
Learning	
 in	
 Combinatorial	
 Op1miza1on:	

What	
 and	
 How	
 to	
 Explore	

Juan	
 Pablo	
 Vielma	

	

Sloan	
 School	
 of	
 Business,	
 MassachuseFs	
 Ins1tute	
 of	
 Technology	

	

	

Universidad	
 Adolfo	
 Ibañez,	
 San1ago,	
 Chile.	
 October,	
 2013.	

	

	

Joint	
 work	
 with	
 D.	
 Saure	
 and	
 S.	
 Modaresi	
 (also	
 J.	
 Orlin	
 and	
 B.	
 Johannes)	

Supported	
 by	
 NSF	
 grant	
 CMMI-­‐1233441	

1	

Mo1va1on:	
 Driving	
 Home	
 in	
 a	
 New	
 Town	

•  Shortest	
 s-­‐t	
 path	

•  Random	
 edge	
 costs	
 with	
 unknown	
 distribu1on	

•  Cost	
 realiza1on	
 observed	
 a\er	
 usage	
 (via	
 solu*on)	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

0.1	

1.2	

0.7	

0.4	

0.3	

0.2	

0.9	

0.5	
 0.1	

DAY	
 1:	

DAY	
 2:	

s	
 t	

2	

Explora1on	
 v/s	
 Exploita1on:	
 Bandit	
 Approach	

•  What	
 to	
 exploit:	
 Bandit	
 with	
 best	
 current	
 es1mate.	

•  What	
 to	
 explore:	
 All	
 bandits.	
 	

•  When	
 to	
 explore/exploit:	
 Explore	
 with	
 frequency	
 	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

Combinatorial	
 sebng:	
 bandits	
 =	
 s-­‐t	
 paths?	

✓	

✗	

✓	

3	

Outline	

•  Introduc1on:	

– Problem	
 defini1on	

– Review	
 of	
 bandit	
 results	
 and	
 direct	
 extensions	

•  Simple	
 policy	
 =	
 Solu1on	
 Cover	

•  Near-­‐op1mal	
 policy	
 =	
 Op1mality	
 Cover	

•  Computa1onal	
 Issues	

•  Simula1on	
 Results	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	
 4	

Base	
 Problem	
 and	
 Nota1on	

•  Base	
 combinatorial	
 op1miza1on	
 problem:	

	

•  Stochas1c	
 version:	
 B	
 distributed	
 according	
 to	
 known	
 F	

–  Solve	
 	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

online learning problems, from the raking and selection perspective. Ryzhov and Powell (2011)

study information collection in settings where the decision maker selects individual arcs from a

directed graph, and Ryzhov and Powell (2012) consider a more general setting where selection is

made from a polyhedron (in Section 7 we specialize some of our results to such a setting, from a

bandit perspective). See also Ryzhov et al. (2012), and the references within.

3 Problem Formulation

Model primitives and basic assumptions. We consider the problem of an agent who must select

and implement solutions to a series of instances of a given combinatorial optimization problem.

Without loss of generality, we assume that such a problem is that of cost minimization. Instances

are presented sequentially through time, and we use n to index them according to their arrival

times, so n = 1 corresponds to the first instance, and n = N to the last, where N denotes the

(possibly unknown) total number of instances. Each instance is uniquely characterized by a set of

cost-coe�cients, i.e., instance n 2 N is associated with cost-coe�cients Bn := (ba,n : a 2 A) 2 R|A|,

and the full instance is defined as f(Bn), where

f(B) : z⇤(B) := min

(

X

a2S
ba : S 2 S

)

B 2 R|A|, (1)

S is a family of subsets of elements of a given ground set A, and ba is the cost associated with a

ground element a 2 A. We let S⇤(B) be the set of optimal solutions to (1) and z⇤(B) be its optimal

objective value (cost).

We assume that each element ba,n 2 Bn is a random variable, independent and identically dis-

tributed across instances, and independent of other components in Bn. We let F (·) denote the

common distribution of Bn for n 2 N, which we assume is initially unknown. We assume, how-

ever, that upper and lower bounds on its range are known upfront. That is, it is known that

la  ba,n  ua a.s., for all a 2 A and n 2 N.

We assume that, in addition to not knowing F (·), the agent does not observe Bn prior to im-

plementing a solution. Instead, we assume that Bn is only revealed partially and after a solution

is implemented. More specifically, we assume that if solution Sn 2 S is implemented, only cost-

coe�cients associated with ground elements in Sn (i.e., {ba,n : a 2 Sn}) are observed by the agent

and after the associated cost is incurred. Finally, we assume that the agent is interested in mini-

mizing the expected cumulative cost associated with implementing a sequence of solutions.

Full information problem and regret. Consider the case of a clairvoyant agent with prior

knowledge about F (·). Such an agent, while still not capable of anticipating the value of Bn, can

solve for the solution that minimizes the expected cumulative cost: for instance n 2 N (by the

7

feasible	
 solu1ons	
 (e.g.	
 paths)	

ground	
 sets	
 (e.g.	
 arcs)	
 costs	

5	

Sequen1al	
 Op1miza1on	
 with	
 On-­‐line	
 Feedback	

•  Sequence	
 of	
 instances	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ,	
 for	
 unknown	
 N 	
 	

•  Bn	
 independent,	
 distributed	
 according	
 to	
 ini1ally	
 unknown	
 F	

•  Only	
 a-­‐priori	
 informa1on	
 on	
 F	
 :	

•  Need	
 to	
 implement	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 before	
 Bn	
 is	
 revealed	

•  Bn	
 is	
 par1ally	
 revealed	
 a\er	
 Sn	
 is	
 implemented:	

•  Goal:	
 Non-­‐an1cipa1ve	
 policy	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 :	

–  Sn	
 adapted	
 to	
 	
 	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

linearity of the objective function), it is optimal to implement Sn 2 S⇤(EF {Bn}), where EF {·}
denotes expectation with respect to F . Note that such a solution set is independent of n.

In practice, the agent does not know F upfront, and must learn about it through the feedback

collected from implementing di↵erent solutions. Let F := {Fn : n 2 N} denote the filtration gen-

erated by such a feedback (i.e., Fn = �({ba,m : a 2 Sm , m < n})). We restrict our attention to

non-anticipative (i.e., F-adapted) policies. Let ⇡ := (Sn)
1
n=1 denote an admissible policy, where

Sn : Fn ! S maps the available “history” to a solution in S. For any given F and N , the expected

cumulative cost incurred by policy ⇡ is given by

J⇡(F,N) :=
N
X

n=1

EF

(

X

a2Sn

ba,n

)

.

In practice, no admissible policy can achieve the expected cumulative cost of a clairvoyant agent,

and hence we measure the performance of a policy in terms of its regret: for a given policy ⇡, F ,

and N , the regret is defined as

R⇡(F,N) := J⇡(F,N)�N z⇤ (EF {Bn}) .

The regret represents the additional expected cumulative cost incurred by policy ⇡ relative to that

incurred by a clairvoyant agent that knows F upfront (note that regret is always non-negative).

Remark 3.1. Although the regret also depends on the combinatorial optimization problem through

A and S, we omit this dependence to simplify the notation.

Our exposition benefits from connecting the regret to the number of instances in which suboptimal

solutions are implemented. To make this connection explicit, consider an alternative representation

of the regret. For S 2 S, let �F
S denote the expected optimality gap associated with implementing

S, when costs are distributed according to F . That is,

�F
S :=

X

a2S
EF {ba,n}� z⇤ (EF {Bn}) .

(Note that the expected optimality gap associated with S⇤ 2 S⇤ (EF {Bn}) is zero.) For S 2 S, let

Tn(S) := |{m < n : Sm = S}|

denote the number of times that the agent has implemented solution Sm = S prior to instance n.

Similarly, for a 2 A, let

Tn(a) := |{m < n : a 2 Sm}|

denote the number of times that the agent has selected element a prior to instance n (henceforth,

8

linearity of the objective function), it is optimal to implement Sn 2 S⇤(EF {Bn}), where EF {·}
denotes expectation with respect to F . Note that such a solution set is independent of n.

In practice, the agent does not know F upfront, and must learn about it through the feedback

collected from implementing di↵erent solutions. Let F := {Fn : n 2 N} denote the filtration gen-

erated by such a feedback (i.e., Fn = �({ba,m : a 2 Sm , m < n})). We restrict our attention to

non-anticipative (i.e., F-adapted) policies. Let ⇡ := (Sn)
1
n=1 denote an admissible policy, where

Sn : Fn ! S maps the available “history” to a solution in S. For any given F and N , the expected

cumulative cost incurred by policy ⇡ is given by

J⇡(F,N) :=
N
X

n=1

EF

(

X

a2Sn

ba,n

)

.

In practice, no admissible policy can achieve the expected cumulative cost of a clairvoyant agent,

and hence we measure the performance of a policy in terms of its regret: for a given policy ⇡, F ,

and N , the regret is defined as

R⇡(F,N) := J⇡(F,N)�N z⇤ (EF {Bn}) .

The regret represents the additional expected cumulative cost incurred by policy ⇡ relative to that

incurred by a clairvoyant agent that knows F upfront (note that regret is always non-negative).

Remark 3.1. Although the regret also depends on the combinatorial optimization problem through

A and S, we omit this dependence to simplify the notation.

Our exposition benefits from connecting the regret to the number of instances in which suboptimal

solutions are implemented. To make this connection explicit, consider an alternative representation

of the regret. For S 2 S, let �F
S denote the expected optimality gap associated with implementing

S, when costs are distributed according to F . That is,

�F
S :=

X

a2S
EF {ba,n}� z⇤ (EF {Bn}) .

(Note that the expected optimality gap associated with S⇤ 2 S⇤ (EF {Bn}) is zero.) For S 2 S, let

Tn(S) := |{m < n : Sm = S}|

denote the number of times that the agent has implemented solution Sm = S prior to instance n.

Similarly, for a 2 A, let

Tn(a) := |{m < n : a 2 Sm}|

denote the number of times that the agent has selected element a prior to instance n (henceforth,

8

online learning problems, from the raking and selection perspective. Ryzhov and Powell (2011)

study information collection in settings where the decision maker selects individual arcs from a

directed graph, and Ryzhov and Powell (2012) consider a more general setting where selection is

made from a polyhedron (in Section 7 we specialize some of our results to such a setting, from a

bandit perspective). See also Ryzhov et al. (2012), and the references within.

3 Problem Formulation

Model primitives and basic assumptions. We consider the problem of an agent who must select

and implement solutions to a series of instances of a given combinatorial optimization problem.

Without loss of generality, we assume that such a problem is that of cost minimization. Instances

are presented sequentially through time, and we use n to index them according to their arrival

times, so n = 1 corresponds to the first instance, and n = N to the last, where N denotes the

(possibly unknown) total number of instances. Each instance is uniquely characterized by a set of

cost-coe�cients, i.e., instance n 2 N is associated with cost-coe�cients Bn := (ba,n : a 2 A) 2 R|A|,

and the full instance is defined as f(Bn), where

f(B) : z⇤(B) := min

(

X

a2S
ba : S 2 S

)

B 2 R|A|, (1)

S is a family of subsets of elements of a given ground set A, and ba is the cost associated with a

ground element a 2 A. We let S⇤(B) be the set of optimal solutions to (1) and z⇤(B) be its optimal

objective value (cost).

We assume that each element ba,n 2 Bn is a random variable, independent and identically dis-

tributed across instances, and independent of other components in Bn. We let F (·) denote the

common distribution of Bn for n 2 N, which we assume is initially unknown. We assume, how-

ever, that upper and lower bounds on its range are known upfront. That is, it is known that

la  ba,n  ua a.s., for all a 2 A and n 2 N.

