtained when S is implemented): one can use the estimate

b(S, n) =
X

a2S
b̄a,n,

with b̄a,n defined in (7). A second improvement is to adjust the penalty factor to reflect the “right”

amount of information available, that is, one can use k(S, n) =
p

2 ln(n� 1)/(mina2S {Tn(a)}).
A third improvement follows from realizing that costs cannot be below their lower bounds. In

particular, the cost of a solution, as well as its index, should not go below the implied bound. A

policy combining all the above implements

Sn 2 argmin
S2S

(

max

(

X

a2S
b̄a,n �

q

2 ln(n� 1)/(min
a2S

{Tn(a)}),
X

a2S
la

))

for instance n. We denote this policy as UCB1+.

In a similar setting, Gai et al. (2012) propose another adaptation of UCB1: an improved version

of such a policy implements

Sn 2 argmin
S2S

(

X

a2S
max

n

ba,n �
p

(L+ 1) ln(n� 1)/Tn(a), la
o

)

for instance n, for some positive finite constant L. We denote this policy as Extended UCB1+.

While the theoretical performance guarantees of UCB1 and the policy in Gai et al. (2012) compare

unfavorably to those of ⇡s and ⇡a, UCB1+ and Extended UCB1+ could perform closer to ⇡s or ⇡a

in practice. In particular, UCB1+ incorporates some ideas used in crafting ⇡s(·) and hence could

have a comparable performance.
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information about a 2 A can be collected by implementing di↵erent solutions, and thus by incurring

potentially di↵erent costs. Even if, as in the traditional setting, one is to collect information on all

elements in A, there are many possibilities for doing so (e.g., one might implement all solutions in

S). Thus, e�cient exploration in our setting also involves answering the question of how to collect

the required information. Second, in the combinatorial setting, ground elements are not upfront

identical due to bounds on the range of F . Moreover, even in the case where elements are a-priori

identical (e.g., la = c for all a 2 A, for some c 2 R), feasible solutions combine elements so that

solutions might not be identical upfront. In Section 5 we show that, thanks to this property, not

all solutions need to be implemented periodically. More importantly, we show that not all elements

of A need to be probed periodically. Thus, the question of what to explore proves to be key in

limiting the exploration e↵orts, and therefore the regret.

4 How to Explore: E�cient Covers

Consider applying algorithm UCB1 in Auer et al. (2002) to the combinatorial setting via envisioning

all S 2 S as separate arms. After an initialization phase on which each element of S is implemented

once to obtain an initial estimate of its cost, UCB1 implements solution

Sn 2 argmin
S2S

n

bS,n �
p

2 ln(n� 1)/Tn(S)
o

on instance n, where bS,n denotes the average observed cost of solution S prior to instance n. That

is,

bS,n :=
1

Tn(S)

X

m<n :Sm=S

X

a2S
ba,m.

As mentioned earlier, in many situations of interest, the regret of this algorithm scales exponentially

with |A|, as illustrated by the following example.

Example 4.1. Consider the digraph G = (V,A) for V = {vi,j : i, j 2 {1, . . . , k + 1}, i  j} and

A = {ei}ki=1 [ {pi,j : i  j  k} [ {qi,j : i  j  k} where ei = (vi,i, vi+1,i+1), pi,j = (vi,j , vi,j+1),

and qi,j = (vi,j , vi+1,j). This digraph is depicted in Figure 1 for k = 3. Let S be composed of all

paths from node s := v1,1 to node t := vk+1,k+1.

Set la = 0 and ua = 1 for every arc a 2 A, and let F be such that EF {bei,n} = 0.03, and

EF
�

bpi,j ,n
 

= EF
�

bqi,j ,n
 

= 0.1, for all i 2 {1, . . . , k} and i  j  k, n 2 N. The shortest

(expected) path is S⇤(EF {Bn}) = (e1, e2, . . . , ek) with expected length (cost) z⇤(EF {Bn}) = 0.03 k,

and |S| corresponds to the number of s � t paths, which is equal to 1
k+2

�2(k+1)
(k+1)

�

⇠ 4k+1

(k+1)3/2
p
⇡

(Stanley 1999).

11

20	
  



Long	
  Term	
  Experiments:	
  Path	
  1	
  

Learning	
  in	
  Combinatorial	
  Op1miza1on:	
  What	
  and	
  How	
  to	
  Explore	
  

s p1,1 p1,3

t

p2,2

p3,3

p2,3

p1,2

q1,1 q1,2 q1,3

q2,2 q2,3

q3,3e3

e2

e1

Figure 1: Graph for Example 4.1.

