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Introduction Characterization Lattices Polyhedrality

What is the Split Closure

Split Cuts:
Valid Inequalities “equivalent” to Intersection Cuts, Mixed
Integer Gomory Cuts and MIR Cuts.
Special case of Balas’s Disjunctive Cuts.

Closure:
Obtained by adding all cuts in a class.
Class could have infinite number of cuts, so closures are
not immediately polyhedrons.
Example: Chvátal Closure (Is a polyhedron).
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History and Motivation

History:
Split Cuts were introduced by [Cook, et. al. 1990].
Split Closure is a polyhedron
[Cook, et. al. 1990, Andersen, et. al. 2005].
Non-constructive proofs.
The Split Closure has recently been studied by [Balas and
Saxena, 2005],[Dash et. al. 2005],[Vielma, 2005].

Motivation of Constructive Characterization:
Algorithm to generate Split Closure? (Naive).
Helps understand Split Cuts better.
For fixed dimension. Is the number of inequalities defining
the Split Closure polynomial in the size of the input? (Open
even for two inequalities in R2).
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Example of a Split Cut
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Feasible Set of a (Mixed) Integer Linear Program and
Natural Relaxations

Feasible set:

P := {x ∈ Rn : aT
i x ≤ bi ∀ i ∈ M}

PI := {x ∈ P : xj ∈ Z ∀ j ∈ NI} for
NI ⊆ {1, . . . , n}

P
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Split Cuts are Constructed from Valid Split
Disjunctions

For (π, π0) ∈ Zn+1 divide Rn into :

Fl := {x ∈ Rn : πTx ≤ π0}

Fg := {x ∈ Rn : πTx ≥ π0 + 1}

π0 π0 + 1

π

Fl Fg
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Valid Split Disjunctions don’t Cut Integer Feasible
Points

For fixed NI we are interested in (π, π0) such
that, for any P:

PI ⊆ Fl ∪ Fg ( Rn

x1

x2

NI = {1}
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Valid Split Disjunctions don’t Cut Integer Feasible
Points

For fixed NI we are interested in (π, π0) such
that, for any P:

PI ⊆ Fl ∪ Fg ( Rn

so we study

Π(NI) := {(π, π0) ∈ (Zn \ {0}) × Z :
πj = 0, j /∈ NI}

x1

x2

NI = {1}
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The Split Closure is the Polyhedron Formed by All
Split Cuts

The split closure [Cook, et. al. 1990] of PI is

SC :=
⋂

(π,π0)∈Π(NI)

conv(Pl
(π,π0)

∪ Pg
(π,π0)

)).

Theorem

[Cook, et. al. 1990] SC is a polyhedron
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Sufficient to Study Split Cuts for Basic Relaxations

For basis B ∈ B let

P(B)l := {x ∈ P(B) : πTx ≤ π0}

P(B)g := {x ∈ P(B) : πTx ≥ π0 + 1}

and

SC(B) :=
⋂

(π,π0)∈Π(NI)

conv(P(B)l
(π,π0)

∪ P(B)g
(π,π0)

).
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Farkas’s Lemma Can be Used to Characterize Split
Cuts

Let P = P(B) = {x ∈ Rn : Bx ≤ b}, for
B ∈ Qn×n, rank(B) = n

P = P(B)

x(B)
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Proposition

[Andersen, et. al. 2005, Balas and Perregaard, 2003,
Caprara and Letchford, 2003] All non-dominated valid
inequalities for conv(Pl

(π,π0)
∪ Pg

(π,π0)
) are of the form δT x ≤ δ0

where

δ = BTµl + µl
0π = BTµg − µg

0π

δ0 = bTµl + µl
0π0 = bTµg − µg

0(π0 + 1)

for µl
0, µ

g
0 ∈ R+ and µl, µg ∈ Rn

+ solutions to

BTµg − BTµl = π

bTµg − bTµl = π0 + µg
0

µl
0 + µg

0 = 1, µg
0 ∈ (0, 1), µl

i · µ
g
i = 0
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BTµg − BTµl = π

bTµg − bTµl = π0 + µg
0

µl, µg ∈ Rn
+, µl

i · µ
g
i = 0

µg
0 ∈ (0, 1), π0 ∈ Z
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BTµ = π

bTµ = π0 + µg
0

µ ∈ Rn

µg
0 ∈ (0, 1), π0 ∈ Z

µl
i = (µi)