We assume that, in addition to not knowing F (·), the agent does not observe Bn prior to im-

plementing a solution. Instead, we assume that Bn is only revealed partially and after a solution

is implemented. More specifically, we assume that if solution Sn 2 S is implemented, only cost-

coe�cients associated with ground elements in Sn (i.e., {ba,n : a 2 Sn}) are observed by the agent

and after the associated cost is incurred. Finally, we assume that the agent is interested in mini-

mizing the expected cumulative cost associated with implementing a sequence of solutions.

Full information problem and regret. Consider the case of a clairvoyant agent with prior

knowledge about F (·). Such an agent, while still not capable of anticipating the value of Bn, can

solve for the solution that minimizes the expected cumulative cost: for instance n 2 N (by the

7

6	

Performance	
 of	
 Non-­‐an1cipa1ve	
 Policy	

•  Regret	
 rela1ve	
 to	
 clairvoyant	
 	
 agent:	

•  Expected	
 op1mality	
 gap	
 of	
 solu1on	
 S:	

•  Number	
 of	
 implementa1ons	
 of	
 solu1on	
 S:	

•  Alterna1ve	
 form:	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

linearity of the objective function), it is optimal to implement Sn 2 S⇤(EF {Bn}), where EF {·}
denotes expectation with respect to F . Note that such a solution set is independent of n.

In practice, the agent does not know F upfront, and must learn about it through the feedback

collected from implementing di↵erent solutions. Let F := {Fn : n 2 N} denote the filtration gen-

erated by such a feedback (i.e., Fn = �({ba,m : a 2 Sm , m < n})). We restrict our attention to

non-anticipative (i.e., F-adapted) policies. Let ⇡ := (Sn)
1
n=1 denote an admissible policy, where

Sn : Fn ! S maps the available “history” to a solution in S. For any given F and N , the expected

cumulative cost incurred by policy ⇡ is given by

J⇡(F,N) :=
N
X

n=1

EF

(

X

a2Sn

ba,n

)

.

In practice, no admissible policy can achieve the expected cumulative cost of a clairvoyant agent,

and hence we measure the performance of a policy in terms of its regret: for a given policy ⇡, F ,

and N , the regret is defined as

R⇡(F,N) := J⇡(F,N)�N z⇤ (EF {Bn}) .

The regret represents the additional expected cumulative cost incurred by policy ⇡ relative to that

incurred by a clairvoyant agent that knows F upfront (note that regret is always non-negative).

Remark 3.1. Although the regret also depends on the combinatorial optimization problem through

A and S, we omit this dependence to simplify the notation.

Our exposition benefits from connecting the regret to the number of instances in which suboptimal

solutions are implemented. To make this connection explicit, consider an alternative representation

of the regret. For S 2 S, let �F
S denote the expected optimality gap associated with implementing

S, when costs are distributed according to F . That is,

�F
S :=

X

a2S
EF {ba,n}� z⇤ (EF {Bn}) .

(Note that the expected optimality gap associated with S⇤ 2 S⇤ (EF {Bn}) is zero.) For S 2 S, let

Tn(S) := |{m < n : Sm = S}|

denote the number of times that the agent has implemented solution Sm = S prior to instance n.

Similarly, for a 2 A, let

Tn(a) := |{m < n : a 2 Sm}|

denote the number of times that the agent has selected element a prior to instance n (henceforth,

8

expected	
 cumula1ve	
 cost	
 of	
 policy	
 	

cost	
 of	
 clairvoyant	
 agent	

independent	
 of	
 policy	
 policy	
 dependent	

7	

Tradi1onal	
 Bandit	
 Approach	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

•  Feasible	
 solu1ons	
 are	
 singletons:	
 	

•  Consistent	
 policies	
 explore	
 all	
 solu1on	
 with	
 frequency	
 lnN/N	

•  Op1mal	
 regret	
 can	
 be	
 achieved	
 asympto1cally	

–  Op1mal	
 Regret	
 is	
 propor1onal	
 to	
 	

•  Naïve	
 adapta1on:	
 explore	
 every	
 path	
 with	
 frequency	
 lnN/N ?	

–  Regret	
 propor1onal	
 to	
 	
 	
 	
 	
 !	

MultiͲarmed�Bandit�Problem

Tuesday,�November�13,�2012 Learning�in�Combinatorial�Optimization:�What�and�How�to�Explore

• MAB�(Thompson�33,�Robbins�52)

• Restrict�attention�to�consistent policies:�for�allܨ�

• Known�results:

Lai�and�Robbins�85 e.g.�Auer�et�al�02

7

we say ground element a 2 A is selected or tried at instance n if a 2 Sn). Note that Tn(a) and

Tn(S) are Fn-adapted for all a 2 A, S 2 S, and n 2 N. Using this notation we have that

R⇡(F,N) =
X

S2S
�F

S EF {TN+1(S)} . (2)

Known results for the non-combinatorial case. Traditional multi-armed bandits correspond

to settings where S is formed by singleton subsets of A (i.e., S = {{a} : a 2 A}), thus the com-

binatorial structure is absent. In their seminal work, Lai and Robbins (1985) (henceforth, LR)

establish an asymptotic lower bound on the regret attainable by any “admissible” policy in the tra-

ditional setting, and provide policies achieving asymptotic e�ciency. To avoid considering policies

that perform well in a particular setting at the expense of performing poorly in others, LR restrict

attention to policies that perform consistently well for any reward distribution F within a certain

class. Formally, a policy ⇡ is said to be consistent if

R⇡(F,N) = o(N↵) 8↵ > 0, (3)

for every F on a class of regular distributions1. LR show that consistent policies must explore (pull)

each element (arm) in A at least order lnN times, hence, by (2), their regret must also be of at

least order lnN .

Theorem 3.2 (Lai and Robbins (1985)). Let S = {{a} : a 2 A}, then for any consistent policy

⇡ and for any a 2 A we have

lim inf
N!1

PF

⇢

TN+1(a)

lnN
� Ka

�

= 1, (4)

where Ka is a positive finite constant depending on F . In addition, we have

lim inf
N!1

R⇡(F,N)

lnN
�

X

a2A
�F

{a}Ka, (5)

for any consistent policy ⇡ and regular distribution F .

In the above, Ka is the inverse of Kullback-Leibler distance (see e.g., Cover and Thomas (2006))

between the original distribution F and a distribution than makes a optimal.

Di↵erent policies have been shown to attain the logarithmic behavior in (5), and in general, there

is a trade-o↵ between computational complexity and larger leading constants. For instance, the

index-based UCB1 algorithm introduced by Auer et al. (2002) is simple to compute and provides

a finite-time theoretical performance guarantee. For a 2 A, define K̃a := 8/(�F
{a})

2.

1These are distributions satisfying certain continuity and indistinguishability conditions: see proof of Proposition
5.2.

9

Lai	
 and	
 Robbins	
 85	

8	

Performance	
 of	
 Naïve	
 Adapta1on	
 	

•  Instance	
 for	
 k=3	
 with	

–  	
 	

–  |A	
 | =	
 (k+2)(k+3)/2	
 	

•  Op1mal	
 cost	
 =	
 0.03	
 k	

•  Non-­‐nega1ve	
 costs	
 =	
 explore	
 all	
 paths	

–  Regret	
 =	
 #	
 of	
 paths	
 ×	
 lnN :	

–  Exponen1al	
 on	
 k	
 and	
 |A	
 | !	

•  Solu1on:	
 explore	
 all	
 arcs	
 with	
 a	
 path	

cover	
 of	
 size	
 k+1	
 	
 	
 	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

s p1,1 p1,3

t

p2,2

p3,3

p2,3

p1,2

q1,1 q1,2 q1,3

q2,2 q2,3

q3,3e3

e2

e1

Figure 1: Graph for Example 4.1.

For this example, the regret of UCB1 is proportional to
4k+1

(k+1)3/2
p
⇡
lnN , which can be quite large even for moderate

values of k. Broadly speaking, this algorithm picks the solution

with the best cost estimate bS,n while making sure that cost

estimates are updated with LR’s prescribed frequency lnN/N .

Because UCB1 is not aware of the combinatorial structure of

the problem, it estimates the cost of solution S 2 S via imple-

menting such a solution. However, in practice, the cost estimate

of S 2 S can be derived from those of a 2 S (see Section 8 for

tweaked versions of UCB1 incorporating this fact). Next, we

present a di↵erent approach aiming to ensure the exploration

frequency prescribed in LR on a rather more direct fashion.

A simple policy. Let Bn :=
�

ba,n, a 2 A
�

be the average observed cost of ground elements before

implementing a solution to instance n, where

ba,n :=
1

Tn(a)

X

m<n : a2Sm

ba,m. (7)

Let E be a cover of A, i.e., E ✓ S such that each a 2 A belongs to at least one S 2 E . Note

that implementing all S 2 E provides feedback on the cost of every a 2 A. Since N might not be

known upfront, to induce the exploration frequency lnN/N , we propose a policy that divides the

time horizon into cycles with exponentially growing lengths. Each cycle consists of an exploration

phase followed by an exploitation phase. Within the exploration phase of each cycle, the simple

policy implements each solution S 2 E at most once. After the exploration phase of each cycle, and

if there is enough time to do so, the algorithm trusts the cost estimates and exploits any solution

with minimum estimate cost until the end of that cycle. To formally describe this policy, for i 2 N
and i � 2, define the starting point of cycle i as

ni := max
n

bei/Hc, ni�1 + 1
o

,

where n1 = 1 and the tuning parameter H is a positive finite constant that regulates the frequency

of exploration. Define � := {ni : i 2 N} to be the set of starting points of all cycles. The proposed

simple policy, which we denote as ⇡s(E), is summarized in Algorithm 1.

Remark 4.2. Note that reversing the order of the update of the exploitation set and the exploration

phase in Algorithm 1 does not a↵ect the performance bound in Theorem 4.3 (below). In practice,

however, this leads to marginal improvements in performance.

Note that even if we take E = S, the regret associated with ⇡s(S) should improve upon that of

12

0.03	

0.03	

0.03	

0.1	
 0.1	
 0.1	

s p1,1 p1,3

t

p2,2

p3,3

p2,3

p1,2

q1,1 q1,2 q1,3

q2,2 q2,3

q3,3e3

e2

e1

Figure 1: Graph for Example 4.1.

For this example, the regret of UCB1 is proportional to
4k+1

(k+1)3/2
p
⇡
lnN , which can be quite large even for moderate

values of k. Broadly speaking, this algorithm picks the solution

with the best cost estimate bS,n while making sure that cost

estimates are updated with LR’s prescribed frequency lnN/N .

Because UCB1 is not aware of the combinatorial structure of

the problem, it estimates the cost of solution S 2 S via imple-

menting such a solution. However, in practice, the cost estimate

of S 2 S can be derived from those of a 2 S (see Section 8 for

tweaked versions of UCB1 incorporating this fact). Next, we

present a di↵erent approach aiming to ensure the exploration

frequency prescribed in LR on a rather more direct fashion.