For this example, the regret of UCB1 is proportional to
4k+1

(k+1)3/2
p
⇡
lnN , which can be quite large even for moderate

values of k. Broadly speaking, this algorithm picks the solution

with the best cost estimate bS,n while making sure that cost

estimates are updated with LR’s prescribed frequency lnN/N .

Because UCB1 is not aware of the combinatorial structure of

the problem, it estimates the cost of solution S 2 S via imple-

menting such a solution. However, in practice, the cost estimate

of S 2 S can be derived from those of a 2 S (see Section 8 for

tweaked versions of UCB1 incorporating this fact). Next, we

present a di↵erent approach aiming to ensure the exploration

frequency prescribed in LR on a rather more direct fashion.

A simple policy. Let Bn :=
�

ba,n, a 2 A
�

be the average observed cost of ground elements before

implementing a solution to instance n, where

ba,n :=
1

Tn(a)

X

m<n : a2Sm

ba,m. (7)

Let E be a cover of A, i.e., E ✓ S such that each a 2 A belongs to at least one S 2 E . Note

that implementing all S 2 E provides feedback on the cost of every a 2 A. Since N might not be

known upfront, to induce the exploration frequency lnN/N , we propose a policy that divides the

time horizon into cycles with exponentially growing lengths. Each cycle consists of an exploration

phase followed by an exploitation phase. Within the exploration phase of each cycle, the simple

policy implements each solution S 2 E at most once. After the exploration phase of each cycle, and

if there is enough time to do so, the algorithm trusts the cost estimates and exploits any solution

with minimum estimate cost until the end of that cycle. To formally describe this policy, for i 2 N
and i � 2, define the starting point of cycle i as

ni := max
n

bei/Hc, ni�1 + 1
o

,

where n1 = 1 and the tuning parameter H is a positive finite constant that regulates the frequency

of exploration. Define � := {ni : i 2 N} to be the set of starting points of all cycles. The proposed

simple policy, which we denote as ⇡s(E), is summarized in Algorithm 1.

Remark 4.2. Note that reversing the order of the update of the exploitation set and the exploration

phase in Algorithm 1 does not a↵ect the performance bound in Theorem 4.3 (below). In practice,

however, this leads to marginal improvements in performance.

Note that even if we take E = S, the regret associated with ⇡s(S) should improve upon that of

12

21	
  



Long	
  Term	
  Experiments:	
  Path	
  2	
  

Learning	
  in	
  Combinatorial	
  Op1miza1on:	
  What	
  and	
  How	
  to	
  Explore	
  

𝑘=20	
  

to Examples 4.1 and 5.1 in that the optimal critical subsets are large and hence the adaptive

policy does not have an immediate advantage. Finally, in order for all policies to be consistent, we

normalize the mean costs of the ground elements so that the maximum solution cost is at most one

(see the consistency argument before Theorem 3.2).

Examples 4.1 and 5.1. Figures 3-(a) and 3-(b) depict the average performance of four di↵erent

policies on Examples 4.1 and 5.1, respectively.
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Figure 3: Graphs (a) and (b) depict the average performance of di↵erent policies on Examples 4.1
and 5.1, respectively.

On Example 4.1, we see that Extended UCB1+ has the worst performance followed by UCB1+.

The simple policy performs better than both these policies, aided in part by the fact that it restricts

exploration to a minimum size cover, which for this setting is only of size 4. Finally, the adaptive

policy performs significantly better than the other policies, as it successfully limits exploration to

a minimum regret exploration set (i.e., the implied subset of solutions from an optimal solution to

OCP (EF {Bn})).

On Example 5.1, Extended UCB1+ outperforms the UCB1+ as well as the simple policy. The

performance of the simple policy is likely hindered by the fact that, in this setting, the minimum

size cover is equal to S, which has size 22. In contrast, minimum regret exploration set of the

adaptive policy is only of size 2, which helps it achieve the best performance.7

In terms of e�cient information collection, one can divide the set of ground elements (arcs) into

7In our experiments, on both Examples 4.1 and 5.1, the adaptive policy selects a minimum regret exploration set
practically on every replication in the long run.
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Figure 4: Average performance of di↵erent policies on the representative from the shortest path
setting.
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Figure 5: Average performance of di↵erent policies on the representative from the set cover setting.

(Williamson and Shmoys 2011), where we are given an undirected graph with non-negative edge

costs, and a set of pairs of vertices. Our objective is to find a minimum cost subset of edges such

that every given pair is connected in the set of selected edges.