− := max{−µi, 0}
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BTµ = π

bTµ = π0 + µg
0

µ ∈ Rn

µg
0 ∈ (0, 1), π0 ∈ Z

µl
i = (µi)

− := max{−µi, 0}
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BTµ = π

⌊bTµ⌋ = π0

µ ∈ Rn

µTb /∈ Z
µl

i = (µi)
− := max{−µi, 0}, µg

0 = f (bTµ) := bTµ − ⌊bTµ⌋
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BTµ = π

⌊bTµ⌋ = π0

µ ∈ Rn

µTb /∈ Z
µl

i = (µi)
− := max{−µi, 0}, µg

0 = f (bTµ) := bTµ − ⌊bTµ⌋

Bx(B) = b
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i = (µi)
− := max{−µi, 0}, µg
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BTµ = π
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µl
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Proposition

conv(Pl
(π,π0)

∪ Pg
(π,π0)

) = {x ∈ P : δT x ≤ δ0}

where δ(µ)T x ≤ δ0(µ) is defined equivalent to

(µ−)T(Bx − b) + (1 − f (µT b))(µT Bx − ⌊µTb⌋) ≤ 0

for µ unique solution (if it exists) to

BTµ = π µ ∈ Rn

µTb /∈ Z π0 = ⌊µTb⌋

(y− = max{−y, 0} , f (y) = y − ⌊y⌋ and operations over vectors
are component wise)
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What Multipliers Induce Valid Split Disjunctions?

We have
Π(NI) := {(π, π0) ∈ (Zn \ {0}) × Z : πj = 0, j /∈ NI} and

BTµ = π µ ∈ Rr

µTb /∈ Z π0 = ⌊µTb⌋

Let B = [BIBC] for BI ∈ Rn×|NI | and BC ∈ Rn×(n−|NI |)

corresponding to the integer and continuous variables of
PI. Multipliers that induce valid split disjunctions are

L(B) := {µ ∈ Rn : BI
Tµ ∈ Z|NI |, BC

Tµ = 0}
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Valid Split Disjunctions are Related to Integer Lattices

For {vi}r
i=1 ⊆ Rn l.i. a lattice is

L := {µ ∈ Rn : µ =

r∑

i=1

kiv
i ki ∈ Z}

L(B) is a lattice,

⌈µ−⌉T(Bx−b)+(1−f (µT b))(µT Bx−⌊µTb⌋) ≤ 0

is valid for PI and cuts x(B).
[Köppe and Weismantel, 2004].

Every µ ∈ L(B) s.t. µTb /∈ Z induces a valid
split disjunction.
[Bertsimas and Weismantel, 2005].

v1

v2

v1 + 2v2
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Proposition

SC(B) =
⋂

µ∈L(B)
µT b/∈Z{x ∈ P(B) : δ(µ)T x ≤ δ0(µ)}.
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Proposition

SC(B) =
⋂

µ∈L(B)
µT b/∈Z{x ∈ P(B) : δ(µ)T x ≤ δ0(µ)}.