A simple policy. Let Bn :=
�

ba,n, a 2 A
�

be the average observed cost of ground elements before

implementing a solution to instance n, where

ba,n :=
1

Tn(a)

X

m<n : a2Sm

ba,m. (7)

Let E be a cover of A, i.e., E ✓ S such that each a 2 A belongs to at least one S 2 E . Note

that implementing all S 2 E provides feedback on the cost of every a 2 A. Since N might not be

known upfront, to induce the exploration frequency lnN/N , we propose a policy that divides the

time horizon into cycles with exponentially growing lengths. Each cycle consists of an exploration

phase followed by an exploitation phase. Within the exploration phase of each cycle, the simple

policy implements each solution S 2 E at most once. After the exploration phase of each cycle, and

if there is enough time to do so, the algorithm trusts the cost estimates and exploits any solution

with minimum estimate cost until the end of that cycle. To formally describe this policy, for i 2 N
and i � 2, define the starting point of cycle i as

ni := max
n

bei/Hc, ni�1 + 1
o

,

where n1 = 1 and the tuning parameter H is a positive finite constant that regulates the frequency

of exploration. Define � := {ni : i 2 N} to be the set of starting points of all cycles. The proposed

simple policy, which we denote as ⇡s(E), is summarized in Algorithm 1.

Remark 4.2. Note that reversing the order of the update of the exploitation set and the exploration

phase in Algorithm 1 does not a↵ect the performance bound in Theorem 4.3 (below). In practice,

however, this leads to marginal improvements in performance.

Note that even if we take E = S, the regret associated with ⇡s(S) should improve upon that of

12

0.1	
 0.1	

0.1	

0.1	

9	

A	
 Simple	
 Policy	
 Based	
 on	
 Solu1on	
 Covers	

•  What	
 to	
 Exploit:	
 Op1mal	
 solu1on	
 to	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 with	
 	

•  How	
 to	
 Explore:	
 Solu1on	
 cover	
 	
 	
 	
 	
 of	
 A!

•  When	
 to	
 Explore:	
 with	
 frequency	
 lnN/N!
–  Cycles	
 with	
 exponen1ally	
 increasing	
 lengths	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

s p1,1 p1,3

t

p2,2

p3,3

p2,3

p1,2

q1,1 q1,2 q1,3

q2,2 q2,3

q3,3e3

e2

e1

Figure 1: Graph for Example 4.1.

For this example, the regret of UCB1 is proportional to
4k+1

(k+1)3/2
p
⇡
lnN , which can be quite large even for moderate

values of k. Broadly speaking, this algorithm picks the solution

with the best cost estimate bS,n while making sure that cost

estimates are updated with LR’s prescribed frequency lnN/N .

Because UCB1 is not aware of the combinatorial structure of

the problem, it estimates the cost of solution S 2 S via imple-

menting such a solution. However, in practice, the cost estimate

of S 2 S can be derived from those of a 2 S (see Section 8 for

tweaked versions of UCB1 incorporating this fact). Next, we

present a di↵erent approach aiming to ensure the exploration

frequency prescribed in LR on a rather more direct fashion.

A simple policy. Let Bn :=
�

ba,n, a 2 A
�

be the average observed cost of ground elements before

implementing a solution to instance n, where

ba,n :=
1

Tn(a)

X

m<n : a2Sm

ba,m. (7)

Let E be a cover of A, i.e., E ✓ S such that each a 2 A belongs to at least one S 2 E . Note

that implementing all S 2 E provides feedback on the cost of every a 2 A. Since N might not be

known upfront, to induce the exploration frequency lnN/N , we propose a policy that divides the

time horizon into cycles with exponentially growing lengths. Each cycle consists of an exploration

phase followed by an exploitation phase. Within the exploration phase of each cycle, the simple

policy implements each solution S 2 E at most once. After the exploration phase of each cycle, and

if there is enough time to do so, the algorithm trusts the cost estimates and exploits any solution

with minimum estimate cost until the end of that cycle. To formally describe this policy, for i 2 N
and i � 2, define the starting point of cycle i as

ni := max
n

bei/Hc, ni�1 + 1
o

,

where n1 = 1 and the tuning parameter H is a positive finite constant that regulates the frequency

of exploration. Define � := {ni : i 2 N} to be the set of starting points of all cycles. The proposed

simple policy, which we denote as ⇡s(E), is summarized in Algorithm 1.

Remark 4.2. Note that reversing the order of the update of the exploitation set and the exploration

phase in Algorithm 1 does not a↵ect the performance bound in Theorem 4.3 (below). In practice,

however, this leads to marginal improvements in performance.

Note that even if we take E = S, the regret associated with ⇡s(S) should improve upon that of

12

s p1,1 p1,3

t

p2,2

p3,3

p2,3

p1,2

q1,1 q1,2 q1,3

q2,2 q2,3

q3,3e3

e2

e1

Figure 1: Graph for Example 4.1.

For this example, the regret of UCB1 is proportional to
4k+1

(k+1)3/2
p
⇡
lnN , which can be quite large even for moderate

values of k. Broadly speaking, this algorithm picks the solution

with the best cost estimate bS,n while making sure that cost

estimates are updated with LR’s prescribed frequency lnN/N .

Because UCB1 is not aware of the combinatorial structure of

the problem, it estimates the cost of solution S 2 S via imple-

menting such a solution. However, in practice, the cost estimate

of S 2 S can be derived from those of a 2 S (see Section 8 for

tweaked versions of UCB1 incorporating this fact). Next, we

present a di↵erent approach aiming to ensure the exploration

frequency prescribed in LR on a rather more direct fashion.

A simple policy. Let Bn :=
�

ba,n, a 2 A
�

be the average observed cost of ground elements before

implementing a solution to instance n, where

ba,n :=
1

Tn(a)

X

m<n : a2Sm

ba,m. (7)

Let E be a cover of A, i.e., E ✓ S such that each a 2 A belongs to at least one S 2 E . Note

that implementing all S 2 E provides feedback on the cost of every a 2 A. Since N might not be

known upfront, to induce the exploration frequency lnN/N , we propose a policy that divides the

time horizon into cycles with exponentially growing lengths. Each cycle consists of an exploration

phase followed by an exploitation phase. Within the exploration phase of each cycle, the simple

policy implements each solution S 2 E at most once. After the exploration phase of each cycle, and

if there is enough time to do so, the algorithm trusts the cost estimates and exploits any solution

with minimum estimate cost until the end of that cycle. To formally describe this policy, for i 2 N
and i � 2, define the starting point of cycle i as

ni := max
n

bei/Hc, ni�1 + 1
o

,

where n1 = 1 and the tuning parameter H is a positive finite constant that regulates the frequency

of exploration. Define � := {ni : i 2 N} to be the set of starting points of all cycles. The proposed

simple policy, which we denote as ⇡s(E), is summarized in Algorithm 1.

Remark 4.2. Note that reversing the order of the update of the exploitation set and the exploration

phase in Algorithm 1 does not a↵ect the performance bound in Theorem 4.3 (below). In practice,

however, this leads to marginal improvements in performance.

Note that even if we take E = S, the regret associated with ⇡s(S) should improve upon that of

12

10	

•  Tradi1onal	
 bandit	
 algorithm	
 of	
 Auer	
 et	
 al	
 02	
 =	
 UCB1:	

	

–  Solves	
 op1miza1on	
 problem	
 every	
 	
 period.	

•  Explora1on/Exploita1on	
 cycles	
 with	
 exponen1al	
 lengths	

–  At	
 cycle	
 i	
 make	
 sure	
 all	
 arcs	
 have	
 been	
 explored	
 i	
 1mes,	
 then	
 exploit.	
 	

–  Re-­‐compute	
 op1mal	
 solu1on	
 to	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 only	
 once	
 per	
 cycle.	

s p1,1 p1,3

t

p2,2

p3,3

p2,3

p1,2

q1,1 q1,2 q1,3

q2,2 q2,3

q3,3e3

e2

e1

Figure 1: Graph for Example 4.1.

For this example, the regret of UCB1 is proportional to
4k+1

(k+1)3/2
p
⇡
lnN , which can be quite large even for moderate

values of k. Broadly speaking, this algorithm picks the solution

with the best cost estimate bS,n while making sure that cost

estimates are updated with LR’s prescribed frequency lnN/N .

Because UCB1 is not aware of the combinatorial structure of

the problem, it estimates the cost of solution S 2 S via imple-

menting such a solution. However, in practice, the cost estimate

of S 2 S can be derived from those of a 2 S (see Section 8 for

tweaked versions of UCB1 incorporating this fact). Next, we

present a di↵erent approach aiming to ensure the exploration

frequency prescribed in LR on a rather more direct fashion.

A simple policy. Let Bn :=
�

ba,n, a 2 A
�

be the average observed cost of ground elements before

implementing a solution to instance n, where

ba,n :=
1

Tn(a)

X

m<n : a2Sm

ba,m. (7)

Let E be a cover of A, i.e., E ✓ S such that each a 2 A belongs to at least one S 2 E . Note

that implementing all S 2 E provides feedback on the cost of every a 2 A. Since N might not be

known upfront, to induce the exploration frequency lnN/N , we propose a policy that divides the

time horizon into cycles with exponentially growing lengths. Each cycle consists of an exploration

phase followed by an exploitation phase. Within the exploration phase of each cycle, the simple

policy implements each solution S 2 E at most once. After the exploration phase of each cycle, and

if there is enough time to do so, the algorithm trusts the cost estimates and exploits any solution

with minimum estimate cost until the end of that cycle. To formally describe this policy, for i 2 N
and i � 2, define the starting point of cycle i as

ni := max
n

bei/Hc, ni�1 + 1
o

,

where n1 = 1 and the tuning parameter H is a positive finite constant that regulates the frequency

of exploration. Define � := {ni : i 2 N} to be the set of starting points of all cycles. The proposed

simple policy, which we denote as ⇡s(E), is summarized in Algorithm 1.

Remark 4.2. Note that reversing the order of the update of the exploitation set and the exploration

phase in Algorithm 1 does not a↵ect the performance bound in Theorem 4.3 (below). In practice,

however, this leads to marginal improvements in performance.

Note that even if we take E = S, the regret associated with ⇡s(S) should improve upon that of

12

Cycle	
 starts	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 with	
 	
 	

s p1,1 p1,3

t

p2,2

p3,3

p2,3

p1,2

q1,1 q1,2 q1,3

q2,2 q2,3

q3,3e3

e2

e1

Figure 1: Graph for Example 4.1.

For this example, the regret of UCB1 is proportional to
4k+1

(k+1)3/2
p
⇡
lnN , which can be quite large even for moderate

values of k. Broadly speaking, this algorithm picks the solution

with the best cost estimate bS,n while making sure that cost

estimates are updated with LR’s prescribed frequency lnN/N .

Because UCB1 is not aware of the combinatorial structure of

the problem, it estimates the cost of solution S 2 S via imple-

menting such a solution. However, in practice, the cost estimate

of S 2 S can be derived from those of a 2 S (see Section 8 for

tweaked versions of UCB1 incorporating this fact). Next, we

present a di↵erent approach aiming to ensure the exploration

frequency prescribed in LR on a rather more direct fashion.

A simple policy. Let Bn :=
�

ba,n, a 2 A
�

be the average observed cost of ground elements before

implementing a solution to instance n, where

ba,n :=
1

Tn(a)

X

m<n : a2Sm

ba,m. (7)

Let E be a cover of A, i.e., E ✓ S such that each a 2 A belongs to at least one S 2 E . Note

that implementing all S 2 E provides feedback on the cost of every a 2 A. Since N might not be

known upfront, to induce the exploration frequency lnN/N , we propose a policy that divides the

time horizon into cycles with exponentially growing lengths. Each cycle consists of an exploration

phase followed by an exploitation phase. Within the exploration phase of each cycle, the simple

policy implements each solution S 2 E at most once. After the exploration phase of each cycle, and

if there is enough time to do so, the algorithm trusts the cost estimates and exploits any solution

with minimum estimate cost until the end of that cycle. To formally describe this policy, for i 2 N
and i � 2, define the starting point of cycle i as

ni := max
n

bei/Hc, ni�1 + 1
o

,

where n1 = 1 and the tuning parameter H is a positive finite constant that regulates the frequency

of exploration. Define � := {ni : i 2 N} to be the set of starting points of all cycles. The proposed

simple policy, which we denote as ⇡s(E), is summarized in Algorithm 1.

