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What is the Split Closure

@ Split Cuts:
@ Valid Inequalities “equivalent” to Intersection Cuts, Mixed
Integer Gomory Cuts and MIR Cuts.
@ Special case of Balas’s Disjunctive Cuts.
@ Closure:
@ Obtained by adding all cuts in a class.
@ Class could have infinite number of cuts, so closures are
not immediately polyhedrons.
@ Example: Chvatal Closure (Is a polyhedron).
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Saxena, 2005],[Dash et. al. 2005],[Vielma, 2005].
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History and Motivation

@ History:
@ Split Cuts were introduced by [Cook, et. al. 1990].
@ Split Closure is a polyhedron
[Cook, et. al. 1990, Andersen, et. al. 2005].
Non-constructive proofs.
@ The Split Closure has recently been studied by [Balas and
Saxena, 2005],[Dash et. al. 2005],[Vielma, 2005].

@ Motivation of Constructive Characterization:

@ Algorithm to generate Split Closure? (Naive).

@ Helps understand Split Cuts better.

@ For fixed dimension. Is the number of inequalities defining
the Split Closure polynomial in the size of the input? (Open
even for two inequalities in IR?).
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Feasible Set of a (Mixed) Integer Linear Program and

Natural Relaxations

Feasible set:
@ P:={xecR":a'x<b VieM}

@ P :={xeP:xe€Z VjeN}for ]

ng{lw"?n} /
Relaxations: [
. [ P(B)

@ P, LP Relaxation I

@ P(B):={xcR":a'x<b VieB}for / x(B) —
BeB:={BCM: |B|=n, {a}i i} P
Basic or Conic Relaxation

@ {xePB):x€Z VjeN}isa
relaxation of P,.
@ x(B) unique solutionto a'x=b; VicB
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Split Cuts are Constructed from Valid Split

Disjunctions

For (7, mo) € Z"* divide R" into :
@ Fli={xeR": 7'x < 7o}

@ FI9:={xeR": 7rTX27To+l}
Use this to divide P into: 1
o Pl:={xecP: a"™x< mp} / ™
@ PY:={xcP:a'x>m+1} /
A split cut for D(m, mp) and P is an inequality / ==
valid for: =
e PUPY

@ cov(P, .U PY

,T0 (w,ﬂo))
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Valid Split Disjunctions don’t Cut Integer Feasible

Points

For fixed N, we are interested in (7, mp) such
that, for any P:

@ P CFUFICR" .
so we study . i — 1
@ II(N)) := {(m,m0) € (Z"\ {0}) X 7 : // T

1 =0,j¢ N}
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The Split Closure is the Polyhedron Formed by All

Split Cuts

The split closure [Cook, et. al. 1990] of P, is

L | J
T = ﬂ comv(P,. -y UPL._ )
(m,m0)€II(Ny)

[Cook, et. al. 1990] SC is a polyhedron
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Sufficient to Study Split Cuts for Basic Relaxations

For basis B € B let

@ P(B) := {xc P(B) : 7"x < 7o}

@ P(B)9:={xecP(B): n'x>mp+1}
and

C@B):= () oV(P(B)(rr UPEB), ).
(m,m0)€II(N))

[Andersen, et. al. 2005] SC = () SC(B)
BeB

4

[Andersen, et. al. 2005] SC(B) is a polyhedron for all B € B.
Hence SC is a polyhedron.
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Farkas's Lemma Can be Used to Characterize Split

Cuts

@ LetP=P(B)={xe R" : Bx< b}, for
B e Q™" rank(B) =n

@ For (m,mg) € II(N) such that ‘
7'X(B) € (mo,m0 + 1) let ,%%%}%
OPIZZ{XEP:WTXSTFo} =1
o PY:={xeP: 7TTX27T0+1}
@ Split cut §Tx < dg is valid for P' and P9: po
e FL.forP": 3(ub, p') € Ry x RY. sit.
® 5 =BTy + o
@ Jo = bT,u' + u'oﬂ'o
o FL.forP%: 3(3, 1% € Ry x RY} s.t.
@ §=B"ud — udrn
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[Andersen, et. al. 2005, Balas and Perregaard, 2003,
Caprara and Letchford, 2003] All non-dominated valid
inequalities for conv(P(mno) U P?mo)) are of the form §7x < &g
where

§ =BTy +phr =B ud — pdn
6o =b" ' + phmo = b 9 — pa(mo + 1)
for uh, 1y € Ry and pl, u9 € RY. solutions to
BTMg . BTNI =7
b’ — by = mo + 1§
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BT,u:7r
by = 7ro+u8
peR"

pa € (0,1), m€eZ

pi = (i)™ == max{—p, 0}
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i = (i)™ = max{—p,0}
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Proposition

cov(Pl__UPY  )={xeP:dx<d}

(m,m0) (,m0)
where 6(1)™x < 6o(i) is defined equivalent to
(1) (Bx—b) + (1~ f(1"b))(u"Bx — [u"b]) < 0
for 1 unique solution (if it exists) to

BTlu=rm peR"
Wb¢7 o= [uTh)

(y~ = max{-y, 0}, f(y) =y — |y| and operations over vectors
are component wise)
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What Multipliers Induce Valid Split Disjunctions?