Proposition

For µ ∈ L(B) s.t µTb /∈ Z split cut

(µ−)T(Bx − b) + (1 − f (µT b))(µT Bx − ⌊µTb⌋) ≤ 0

dominates

⌈µ−⌉T(Bx − b) + (1 − f (µTb))(µT Bx − ⌊µT b⌋) ≤ 0
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Studying L(B) in Each Orthant Decomposes SC(B) to
the Intersection of a Finite Number of Sets

For σ ∈ {0, 1}n let

L(B, σ) := {µ ∈ L(B) : (−1)σiµi ≥ 0, ∀ i ∈ {1, . . . , n}}

so that
SC(B) =

⋂

σ∈{0,1}n

SC(B, σ)

where

SC(B, σ) =
⋂

µ∈L(B,σ)
µT b/∈Z {x ∈ P(B) : δ(µ)T x ≤ δ0(µ)}
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Studying L(B, σ) Allows Detecting Dominated Cuts

Lemma

Let σ ∈ {0, 1}n and let µ ∈ L(B, σ) with µ = α + β for
α, β ∈ L(B, σ) such that βT b ∈ Z. Then δ(µ)T x ≤ δ0(µ) is
dominated by δ(α)T x ≤ δ0(α) in P(B).

Proof.

Uses the fact that for α, β in the same orthant
|αi + βi| = |αi| + |βi| for all i ∈ {1, . . . , n}.
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A Finite Integral Generating Set (FIGS) of L(B, σ)
Induces a Finite Subset of L(B, σ)

Let {vi}i∈V(σ) ⊆ L(B, σ) be a (FIGS), i.e. a finite set such
that

L(B, σ) = {µ ∈ Rr : µ =
∑

i∈V(σ)

kiv
i ki ∈ Z+}

We want µTb /∈ Z, so for i ∈ V(σ) let

mi = min{m ∈ Z+ \ {0} : m bTvi ∈ Z}
and define the following finite subset of L(B, σ).

L0(B, σ) := {µ ∈ L(B, σ) : µ =
∑

i∈V(σ)

riv
i, ri ∈ {0, . . . , mi−1}}
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Proving the Polyhedrality of SC(B, σ) Yields the
Polyhedrality of SC

Theorem

SC(B, σ) the polyhedron given by

SC(B, σ) =
⋂

µ∈L0(B,σ)
µT b/∈Z {x ∈ P(B) : δ(µ)T x ≤ δ0(µ)}

Corollary

SC(B) is a polyhedron for all B ∈ B. SC is a polyhedron.
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Proof Idea.

Goal: For µ ∈ L(B, σ), δ(µ)T x ≤ δ0(µ) is dominated by
δ(α)T x ≤ δ0(α) for some α ∈ L0(B, σ).
How:

For µ ∈ L(B, σ) show that µ = α + β for α, β such that:
α ∈ L0(B, σ), β ∈ L(B, σ)
βT b ∈ Z

Use Lemma.
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Proof of Theorem.

Let {vi}i∈V(σ) be a FIGS for L(B, σ) and let {ki}i∈V(σ) ⊆ Z+ be
such that

µ =
∑

i∈V(σ)

kiv
i.
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Proof of Theorem.

Let {vi}i∈V(σ) be a FIGS for L(B, σ) and let {ki}i∈V(σ) ⊆ Z+ be
such that

µ =
∑

i∈V(σ)

kiv
i.

For each i ∈ V(σ) we have

ki = nimi + ri

for some ni, ri ∈ Z+, 0 ≤ ri < mi.Let

α =
∑

i∈V(σ)

riv
i and β =

∑

i∈V(σ)

nimiv
i

We have α ∈ L0(B, σ) and, as mi is such that mi bTvi ∈ Z we
have bTβ ∈ Z.
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Final Remarks

The proof of the Theorem gives a way of enumerating the
inequalities of SC(B, σ), SC(B) and SC:

Not practical for anything buy toy problems.
There is redundancy in the enumeration for SC and SC(B).
There is also redundancy in the enumeration of SC(B, σ). In
fact we can reduce L0(B, σ) to

L0(B, σ) := {µ ∈ L(B, σ) : µ =
∑

i∈V(σ)

riv
i, ri ∈ {0, . . . , mi−1}

and {ri}i∈V(σ) are relatively prime}

[Dash et. al. 2005] also give a constructive
characterization with similar properties.
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