Remark 4.2. Note that reversing the order of the update of the exploitation set and the exploration

phase in Algorithm 1 does not a↵ect the performance bound in Theorem 4.3 (below). In practice,

however, this leads to marginal improvements in performance.

Note that even if we take E = S, the regret associated with ⇡s(S) should improve upon that of

12

Cycles:	
 Explora1on	
 Frequency	
 and	
 Performance	
 	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

information about a 2 A can be collected by implementing di↵erent solutions, and thus by incurring

potentially di↵erent costs. Even if, as in the traditional setting, one is to collect information on all

elements in A, there are many possibilities for doing so (e.g., one might implement all solutions in

S). Thus, e�cient exploration in our setting also involves answering the question of how to collect

the required information. Second, in the combinatorial setting, ground elements are not upfront

identical due to bounds on the range of F . Moreover, even in the case where elements are a-priori

identical (e.g., la = c for all a 2 A, for some c 2 R), feasible solutions combine elements so that

solutions might not be identical upfront. In Section 5 we show that, thanks to this property, not

all solutions need to be implemented periodically. More importantly, we show that not all elements

of A need to be probed periodically. Thus, the question of what to explore proves to be key in

limiting the exploration e↵orts, and therefore the regret.

4 How to Explore: E�cient Covers

Consider applying algorithm UCB1 in Auer et al. (2002) to the combinatorial setting via envisioning

all S 2 S as separate arms. After an initialization phase on which each element of S is implemented

once to obtain an initial estimate of its cost, UCB1 implements solution

Sn 2 argmin
S2S

n

bS,n �
p

2 ln(n� 1)/Tn(S)
o

on instance n, where bS,n denotes the average observed cost of solution S prior to instance n. That

is,

bS,n :=
1

Tn(S)

X

m<n :Sm=S

X

a2S
ba,m.

As mentioned earlier, in many situations of interest, the regret of this algorithm scales exponentially

with |A|, as illustrated by the following example.

Example 4.1. Consider the digraph G = (V,A) for V = {vi,j : i, j 2 {1, . . . , k + 1}, i  j} and

A = {ei}ki=1 [{pi,j : i  j  k} [{qi,j : i  j  k} where ei = (vi,i, vi+1,i+1), pi,j = (vi,j , vi,j+1),

and qi,j = (vi,j , vi+1,j). This digraph is depicted in Figure 1 for k = 3. Let S be composed of all

paths from node s := v1,1 to node t := vk+1,k+1.

Set la = 0 and ua = 1 for every arc a 2 A, and let F be such that EF {bei,n} = 0.03, and

EF
�

bpi,j ,n

= EF
�

bqi,j ,n

= 0.1, for all i 2 {1, . . . , k} and i  j  k, n 2 N. The shortest

(expected) path is S⇤(EF {Bn}) = (e1, e2, . . . , ek) with expected length (cost) z⇤(EF {Bn}) = 0.03 k,

and |S| corresponds to the number of s � t paths, which is equal to 1
k+2

�2(k+1)
(k+1)

�

⇠ 4k+1

(k+1)3/2
p
⇡

(Stanley 1999).

11

information about a 2 A can be collected by implementing di↵erent solutions, and thus by incurring

potentially di↵erent costs. Even if, as in the traditional setting, one is to collect information on all

elements in A, there are many possibilities for doing so (e.g., one might implement all solutions in

S). Thus, e�cient exploration in our setting also involves answering the question of how to collect

the required information. Second, in the combinatorial setting, ground elements are not upfront

identical due to bounds on the range of F . Moreover, even in the case where elements are a-priori

identical (e.g., la = c for all a 2 A, for some c 2 R), feasible solutions combine elements so that

solutions might not be identical upfront. In Section 5 we show that, thanks to this property, not

all solutions need to be implemented periodically. More importantly, we show that not all elements

of A need to be probed periodically. Thus, the question of what to explore proves to be key in

limiting the exploration e↵orts, and therefore the regret.

4 How to Explore: E�cient Covers

Consider applying algorithm UCB1 in Auer et al. (2002) to the combinatorial setting via envisioning

all S 2 S as separate arms. After an initialization phase on which each element of S is implemented

once to obtain an initial estimate of its cost, UCB1 implements solution

Sn 2 argmin
S2S

n

bS,n �
p

2 ln(n� 1)/Tn(S)
o

on instance n, where bS,n denotes the average observed cost of solution S prior to instance n. That

is,

bS,n :=
1

Tn(S)

X

m<n :Sm=S

X

a2S
ba,m.

As mentioned earlier, in many situations of interest, the regret of this algorithm scales exponentially

with |A|, as illustrated by the following example.

Example 4.1. Consider the digraph G = (V,A) for V = {vi,j : i, j 2 {1, . . . , k + 1}, i  j} and

A = {ei}ki=1 [{pi,j : i  j  k} [{qi,j : i  j  k} where ei = (vi,i, vi+1,i+1), pi,j = (vi,j , vi,j+1),

and qi,j = (vi,j , vi+1,j). This digraph is depicted in Figure 1 for k = 3. Let S be composed of all

paths from node s := v1,1 to node t := vk+1,k+1.

Set la = 0 and ua = 1 for every arc a 2 A, and let F be such that EF {bei,n} = 0.03, and

EF
�

bpi,j ,n

= EF
�

bqi,j ,n

= 0.1, for all i 2 {1, . . . , k} and i  j  k, n 2 N. The shortest

(expected) path is S⇤(EF {Bn}) = (e1, e2, . . . , ek) with expected length (cost) z⇤(EF {Bn}) = 0.03 k,

and |S| corresponds to the number of s � t paths, which is equal to 1
k+2

�2(k+1)
(k+1)

�

⇠ 4k+1

(k+1)3/2
p
⇡

(Stanley 1999).

11

current	
 cost	
 es1mate	
 non-­‐explora1on	
 penalty	

Cycle	
 1	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 12	
 13	
 14	
 n	
 15	

Cycle	
 2	
 Cycle	
 3	

tuning	
 parameter	

11	

A	
 Simple	
 Policy	
 with	
 regret	
 ≤	
 |A|lnN 	
 	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

Algorithm 1 Simple policy ⇡s(E)

Set i = 0, and E a minimal cover of A
for n = 1 to N do

if n 2 � then
Set i = i+ 1
Set S⇤ 2 S⇤ �Bn

�

[Update exploitation set]
end if
if Tn(a) < i for some a 2 S, for some solution S 2 E then
Implement such a solution, i.e., set Sn = S [Exploration]

else
Implement Sn = S⇤ [Exploitation]

end if
end for

traditional bandit algorithms: because cost estimation is conducted on elements of A, the simple

policy implements at most |A| solutions during the exploration phase of each cycle. Our first result

provides a performance guarantee for ⇡s(E) for any cover E .

Theorem 4.3. There exists a positive finite constant Hs such that for any H � Hs, N > 0, and

cover E, the regret of ⇡s(E) admits the following bound

R⇡s(E)(F,N)

lnN
 min {|E| , |A|}�F

maxH + o(1),

where �F
max := max

�

�F
S : S 2 S

.

Theorem 4.3 implies that policy ⇡s(E) e↵ectively conducts exploration on a cover contained in

E that is minimal with respect to inclusion. In this regard, one should not consider any cover E
with more than |A| elements (e.g., one can select E = {Sa}a2A where Sa 2 S is any solution such

that a 2 Sa)2. Thus, selecting small covers should result on a regret of Algorithm 1 proportional

to at most |A| lnN in the worst case, and potentially much smaller in practice. For instance, in

Example 4.1, |A| = (k+2)(k+3)/2, but we can easily construct a cover E of size k+1. Then, the

regret of Algorithm 1 is at most order k lnN , while the best estimate of the regret growth of, e.g.,

UCB1, is 4k+1

(k+1)3/2
p
⇡
lnN .

Regarding the issue of when and what to explore, policy ⇡s (as well as most multi-armed bandit

algorithms) applies LR’s frequency lnN/N , and explores every ground element in A. However, while

classical bandit algorithms answer the question of how to explore by implementing all solutions in

S, Algorithm 1 implements a cover that is minimal with respect to inclusion. Ultimately, answers to

the questions above are inconclusive unless contrasted to a fundamental lower bound on performance

for the combinatorial bandit setting. We develop such a bound next.

2In fact, one could refine this policy to adaptively select E as the “cheapest” cover of A: see the discussion in
Section 9.

13

op1mal	
 set	

update	
 	

op1mum	
 	

explore	

exploit	

12	

Are	
 Solu1on	
 Covers	
 Enough?	

•  Non-­‐nega1ve	
 costs	

•  Solu1ons	
 =	
 k+2	
 =	
 cover	
 size	
 	

•  Regret	
 of	
 simple	
 policy	
 with	
 	

	
 	
 	
 	
 	
 cover	
 is	

•  Regret	
 of	
 simple	
 policy	
 with	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 is	

•  Explore	
 only	
 what	
 is	
 necessary	

to	
 confirm	
 op1mality.	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

5 What to Explore: A Limit on Achievable Performance

In this section we show that a consistent policy might not need to collect information on all elements

of A. To illustrate this fact consider the following example.

Example 5.1. Let G = (V,A) be the digraph depicted in Figure 2 and let S be composed of all

paths from node s to node t. Set la = 0 and ua = 1 for every arc a 2 A, and F to be such that

EF {be,n} = c, EF {bg,n} = 0, EF {bf,n} = EF {bh,n} = c+"
2 , and EF {bpi,n} = EF {bqi,n} = M for

n 2 N and for all i 2 {1, . . . , k} where 0 < " ⌧ c ⌧ M . The shortest (expected) path in this digraph

is (e).

s t

...

e

f

g

h

p1 q1

pk qk

p2 q2

Figure 2: Graph for Example 5.1.

In Example 5.1, |S| = (k+2) and the smallest possible cover

of A is E = S. Then both Algorithm 1 and UCB1 have regrets

proportional to k lnN and hence Algorithm 1 does not seem

to improve upon traditional algorithms. However, a careful

analysis of this instance reveals that we do not need to collect

information on all elements of A to identify the optimal solution

(e), thus E in Algorithm 1 might not need to be a cover after

all. Indeed, all paths except optimal path (e) share arcs {f, h},
whose expected costs su�ce to guarantee the optimality of the

shortest path. Then a possible answer to the issue of what to

explore is just arcs f , h, and optimal arc/path e. This obser-

vation suggests that setting E to be path (e) plus any other

path that contains both f and h will result on Algorithm 1

having a regret proportional to at most M lnN for every k 2 N
(note that path (e) does not add to the regret). Moreover, the

“cheapest” way to explore f and h is by implementing path

(f, g, h). Thus, setting E = {(f, g, h) , (e)} in Algorithm 1 in-

duces a regret proportional to at most " lnN while UCB1 and Algorithm 1 with a cover have regrets

proportional to (kM + ") lnN .

The analysis above shows that we may not need to explore every element of A. To understand ex-

actly what needs to be explored, we extend the fundamental performance limit of LR for traditional

multi-armed bandits to the combinatorial setting.

Following the argument in the traditional bandit setting, consistent policies must explore those

subsets of ground elements that have a chance to be part of an optimal solution. We can formally

define such subsets as follows, where for simplicity of exposition, we assume S⇤ (EF {Bn}) is a

singleton containing S⇤ (EF {Bn}). Let D contain all subsets D of suboptimal ground elements

14

M	
 M	

M	
 M	

M	
 M	

0	

c	

c+ε	

2	

c+ε	

2	

5 What to Explore: A Limit on Achievable Performance

In this section we show that a consistent policy might not need to collect information on all elements

of A. To illustrate this fact consider the following example.