For this problem, we generate a random graph and select a set of pairs of vertices randomly. The

ground element (edge) mean costs are selected uniformly randomly from the set {0.1, 0.2, . . . , 1} and
then normalized. The representative setting is such that |A| = 18, |S| = 2490, the minimum size

31

cover is of size 1, and the minimum regret exploration set is of size 7 with an implied critical subset

of size 17. Figure 6 depicts the average performance of four di↵erent policies on the representative

from the Steiner tree setting.
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Figure 6: Average performance of di↵erent policies on the representative from the Steiner tree
setting.

In ranking the performance of di↵erent policies, the relative order is essentially the same as in

the case of the previous two settings.

Knapsack problem. In the knapsack problem we are given a set A of items to put in a knapsack.

The solution set S consists of the subsets of items whose total weights do not exceed the knapsack

weight limit. We generate a set of items with random utilities and weights. A random weight limit

is also selected for the knapsack. The representative setting is such that |A| = 20, |S| = 9078, the

minimum size cover is of size 4, and the minimum regret exploration set is of size 6 with an implied

critical subset of size 16. Figure 7 depicts the average performance of four di↵erent policies on the

representative form the knapsack setting. The adaptive policy outperforms the others. Moreover,

the benchmarks are outperformed by the simple policy.

8.2 Short-term Experiments

The purpose of this section is to evaluate the performance of di↵erent policies in the short-term.

Although the adaptive policy is not designed for such a setting, our numerical experiments show

that it provides a competitive performance in several cases. We first describe di↵erent benchmark

policies. After briefly discussing some implementation details, we close this section presenting our
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Figure 8: Average performance of di↵erent policies on the representative from the shortest path
setting.
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Figure 9: Average performance of di↵erent policies on the representative from the set cover setting.

this setting.

Knapsack problem. Figure 11 depicts the average performances on a representative from the

knapsack setting9. The representative setting is such that |A| = 11, |S| = 50, the minimum size

cover is of size 5, and the minimum regret exploration set is of size 5 with an implied critical subset

9Here we report on the average behavior over 500 replications so that the confidence intervals do not cross.
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Figure 10: Average performance of di↵erent policies on the representative from the Steiner tree
setting.
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Figure 11: Average performance of di↵erent policies on the representative from the knapsack setting.

of size 8. Gittins provides a better performance than the adaptive policy in the very short-term,

but is outperformed eventually, while KG performs poorly compared to the others.
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Summary	
  

•  Tradi1onal	
  Explora1on	
  v/s	
  Exploita1on	
  
–  What	
  to	
  exploit	
  
–  When	
  to	
  explore	
  

•  Combinatorial	
  Explora1on	
  v/s	
  Exploita1on	
  
–  What	
  to	
  explore:	
  cri1cal	
  elements	
  
–  How	
  to	
  explore:	
  op1mality	
  cover	
  

•  Implementable	
  algorithm	
  
–  Explora1on/Exploita1on	
  cycles	
  
–  Near-­‐op1mal	
  long	
  term	
  performance	
  	
  
–  Compe11ve	
  short	
  term	
  performance	
  

•  Complexity	
  of	
  OCP:	
  new	
  challenges	
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• Let�ࣞ contain�all�subsetsܦ��of�suboptimal�elements�that�become�part�of�

every�optimal�solution�if�their�costs�are�the�lowest�possible

• There�is�an�alternative�distributionܨ�ǯ such�that�D�is�optimal�underܨ�ǯ
• Need�to�estimate�cost�of�at�least�some�element�in�each�D�to�ensure�

optimality�of�oracle�solution

Intuition
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• For�any�consistent�policyߨ� and�setܦ� א ࣞ

• Lower�bound�on�number�of�times�specific�sets�are�tried

• What�needs�to�be�explored? Critical�subsets

#�times�element�ܽ tried

distance�betweenܨ� andܨ�ǯ
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• For�any�consistent�policyߨ�

where

(exp�on�critical�subset)

(solution�cover)

(min�regret)

(nonͲnegativity)
ࢇ࢞ ൎ ା૚ࡺࢀ ࢇ ࡺܖܔ
How�to�explore
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• Forܪ�௔ such�that�for�allܪ� ൐ ௔ܪ and�any�ܰ ൐ Ͳ

– Requirement�overܪ� waived�if�imposing݋�ሺ��ܰଵାఢሻ exploration
– ȁܩȁ smaller�than�minimal�cover�ofܣ� (cover�a�minimal�critical�subset)

• Gap�in�performance�between�lower�and�upper�bounds

Size�of�minimal�solution�to�OCP
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