Example 5.1. Let G = (V,A) be the digraph depicted in Figure 2 and let S be composed of all

paths from node s to node t. Set la = 0 and ua = 1 for every arc a 2 A, and F to be such that

EF {be,n} = c, EF {bg,n} = 0, EF {bf,n} = EF {bh,n} = c+"
2 , and EF {bpi,n} = EF {bqi,n} = M for

n 2 N and for all i 2 {1, . . . , k} where 0 < " ⌧ c ⌧ M . The shortest (expected) path in this digraph

is (e).

s t

...

e

f

g

h

p1 q1

pk qk

p2 q2

Figure 2: Graph for Example 5.1.

In Example 5.1, |S| = (k+2) and the smallest possible cover

of A is E = S. Then both Algorithm 1 and UCB1 have regrets

proportional to k lnN and hence Algorithm 1 does not seem

to improve upon traditional algorithms. However, a careful

analysis of this instance reveals that we do not need to collect

information on all elements of A to identify the optimal solution

(e), thus E in Algorithm 1 might not need to be a cover after

all. Indeed, all paths except optimal path (e) share arcs {f, h},
whose expected costs su�ce to guarantee the optimality of the

shortest path. Then a possible answer to the issue of what to

explore is just arcs f , h, and optimal arc/path e. This obser-

vation suggests that setting E to be path (e) plus any other

path that contains both f and h will result on Algorithm 1

having a regret proportional to at most M lnN for every k 2 N
(note that path (e) does not add to the regret). Moreover, the

“cheapest” way to explore f and h is by implementing path

(f, g, h). Thus, setting E = {(f, g, h) , (e)} in Algorithm 1 in-

duces a regret proportional to at most " lnN while UCB1 and Algorithm 1 with a cover have regrets

proportional to (kM + ") lnN .

The analysis above shows that we may not need to explore every element of A. To understand ex-

actly what needs to be explored, we extend the fundamental performance limit of LR for traditional

multi-armed bandits to the combinatorial setting.

Following the argument in the traditional bandit setting, consistent policies must explore those

subsets of ground elements that have a chance to be part of an optimal solution. We can formally

define such subsets as follows, where for simplicity of exposition, we assume S⇤ (EF {Bn}) is a

singleton containing S⇤ (EF {Bn}). Let D contain all subsets D of suboptimal ground elements

14

5 What to Explore: A Limit on Achievable Performance

In this section we show that a consistent policy might not need to collect information on all elements

of A. To illustrate this fact consider the following example.

Example 5.1. Let G = (V,A) be the digraph depicted in Figure 2 and let S be composed of all

paths from node s to node t. Set la = 0 and ua = 1 for every arc a 2 A, and F to be such that

EF {be,n} = c, EF {bg,n} = 0, EF {bf,n} = EF {bh,n} = c+"
2 , and EF {bpi,n} = EF {bqi,n} = M for

n 2 N and for all i 2 {1, . . . , k} where 0 < " ⌧ c ⌧ M . The shortest (expected) path in this digraph

is (e).

s t

...

e

f

g

h

p1 q1

pk qk

p2 q2

Figure 2: Graph for Example 5.1.

In Example 5.1, |S| = (k+2) and the smallest possible cover

of A is E = S. Then both Algorithm 1 and UCB1 have regrets

proportional to k lnN and hence Algorithm 1 does not seem

to improve upon traditional algorithms. However, a careful

analysis of this instance reveals that we do not need to collect

information on all elements of A to identify the optimal solution

(e), thus E in Algorithm 1 might not need to be a cover after

all. Indeed, all paths except optimal path (e) share arcs {f, h},
whose expected costs su�ce to guarantee the optimality of the

shortest path. Then a possible answer to the issue of what to

explore is just arcs f , h, and optimal arc/path e. This obser-

vation suggests that setting E to be path (e) plus any other

path that contains both f and h will result on Algorithm 1

having a regret proportional to at most M lnN for every k 2 N
(note that path (e) does not add to the regret). Moreover, the

“cheapest” way to explore f and h is by implementing path

(f, g, h). Thus, setting E = {(f, g, h) , (e)} in Algorithm 1 in-

duces a regret proportional to at most " lnN while UCB1 and Algorithm 1 with a cover have regrets

proportional to (kM + ") lnN .

The analysis above shows that we may not need to explore every element of A. To understand ex-

actly what needs to be explored, we extend the fundamental performance limit of LR for traditional

multi-armed bandits to the combinatorial setting.

Following the argument in the traditional bandit setting, consistent policies must explore those

subsets of ground elements that have a chance to be part of an optimal solution. We can formally

define such subsets as follows, where for simplicity of exposition, we assume S⇤ (EF {Bn}) is a

singleton containing S⇤ (EF {Bn}). Let D contain all subsets D of suboptimal ground elements

14

13	

Efficient	
 Explora1on	
 =	
 Op1mality	
 Cover	
 Problem	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

Consider a special case of formulation (11) where KD = H for all D 2 D: one can show that

(F) is homogeneous in H. Thus, without loss of generality, one can take H = 1 and interpret LBP

as the problem of finding a set of solutions with minimum regret that covers at least one critical

subset C 2 C. For a given cost-coe�cient vector B, such a formulation, which we denote as the

Optimality Cover Problem (henceforth, OCP), solves for a minimum additional cost solution set

whose feedback su�ces to guarantee the optimality of S⇤(B).

OCP (B) : min
X

S2S
�F

S (B) yS (12a)

s.t. xa 
X

S2S:a2S
yS , a 2 A (12b)

X

a2S
(la(1� xa) + baxa) � z⇤(B), S 2 S (12c)

xa, yS 2 {0, 1} , a 2 A,S 2 S, (12d)

where with a slight abuse of notation, we make the dependence of �F
S on B explicit. By construc-

tion, a feasible solution (x, y) to this problem corresponds to incidence vectors of a set C ✓ A and

a cover E of such a set4. In what follows we refer to a solution (x, y) to OCP and the induced pair

of sets (C, E) interchangeably.

Constraints (12c) guarantee the optimality of S⇤(B) even if costs of elements outside C are set

to their lowest possible values (i.e., ba = la for all a /2 C), and constraints (12b) guarantee that E
covers C (i.e., a 2 S for some S 2 E , for all a 2 C). One can show that the former constraints

imply that C is in fact a critical subset, i.e., C 2 C. On the other hand, while the converse does not

hold in general (i.e., not all incidence vectors of critical subsets satisfy (12c)), all critical subsets

covering optimal elements of A do satisfy (12c). In addition, note that when solving (11), one

can impose yS = 1 for all S 2 S⇤(EF {Bn}) without a↵ecting the objective function, thus one can

restrict attention to critical subsets that cover optimal elements of A.

The above suggests a close connection between solutions to OCP and a restricted class of solutions

to LBP. In particular, it suggests that optimal solutions to OCP are also optimal to LBP. The next

Lemma formalizes this result.

Lemma 6.1. Let KD = 1 for all D 2 D in formulation LBP. An optimal solution (x, y) to

OCP (EF {Bn}) is also optimal to LBP.

The connection between these formulations goes beyond that indicated in Lemma 6.1. When

KD = 1 for all D 2 D, one can always select integral optimal solutions to (11), so that they

can be mapped into feasible solutions to OCP (via proper augmentation), and that the opposite

holds true as well. Thus, one can argue that these formulations are essentially equivalent. The key

4That is, (x, y) :=
�

xC , yE� where xC
a = 1 if a 2 C and zero otherwise and yE

S = 1 if S 2 E and zero otherwise.

18

•  What	
 to	
 explore:	
 arcs	
 needed	
 to	
 guarantee	
 op1mality.	

•  How	
 to	
 explore:	
 use	
 a	
 min-­‐regret	
 cover	
 of	
 these	
 arcs.	

	

14	

Algorithm 2 Adaptive policy ⇡a

Set i = 0, C = A, and E a minimal cover of A
for n = 1 to N do
if n 2 � then
Set i = i+ 1
Set S⇤ 2 S⇤ �Bn

�

[Update exploitation set]
if (C, E) /2 �(Bn) then
Set (C, E) 2 �⇤(Bn) [Update exploration set]

end if
end if
if Tn(a) < i for some a 2 C then
Try such an element, i.e., set Sn = S with S 2 E such that a 2 S [Exploration]

else
Implement Sn = S⇤ [Exploitation]

end if
end for

but G = 2).

Comparing the bound above with the lower bound in Theorem 5.4, one notes a gap in perfor-

mance. Such a mismatch emanates from various sources: some pertain our lower bound, and arise

from using formulation (11) to construct a valid lower bound; others pertain the upper bound, and

arise from: (i) adopting OCP as a valid proxy for formulation (11); and (ii) the inability of the

proposed policy to consistently reconstruct the optimal solution to OCP. In Section 9.2 we provide

a further analysis of the gap between the bounds in Theorems 5.4 and 6.2, and discuss means to

tighten the alluded mismatch.

7 Computational Issues

Policy ⇡s(·) as well as ⇡a need to solve the underlying combinatorial optimization problem f (B)

repeatedly, for many inputs B. Thus, tractability of said problems is essential for practical imple-

mentation. For this reason, we now consider some aspects concerning the potential implementability

of the proposed policies. In particular, we provide strong evidence suggesting that, at least for a

large class of combinatorial problems, the proposed policies scale reasonably well and should be

implementable for real-size instances.

The optimization problem f (B) has a generic combinatorial structure, and thus it could be

extremely hard to solve. For this reason, we concentrate on two broad classes of combinatorial

optimization problems that have reasonably e↵ective solution algorithms. The first class corre-

sponds to theoretically tractable problems that have polynomial time algorithms. Among this

class, we are especially interested in those that have Linear Programming (LP) formulations such

as shortest path, network flow, matching, and spanning tree problems (Schrijver 2003). The second

20

An	
 Adap1ve	
 Policy	
 with	
 “Near-­‐Op1mal”	
 Regret	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

update	
 	

explora1on	
 &	

exploita1on	

set	

explore	

exploit	

op1mal	
 set	
 of	
 OCP	

15	

Implementa1on:	
 Solving	
 OCP	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

•  Theore1cal	
 Complexity	
 of	
 OCP	
 =	
 Bad	
 news?	

–  	
 OCP	
 is	
 not	
 guaranteed	
 to	
 be	
 in	
 NP!	

–  OCP	
 is	
 in	
 NP	
 when	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 is	
 in	
 P	

–  OCP	
 for	
 matroids	
 is	
 in	
 P,	
 but	
 for	
 shortest	
 path	
 is	
 NP-­‐hard	

Consider a special case of formulation (11) where KD = H for all D 2 D: one can show that

(F) is homogeneous in H. Thus, without loss of generality, one can take H = 1 and interpret LBP

as the problem of finding a set of solutions with minimum regret that covers at least one critical

subset C 2 C. For a given cost-coe�cient vector B, such a formulation, which we denote as the

Optimality Cover Problem (henceforth, OCP), solves for a minimum additional cost solution set

whose feedback su�ces to guarantee the optimality of S⇤(B).

OCP (B) : min
X

S2S
�F

S (B) yS (12a)

s.t. xa 
X

S2S:a2S
yS , a 2 A (12b)

X

a2S
(la(1� xa) + baxa) � z⇤(B), S 2 S (12c)

xa, yS 2 {0, 1} , a 2 A,S 2 S, (12d)

where with a slight abuse of notation, we make the dependence of �F
S on B explicit. By construc-

tion, a feasible solution (x, y) to this problem corresponds to incidence vectors of a set C ✓ A and

a cover E of such a set4. In what follows we refer to a solution (x, y) to OCP and the induced pair

of sets (C, E) interchangeably.

Constraints (12c) guarantee the optimality of S⇤(B) even if costs of elements outside C are set

to their lowest possible values (i.e., ba = la for all a /2 C), and constraints (12b) guarantee that E
covers C (i.e., a 2 S for some S 2 E , for all a 2 C). One can show that the former constraints

imply that C is in fact a critical subset, i.e., C 2 C. On the other hand, while the converse does not

hold in general (i.e., not all incidence vectors of critical subsets satisfy (12c)), all critical subsets

covering optimal elements of A do satisfy (12c). In addition, note that when solving (11), one

can impose yS = 1 for all S 2 S⇤(EF {Bn}) without a↵ecting the objective function, thus one can

restrict attention to critical subsets that cover optimal elements of A.

The above suggests a close connection between solutions to OCP and a restricted class of solutions

to LBP. In particular, it suggests that optimal solutions to OCP are also optimal to LBP. The next

Lemma formalizes this result.

Lemma 6.1. Let KD = 1 for all D 2 D in formulation LBP. An optimal solution (x, y) to

OCP (EF {Bn}) is also optimal to LBP.

The connection between these formulations goes beyond that indicated in Lemma 6.1. When

KD = 1 for all D 2 D, one can always select integral optimal solutions to (11), so that they

can be mapped into feasible solutions to OCP (via proper augmentation), and that the opposite

holds true as well. Thus, one can argue that these formulations are essentially equivalent. The key

4That is, (x, y) :=
�

xC , yE� where xC
a = 1 if a 2 C and zero otherwise and yE

S = 1 if S 2 E and zero otherwise.

18

online learning problems, from the raking and selection perspective. Ryzhov and Powell (2011)

study information collection in settings where the decision maker selects individual arcs from a

directed graph, and Ryzhov and Powell (2012) consider a more general setting where selection is

made from a polyhedron (in Section 7 we specialize some of our results to such a setting, from a

bandit perspective). See also Ryzhov et al. (2012), and the references within.

3 Problem Formulation

Model primitives and basic assumptions. We consider the problem of an agent who must select

and implement solutions to a series of instances of a given combinatorial optimization problem.

Without loss of generality, we assume that such a problem is that of cost minimization. Instances

are presented sequentially through time, and we use n to index them according to their arrival

times, so n = 1 corresponds to the first instance, and n = N to the last, where N denotes the

(possibly unknown) total number of instances. Each instance is uniquely characterized by a set of

cost-coe�cients, i.e., instance n 2 N is associated with cost-coe�cients Bn := (ba,n : a 2 A) 2 R|A|,

and the full instance is defined as f(Bn), where

f(B) : z⇤(B) := min

(

X

a2S
ba : S 2 S

)

B 2 R|A|, (1)

S is a family of subsets of elements of a given ground set A, and ba is the cost associated with a

ground element a 2 A. We let S⇤(B) be the set of optimal solutions to (1) and z⇤(B) be its optimal

objective value (cost).

We assume that each element ba,n 2 Bn is a random variable, independent and identically dis-

tributed across instances, and independent of other components in Bn. We let F (·) denote the

common distribution of Bn for n 2 N, which we assume is initially unknown. We assume, how-

ever, that upper and lower bounds on its range are known upfront. That is, it is known that

la  ba,n  ua a.s., for all a 2 A and n 2 N.

We assume that, in addition to not knowing F (·), the agent does not observe Bn prior to im-

plementing a solution. Instead, we assume that Bn is only revealed partially and after a solution

is implemented. More specifically, we assume that if solution Sn 2 S is implemented, only cost-

coe�cients associated with ground elements in Sn (i.e., {ba,n : a 2 Sn}) are observed by the agent

and after the associated cost is incurred. Finally, we assume that the agent is interested in mini-

mizing the expected cumulative cost associated with implementing a sequence of solutions.

Full information problem and regret. Consider the case of a clairvoyant agent with prior

knowledge about F (·). Such an agent, while still not capable of anticipating the value of Bn, can

solve for the solution that minimizes the expected cumulative cost: for instance n 2 N (by the

7

Exponen1al	
 #	
 of	
 variables	
 	

and	
 constraints	

16	

Good	
 News	
 on	
 Solving	
 OCP	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

•  If	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 has	
 a	
 IP	
 formula1on	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

then	
 OCP	
 can	
 be	
 “effec1vely”	
 solved	
 by	
 branch-­‐and-­‐cut.	

7.1 Integer Programming Formulations for OCP

Independent of the theoretical complexity of OCP, formulation (12) of OCP is not amenable to

practical solutions; it is an IP with an exponential number of variables and constraints that would

likely need to be solved through an intricate Branch-and-Cut-and-Price procedure. However, using

simple IP techniques, we can reformulate (12) to obtain a formulation with a polynomial number

of variables. While this formulation still has an exponential number of constraints, such problems

are regularly solved in practice using e↵ective Branch-and-Cut procedures (Applegate et al. 2011,

Carvajal et al. 2013). If f (B) has an LP formulation we can further reduce the size to a polynomial

number of variables and constraints. This version can then be solved directly by a general purpose

state of the art IP solver such as CPLEX (IBM ILOG n.d.). Finally, by exploiting the specific

structure of f(B), we can construct even more e↵ective formulations for OCP. To describe these

formulations it is convenient to use the following notation.

Definition 7.2. Let I be an arbitrary finite set and x 2 {0, 1}|I|. We let the support of x be

supp(x) := {i 2 I : xi = 1}.

The following proposition introduces our first IP formulation for OCP that can be applied to any

combinatorial optimization problem with an IP formulation.

Proposition 7.3. Let yS be the incidence vector of S 2 S, M 2 Rm⇥|A|, and d 2 Rm be such that
�

yS

S2S =
n

y 2 {0, 1}|A| : My  d
o

. Then an IP formulation of OCP (B) is given by

min

|A|
X

i=1

X

a2A
bay

i
a � z⇤(B)

!

(13a)

s.t. xa 
|A|
X

i=1

yia, a 2 A (13b)

Myi  d, i 2 {1, . . . , |A|} (13c)
X

a2S
(la(1� xa) + baxa) � z⇤(B), S 2 S (13d)

xa, y
i
a 2 {0, 1} , a 2 A, i 2 {1, . . . , |A|} . (13e)

That is, if (x, y) is an optimal solution to (13), then (C, E) is an optimal solution to OCP (B),

where C = supp (x) and E =
�

supp
�

yi
� |A|

i=1
. Furthermore, for a given x 2 {0, 1}|A|, finding a

violated inequality (13d) or showing that it satisfies all these inequalities can be done by solving

f (B0) for b0a = la(1� xa) + baxa.

Proof. For any feasible solution (x, y) to (13) we have that x is the incidence vector of a critical

subset from (13d). Similarly, we have that any yi is the incidence vector of some S 2 S because of

22

7.1 Integer Programming Formulations for OCP

Independent of the theoretical complexity of OCP, formulation (12) of OCP is not amenable to

practical solutions; it is an IP with an exponential number of variables and constraints that would

likely need to be solved through an intricate Branch-and-Cut-and-Price procedure. However, using

simple IP techniques, we can reformulate (12) to obtain a formulation with a polynomial number

of variables. While this formulation still has an exponential number of constraints, such problems

are regularly solved in practice using e↵ective Branch-and-Cut procedures (Applegate et al. 2011,

Carvajal et al. 2013). If f (B) has an LP formulation we can further reduce the size to a polynomial

number of variables and constraints. This version can then be solved directly by a general purpose

state of the art IP solver such as CPLEX (IBM ILOG n.d.). Finally, by exploiting the specific

structure of f(B), we can construct even more e↵ective formulations for OCP. To describe these

formulations it is convenient to use the following notation.

Definition 7.2. Let I be an arbitrary finite set and x 2 {0, 1}|I|. We let the support of x be

supp(x) := {i 2 I : xi = 1}.

The following proposition introduces our first IP formulation for OCP that can be applied to any

combinatorial optimization problem with an IP formulation.

Proposition 7.3. Let yS be the incidence vector of S 2 S, M 2 Rm⇥|A|, and d 2 Rm be such that
�

yS

S2S =
n

y 2 {0, 1}|A| : My  d
o

. Then an IP formulation of OCP (B) is given by

min

|A|
X

i=1

X

a2A
bay

i
a � z⇤(B)

!

(13a)

s.t. xa 
|A|
X

i=1

yia, a 2 A (13b)

Myi  d, i 2 {1, . . . , |A|} (13c)
X

a2S
(la(1� xa) + baxa) � z⇤(B), S 2 S (13d)

xa, y
i
a 2 {0, 1} , a 2 A, i 2 {1, . . . , |A|} . (13e)

That is, if (x, y) is an optimal solution to (13), then (C, E) is an optimal solution to OCP (B),

where C = supp (x) and E =
�

supp
�

yi
� |A|

i=1
. Furthermore, for a given x 2 {0, 1}|A|, finding a

violated inequality (13d) or showing that it satisfies all these inequalities can be done by solving

f (B0) for b0a = la(1� xa) + baxa.

Proof. For any feasible solution (x, y) to (13) we have that x is the incidence vector of a critical

subset from (13d). Similarly, we have that any yi is the incidence vector of some S 2 S because of

22

online learning problems, from the raking and selection perspective. Ryzhov and Powell (2011)

study information collection in settings where the decision maker selects individual arcs from a

directed graph, and Ryzhov and Powell (2012) consider a more general setting where selection is

made from a polyhedron (in Section 7 we specialize some of our results to such a setting, from a

bandit perspective). See also Ryzhov et al. (2012), and the references within.

3 Problem Formulation

Model primitives and basic assumptions. We consider the problem of an agent who must select

and implement solutions to a series of instances of a given combinatorial optimization problem.

Without loss of generality, we assume that such a problem is that of cost minimization. Instances

are presented sequentially through time, and we use n to index them according to their arrival

times, so n = 1 corresponds to the first instance, and n = N to the last, where N denotes the

(possibly unknown) total number of instances. Each instance is uniquely characterized by a set of

cost-coe�cients, i.e., instance n 2 N is associated with cost-coe�cients Bn := (ba,n : a 2 A) 2 R|A|,

and the full instance is defined as f(Bn), where

f(B) : z⇤(B) := min

(

X

a2S
ba : S 2 S

)

B 2 R|A|, (1)

S is a family of subsets of elements of a given ground set A, and ba is the cost associated with a

ground element a 2 A. We let S⇤(B) be the set of optimal solutions to (1) and z⇤(B) be its optimal

objective value (cost).

We assume that each element ba,n 2 Bn is a random variable, independent and identically dis-

tributed across instances, and independent of other components in Bn. We let F (·) denote the

common distribution of Bn for n 2 N, which we assume is initially unknown. We assume, how-

ever, that upper and lower bounds on its range are known upfront. That is, it is known that

la  ba,n  ua a.s., for all a 2 A and n 2 N.

We assume that, in addition to not knowing F (·), the agent does not observe Bn prior to im-

plementing a solution. Instead, we assume that Bn is only revealed partially and after a solution

is implemented. More specifically, we assume that if solution Sn 2 S is implemented, only cost-

coe�cients associated with ground elements in Sn (i.e., {ba,n : a 2 Sn}) are observed by the agent

and after the associated cost is incurred. Finally, we assume that the agent is interested in mini-

mizing the expected cumulative cost associated with implementing a sequence of solutions.

Full information problem and regret. Consider the case of a clairvoyant agent with prior

knowledge about F (·). Such an agent, while still not capable of anticipating the value of Bn, can

solve for the solution that minimizes the expected cumulative cost: for instance n 2 N (by the

7

Separa1on	
 by	
 solving	

Polynomial	
 #	
 of	
 variables	

17	

Proof. The only di↵erence between formulations (14) and (13) is that instead of explicitly enforcing

criticality through (13d) formulation (14) does so through strong duality. Indeed, (14d) assures

that w is a dual feasible solution to the LP formulation of f(B) and (14e) forces the objective of

this solution to be greater than z⇤ (B). With this, we have that the optimal solution of f(B0) for

B0 = diag(l)(1� x) + diag(b)x is greater than or equal to z⇤ (B).

Formulation (14) has O(|A|2) variables and O (|A|+m) constraints. If m is polynomial on

the size of the input of f (B), then we should be able to solve (14) directly with a state of the

art IP solver. If m is exponential, but the constraints in the LP formulation can be separated

e↵ectively we should still be able to solve (14) with a Branch-and-Cut algorithm. A standard

example of this class of problems is the spanning tree problem. However, in the case of span-

ning trees, we can additionally use a known polynomial sized extended formulation of the form
n

x 2 {0, 1}|A| : 9y 2 Rp, Cx+Dy  d
o

(Martin 1991). Similar techniques can be used to con-

struct polynomial sized formulations for other problems and to further improve formulation (14).

We now show how such techniques can be used to construct a linear sized formulation of OCP (B)

for shortest path problems. For more information on advanced IP formulation techniques we refer

the interested reader to Vielma (2012).

Proposition 7.5. Let f (B) correspond to a shortest s� t path problem in a digraph G = (V,A).

Define Â = A [{(t, s)} and let �̂out and �̂in denote the outbound and inbound arcs in digraph

Ĝ = (V, Â). An optimal solution (x, p, w) to

min

|A|
X

i=1

X

a2A
bay

i
a � z⇤(B)

!

(15a)

s.t. xa 
|A|
X

i=1

yia, a 2 A (15b)

X

a2�out(v)

yia �
X

a2�in(v)

yia = {0, 1,�1} , v 2 V, i 2 {1, . . . , |A|} (15c)

l(u,v)(1� x(u,v)) + b(u,v)x(u,v) � wu � wv, (u, v) 2 A (15d)

z⇤(B)  ws � wt (15e)

xa, y
i
a 2 {0, 1} , a 2 A, i 2 {1, . . . , |A|} (15f)

wv 2 R, v 2 V, (15g)

is such that (C, E) is an optimal solution to OCP (B), where C = {a 2 A : xa = 1} and E ✓ S is

a set of paths for which pa = |{S 2 E : a 2 S}|. Such a set E can be constructed from p in time

O(|A||V |).

Proof. The first di↵erence between formulations (15) and (14) is the specialization of the LP duality

24

	
 	
 	
 	
 	
 	
 	
 	
 	
 with	
 LP	
 =	
 OCP	
 with	
 Compact	
 IP	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

•  Example:	
 Shortest	
 path.	

Feasible	
 Paths	

Op1mality	
 with	
 	

LP	
 duality	

18	

Numerical	
 Experiments:	
 Overview	

•  Long	
 and	
 short	
 term	
 experiments:	

– Different	
 benchmarks	

•  Instances:	

–  Shortest	
 paths	

–  Steiner	
 trees	

–  Also	
 knapsack	
 and	
 abstract	
 set	
 cover.	
 	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	
 19	

Numerical	
 Experiments:	
 Benchmark	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

•  Long	
 term	
 	
 (
 Remember	
 UCB1:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	

–  Extended	
 UCB+	

–  UCB+	

	

•  Short	
 term	

–  Knowledge	
 gradient	
 (exponen1al-­‐gamma)	
 Ryzhov	
 et	
 al.	
 (2012)	

–  Gibns	
 (Normal/Normal-­‐Gamma)	
 Lai	
 (1987)	

8.1.1 Benchmark Policies

Our benchmark policies are several versions of UCB1, adapted to provide an improved performance

on our specific settings. Remember that UCB1 implements a solution

Sn 2 argmin
S2S

{b(S, n)� k(S, n)}

for instance n, where b(S, n) = b̄S,n and k(S, n) =
p

2 ln(n� 1)/Tn(S). Estimate b(S, n) is meant

to be the “best” estimate of the expected cost of S and k(S, n) is a correction factor that penalizes

the lack of periodic refreshment of the expected cost estimate. With this interpretation, there are

a few straightforward improvements to UCB1 for the combinatorial setting.

A first improvement comes from using a more recent expected cost estimate (b̄S,n only uses

information obtained when S is implemented): one can use the estimate

b(S, n) =
X

a2S
b̄a,n,

with b̄a,n defined in (7). A second improvement is to adjust the penalty factor to reflect the “right”

amount of information available, that is, one can use k(S, n) =
p

2 ln(n� 1)/(mina2S {Tn(a)}).
A third improvement follows from realizing that costs cannot be below their lower bounds. In

particular, the cost of a solution, as well as its index, should not go below the implied bound. A

policy combining all the above implements

Sn 2 argmin
S2S

(

max

(

X

a2S
b̄a,n �

q

2 ln(n� 1)/(min
a2S

{Tn(a)}),
X

a2S
la

))

for instance n. We denote this policy as UCB1+.

In a similar setting, Gai et al. (2012) propose another adaptation of UCB1: an improved version

of such a policy implements

Sn 2 argmin
S2S

(

X

a2S
max

n

ba,n �
p

(L+ 1) ln(n� 1)/Tn(a), la
o

)

for instance n, for some positive finite constant L. We denote this policy as Extended UCB1+.

While the theoretical performance guarantees of UCB1 and the policy in Gai et al. (2012) compare

unfavorably to those of ⇡s and ⇡a, UCB1+ and Extended UCB1+ could perform closer to ⇡s or ⇡a

in practice. In particular, UCB1+ incorporates some ideas used in crafting ⇡s(·) and hence could

have a comparable performance.

27

8.1.1 Benchmark Policies

Our benchmark policies are several versions of UCB1, adapted to provide an improved performance

on our specific settings. Remember that UCB1 implements a solution

Sn 2 argmin
S2S

{b(S, n)� k(S, n)}

for instance n, where b(S, n) = b̄S,n and k(S, n) =
p

2 ln(n� 1)/Tn(S). Estimate b(S, n) is meant

to be the “best” estimate of the expected cost of S and k(S, n) is a correction factor that penalizes

the lack of periodic refreshment of the expected cost estimate. With this interpretation, there are

a few straightforward improvements to UCB1 for the combinatorial setting.

A first improvement comes from using a more recent expected cost estimate (b̄S,n only uses

information obtained when S is implemented): one can use the estimate

b(S, n) =
X

a2S
b̄a,n,

with b̄a,n defined in (7). A second improvement is to adjust the penalty factor to reflect the “right”

amount of information available, that is, one can use k(S, n) =
p

2 ln(n� 1)/(mina2S {Tn(a)}).
A third improvement follows from realizing that costs cannot be below their lower bounds. In

particular, the cost of a solution, as well as its index, should not go below the implied bound. A

policy combining all the above implements

Sn 2 argmin
S2S

(

max

(

X

a2S
b̄a,n �

q

2 ln(n� 1)/(min
a2S

{Tn(a)}),
X

a2S
la

))

for instance n. We denote this policy as UCB1+.

In a similar setting, Gai et al. (2012) propose another adaptation of UCB1: an improved version

of such a policy implements

Sn 2 argmin
S2S

(

X

a2S
max

n

ba,n �
p

(L+ 1) ln(n� 1)/Tn(a), la
o

)

for instance n, for some positive finite constant L. We denote this policy as Extended UCB1+.

While the theoretical performance guarantees of UCB1 and the policy in Gai et al. (2012) compare

unfavorably to those of ⇡s and ⇡a, UCB1+ and Extended UCB1+ could perform closer to ⇡s or ⇡a

in practice. In particular, UCB1+ incorporates some ideas used in crafting ⇡s(·) and hence could

have a comparable performance.

27

information about a 2 A can be collected by implementing di↵erent solutions, and thus by incurring

potentially di↵erent costs. Even if, as in the traditional setting, one is to collect information on all

elements in A, there are many possibilities for doing so (e.g., one might implement all solutions in

S). Thus, e�cient exploration in our setting also involves answering the question of how to collect

the required information. Second, in the combinatorial setting, ground elements are not upfront

identical due to bounds on the range of F . Moreover, even in the case where elements are a-priori

identical (e.g., la = c for all a 2 A, for some c 2 R), feasible solutions combine elements so that

solutions might not be identical upfront. In Section 5 we show that, thanks to this property, not

all solutions need to be implemented periodically. More importantly, we show that not all elements

of A need to be probed periodically. Thus, the question of what to explore proves to be key in

limiting the exploration e↵orts, and therefore the regret.

4 How to Explore: E�cient Covers

Consider applying algorithm UCB1 in Auer et al. (2002) to the combinatorial setting via envisioning

all S 2 S as separate arms. After an initialization phase on which each element of S is implemented

once to obtain an initial estimate of its cost, UCB1 implements solution

Sn 2 argmin
S2S

n

bS,n �
p

2 ln(n� 1)/Tn(S)
o

on instance n, where bS,n denotes the average observed cost of solution S prior to instance n. That

is,

bS,n :=
1

Tn(S)

X

m<n :Sm=S

X

a2S
ba,m.

As mentioned earlier, in many situations of interest, the regret of this algorithm scales exponentially

with |A|, as illustrated by the following example.

Example 4.1. Consider the digraph G = (V,A) for V = {vi,j : i, j 2 {1, . . . , k + 1}, i  j} and

A = {ei}ki=1 [{pi,j : i  j  k} [{qi,j : i  j  k} where ei = (vi,i, vi+1,i+1), pi,j = (vi,j , vi,j+1),

and qi,j = (vi,j , vi+1,j). This digraph is depicted in Figure 1 for k = 3. Let S be composed of all

paths from node s := v1,1 to node t := vk+1,k+1.

Set la = 0 and ua = 1 for every arc a 2 A, and let F be such that EF {bei,n} = 0.03, and

EF
�

bpi,j ,n

= EF
�

bqi,j ,n

= 0.1, for all i 2 {1, . . . , k} and i  j  k, n 2 N. The shortest

(expected) path is S⇤(EF {Bn}) = (e1, e2, . . . , ek) with expected length (cost) z⇤(EF {Bn}) = 0.03 k,

and |S| corresponds to the number of s � t paths, which is equal to 1
k+2

�2(k+1)
(k+1)

�

⇠ 4k+1

(k+1)3/2
p
⇡

(Stanley 1999).

11

20	

Long	
 Term	
 Experiments:	
 Path	
 1	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

s p1,1 p1,3

t

p2,2

p3,3

p2,3

p1,2

q1,1 q1,2 q1,3

q2,2 q2,3

q3,3e3

e2

e1

Figure 1: Graph for Example 4.1.

For this example, the regret of UCB1 is proportional to
4k+1

(k+1)3/2
p
⇡
lnN , which can be quite large even for moderate

values of k. Broadly speaking, this algorithm picks the solution

with the best cost estimate bS,n while making sure that cost

estimates are updated with LR’s prescribed frequency lnN/N .

Because UCB1 is not aware of the combinatorial structure of

the problem, it estimates the cost of solution S 2 S via imple-

menting such a solution. However, in practice, the cost estimate

of S 2 S can be derived from those of a 2 S (see Section 8 for

tweaked versions of UCB1 incorporating this fact). Next, we

present a di↵erent approach aiming to ensure the exploration

frequency prescribed in LR on a rather more direct fashion.

A simple policy. Let Bn :=
�

ba,n, a 2 A
�

be the average observed cost of ground elements before

implementing a solution to instance n, where

ba,n :=
1

Tn(a)

X

m<n : a2Sm

ba,m. (7)

Let E be a cover of A, i.e., E ✓ S such that each a 2 A belongs to at least one S 2 E . Note

that implementing all S 2 E provides feedback on the cost of every a 2 A. Since N might not be

known upfront, to induce the exploration frequency lnN/N , we propose a policy that divides the

time horizon into cycles with exponentially growing lengths. Each cycle consists of an exploration

phase followed by an exploitation phase. Within the exploration phase of each cycle, the simple

policy implements each solution S 2 E at most once. After the exploration phase of each cycle, and

if there is enough time to do so, the algorithm trusts the cost estimates and exploits any solution

with minimum estimate cost until the end of that cycle. To formally describe this policy, for i 2 N
and i � 2, define the starting point of cycle i as

ni := max
n

bei/Hc, ni�1 + 1
o

,

where n1 = 1 and the tuning parameter H is a positive finite constant that regulates the frequency

of exploration. Define � := {ni : i 2 N} to be the set of starting points of all cycles. The proposed

simple policy, which we denote as ⇡s(E), is summarized in Algorithm 1.

Remark 4.2. Note that reversing the order of the update of the exploitation set and the exploration

phase in Algorithm 1 does not a↵ect the performance bound in Theorem 4.3 (below). In practice,

however, this leads to marginal improvements in performance.

Note that even if we take E = S, the regret associated with ⇡s(S) should improve upon that of

12

21	

Long	
 Term	
 Experiments:	
 Path	
 2	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

𝑘=20	

to Examples 4.1 and 5.1 in that the optimal critical subsets are large and hence the adaptive

policy does not have an immediate advantage. Finally, in order for all policies to be consistent, we

normalize the mean costs of the ground elements so that the maximum solution cost is at most one

(see the consistency argument before Theorem 3.2).

Examples 4.1 and 5.1. Figures 3-(a) and 3-(b) depict the average performance of four di↵erent

policies on Examples 4.1 and 5.1, respectively.

100 600 1100 1600 2000

50

100

150

200
(a)

N

R
e
g
re

t

100 600 1100 1600 2000

100

200

300

400

500
(b)

N

R
e
g
re

t

UCB1+

Simple

Adaptive

Simple

Extended
UCB1+

Extended
UCB1+ UCB1+

Adaptive

Figure 3: Graphs (a) and (b) depict the average performance of di↵erent policies on Examples 4.1
and 5.1, respectively.

On Example 4.1, we see that Extended UCB1+ has the worst performance followed by UCB1+.

The simple policy performs better than both these policies, aided in part by the fact that it restricts

exploration to a minimum size cover, which for this setting is only of size 4. Finally, the adaptive

policy performs significantly better than the other policies, as it successfully limits exploration to

a minimum regret exploration set (i.e., the implied subset of solutions from an optimal solution to

OCP (EF {Bn})).

On Example 5.1, Extended UCB1+ outperforms the UCB1+ as well as the simple policy. The

performance of the simple policy is likely hindered by the fact that, in this setting, the minimum

size cover is equal to S, which has size 22. In contrast, minimum regret exploration set of the

adaptive policy is only of size 2, which helps it achieve the best performance.7

In terms of e�cient information collection, one can divide the set of ground elements (arcs) into

7In our experiments, on both Examples 4.1 and 5.1, the adaptive policy selects a minimum regret exploration set
practically on every replication in the long run.

29

22	

Long	
 Term	
 Experiments:	
 Path	
 2	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

1	

10	

100	

1000	

10000	

Op1mal	
 Explora1on	
 Uninforma1ve	

EUCB1+	

UCB1+	

Simple	

Adap1ve	

•  Average	
 number	
 of	
 selec1ons	
 for	
 different	
 arc	
 classes.	

23	

Long	
 Term	
 Experiments:	
 Path	
 and	
 Trees	

•  Random	
 Layer(5,4,3)	
 	
 graph	
 (Ryzhov	
 and	
 Powell	
 2010)	

•  Steiner	
 tree	
 (|A|=18)	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

100 600 1100 1600 2000

50

100

150

200

250

300

N

R
e
g
re

t

Simple

UCB1+Extended
UCB1+

Adaptive

Figure 4: Average performance of di↵erent policies on the representative from the shortest path
setting.

100 600 1100 1600 2000

100

200

300

400

500

N

R
e
g
re

t

Extended
UCB1+

UCB1+

Adaptive

Simple

Figure 5: Average performance of di↵erent policies on the representative from the set cover setting.

(Williamson and Shmoys 2011), where we are given an undirected graph with non-negative edge

costs, and a set of pairs of vertices. Our objective is to find a minimum cost subset of edges such

that every given pair is connected in the set of selected edges.

For this problem, we generate a random graph and select a set of pairs of vertices randomly. The

ground element (edge) mean costs are selected uniformly randomly from the set {0.1, 0.2, . . . , 1} and
then normalized. The representative setting is such that |A| = 18, |S| = 2490, the minimum size

31

cover is of size 1, and the minimum regret exploration set is of size 7 with an implied critical subset

of size 17. Figure 6 depicts the average performance of four di↵erent policies on the representative

from the Steiner tree setting.

100 600 1100 1600 2000

20

40

60

80

100

120

N

R
e

g
re

t

UCB1+

Extended
UCB1+

Simple

Adaptive

Figure 6: Average performance of di↵erent policies on the representative from the Steiner tree
setting.

In ranking the performance of di↵erent policies, the relative order is essentially the same as in

the case of the previous two settings.

Knapsack problem. In the knapsack problem we are given a set A of items to put in a knapsack.

The solution set S consists of the subsets of items whose total weights do not exceed the knapsack

weight limit. We generate a set of items with random utilities and weights. A random weight limit

is also selected for the knapsack. The representative setting is such that |A| = 20, |S| = 9078, the

minimum size cover is of size 4, and the minimum regret exploration set is of size 6 with an implied

critical subset of size 16. Figure 7 depicts the average performance of four di↵erent policies on the

representative form the knapsack setting. The adaptive policy outperforms the others. Moreover,

the benchmarks are outperformed by the simple policy.

8.2 Short-term Experiments

The purpose of this section is to evaluate the performance of di↵erent policies in the short-term.

Although the adaptive policy is not designed for such a setting, our numerical experiments show

that it provides a competitive performance in several cases. We first describe di↵erent benchmark

policies. After briefly discussing some implementation details, we close this section presenting our

32

24	

Long	
 Term	
 Experiments:	
 Paths	
 and	
 Trees	

•  Random	
 Layer(5,4,2)	
 	
 graph	
 (Ryzhov	
 and	
 Powell	
 2010)	

•  Steiner	
 tree	
 (|A|=18)	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

40 100 160 220 280 340 400

13

26

39

52

65

N

R
e
g
re

t

KG

Gittins

Adaptive

Figure 8: Average performance of di↵erent policies on the representative from the shortest path
setting.

20 60 100 140 180 220

11

22

33

44

55

N

R
e
g
re

t

KG

Gittins

Adaptive

Figure 9: Average performance of di↵erent policies on the representative from the set cover setting.

this setting.

Knapsack problem. Figure 11 depicts the average performances on a representative from the

knapsack setting9. The representative setting is such that |A| = 11, |S| = 50, the minimum size

cover is of size 5, and the minimum regret exploration set is of size 5 with an implied critical subset

9Here we report on the average behavior over 500 replications so that the confidence intervals do not cross.

36

20 80 140 200 260 300

5

10

15

20

25

N

R
e
g
re

t

Gittins

KG

Adaptive

Figure 10: Average performance of di↵erent policies on the representative from the Steiner tree
setting.

40 100 160 220 280 340 400

5

10

15

20

25

30

N

R
e
g
re

t

KG

Gittins

Adaptive

Figure 11: Average performance of di↵erent policies on the representative from the knapsack setting.

of size 8. Gittins provides a better performance than the adaptive policy in the very short-term,

but is outperformed eventually, while KG performs poorly compared to the others.

37

25	

Summary	

•  Tradi1onal	
 Explora1on	
 v/s	
 Exploita1on	

–  What	
 to	
 exploit	

–  When	
 to	
 explore	

•  Combinatorial	
 Explora1on	
 v/s	
 Exploita1on	

–  What	
 to	
 explore:	
 cri1cal	
 elements	

–  How	
 to	
 explore:	
 op1mality	
 cover	

•  Implementable	
 algorithm	

–  Explora1on/Exploita1on	
 cycles	

–  Near-­‐op1mal	
 long	
 term	
 performance	
 	

–  Compe11ve	
 short	
 term	
 performance	

•  Complexity	
 of	
 OCP:	
 new	
 challenges	
 	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	
 26	

Limit	
 on	
 Achievable	
 Performance	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

Limit�on�Achievable�Performance

Tuesday,�November�13,�2012 Learning�in�Combinatorial�Optimization:�What�and�How�to�Explore

• For�any�consistent�policyߨ� and�setܦ� א ࣞ

• Lower�bound�on�number�of�times�specific�sets�are�tried

• What�needs�to�be�explored? Critical�subsets

#�times�element�ܽ tried

distance�betweenܨ� andܨ�ǯ

12

Limit�on�Achievable�Performance

Tuesday,�November�13,�2012 Learning�in�Combinatorial�Optimization:�What�and�How�to�Explore

• Let�ࣞ contain�all�subsetsܦ��of�suboptimal�elements�that�become�part�of�

every�optimal�solution�if�their�costs�are�the�lowest�possible

• There�is�an�alternative�distributionܨ�ǯ such�that�D�is�optimal�underܨ�ǯ
• Need�to�estimate�cost�of�at�least�some�element�in�each�D�to�ensure�

optimality�of�oracle�solution

Intuition

11

Limit�on�Achievable�Performance

Tuesday,�November�13,�2012 Learning�in�Combinatorial�Optimization:�What�and�How�to�Explore

• For�any�consistent�policyߨ� and�setܦ� א ࣞ

• Lower�bound�on�number�of�times�specific�sets�are�tried

• What�needs�to�be�explored? Critical�subsets

#�times�element�ܽ tried

distance�betweenܨ� andܨ�ǯ

12
27	

Limit	
 on	
 Achievable	
 Performance	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

Limit�on�Achievable�Performance

Tuesday,�November�13,�2012 Learning�in�Combinatorial�Optimization:�What�and�How�to�Explore

• For�any�consistent�policyߨ�

where

(exp�on�critical�subset)

(solution�cover)

(min�regret)

(nonͲnegativity)
ࢇ࢞ ൎ ା૚ࡺࢀ ࢇ ࡺܖܔ
How�to�explore

1328	

Proposed	
 Policy	

Learning	
 in	
 Combinatorial	
 Op1miza1on:	
 What	
 and	
 How	
 to	
 Explore	

Proposed�Policy

Tuesday,�November�13,�2012 Learning�in�Combinatorial�Optimization:�What�and�How�to�Explore

• Forܪ�௔ such�that�for�allܪ� ൐ ௔ܪ and�any�ܰ ൐ Ͳ

– Requirement�overܪ� waived�if�imposing݋�ሺ��ܰଵାఢሻ exploration
– ȁܩȁ smaller�than�minimal�cover�ofܣ� (cover�a�minimal�critical�subset)

• Gap�in�performance�between�lower�and�upper�bounds

Size�of�minimal�solution�to�OCP

1729	