@ We have
II(N) :== {(m,m0) € (Z"\ {0}) xZ : mj =0, ¢ N} and
Blu=rm peR
p'b¢ 7 mo = [u'b)

@ Let B = [BB¢]| for B, € R™INil and B¢ € R™ (= INil)
corresponding to the integer and continuous variables of
P,. Multipliers that induce valid split disjunctions are

LB):={ueR":B uezMN BcTu=0}
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Valid Split Disjunctions are Related to Integer Lattices

@ For {V}[_, C R"Li. alattice is

E::{,uE]Rn:,u:Zkivi ki€ Z}

i=1

@ L(B) is a lattice,

(17 (Bx—b)+(1—f (")) (1 "Bx—| b)) < 0

is valid for P; and cuts x(B).
[KOppe and Weismantel, 2004].
@ Every i € £(B) s.t. u"b ¢ 7 induces a valid
split disjunction.
[Bertsimas and Weismantel, 2005].
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Proposition

CB) = [ {xeP(B) : 6(1)"x < do(w)}-
peL(B)
u'be 7

Proposition
For € £(B) s.t u"b ¢ 7Z split cut

(1) (Bx—b) + (1 (u"b))(1"Bx — [u"b]) < 0

dominates

11T (Bx— b) + (1 — (b)) (u"Bx — |x"b]) < 0
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Studying £(B) in Each Orthant Decomposes SC(B) to

the Intersection of a Finite Number of Sets
For o € {0,1}" let
LB,o):={peLlB): (-1)7w >0 Vie{l ... n}}

so that
B)= () SC(B,o)
ce{0,1}n

where
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Studying £(B, o) Allows Detecting Dominated Cuts

Lemma

Leto € {0,1}" and let i € L(B, o) with = a + 3 for
a, B € L(B,o) such that 3Tb € Z. Then §(u) ™ < do(p) is
dominated by §(a)Tx < do(ax) in P(B).

Proof.

Uses the fact that for «, 5 in the same orthant
lai + Gi| = |ail + |G| foralli € {1,...,n}. ]

| A

\
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Induces a Finite Subset of L(B, o)

o Let {V}icy(,) € L(B,0) be a (FIGS), i.e. a finite set such
that

LB,o)={peR : u= Z kV keZ,}

ieV(o)
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A Finite Integral Generating Set (FIGS) of £L(B, o)

Induces a Finite Subset of L(B, o)

o Let {V}icy(,) € L(B,0) be a (FIGS), i.e. a finite set such
that

LB,o)={peR : u= Z kV keZ,}

ieV(o)
@ Wewant u'b ¢ 7, so fori € V(o) let
m = min{me 7, \ {0} : mb"V € 7%}

and define the following finite subset of £(B, o).

‘CO(Bv U) = {/L € ‘C(B?O-) CH= Z riVia fi € {O, .- ’m_l}}
ieV(o)
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Proving the Polyhedrality of SC(B, o) Yields the
Polyhedrality of SC

SC(B, o) the polyhedron given by

B,o)= () {x€P(B) : 5(u)"x< do(w)}
weL(B,o)
ube7.

SC(B) is a polyhedron for all B € B. SC is a polyhedron.
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Proof Idea.

@ Goal: For i € L(B, o), 5(1)"x < do(p) is dominated by
5(a)Tx < do(a) for some o € LO(B, o).
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Proof Idea.

@ Goal: For i € L(B, o), 5(1)"x < do(p) is dominated by
5(a)Tx < do(a) for some o € LO(B, o).
@ How:
@ For u € L(B, o) show that 4 = a + 3 for «, 8 such that:
@ ac L£°B,0), B € L(B,o)
o 3'beZ
o Use Lemma.
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Proof of Theorem.

Let {V}icy (o) be a FIGS for £(B, o) and let {ki}icy () € Z4 be

such that
p= Y kv.
ieV(o)




Introduction Characterization Lattices Polyhedrality

0000000

Proof of Theorem
Let {V}icy (o) be a FIGS for £(B, o) and let {ki}icy () € Z4 be

such that
p= Y kv.
ieV(o)
For eachi € V(o) we have
ki =nim +ri

for some nj,r; € Z,, 0 <r; < m.Let

o= Z v and B= Z nmVv

ieV(o) ieV(o)

We have a € £°(B, o) and, as m; is such that m b"V' € 7 we
have b'3 € Z. O

-
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Final Remarks

@ The proof of the Theorem gives a way of enumerating the
inequalities of SC(B, o), SC(B) and SC:
@ Not practical for anything buy toy problems.
@ There is redundancy in the enumeration for SC and SC(B).
@ There is also redundancy in the enumeration of SC(B, o). In
fact we can reduce £°(B, o) to

LoB,0) :={pneLB,o): p= > nrv, re{0... ,m-1}

ieV(o)
and {ri}icy (o) are relatively prime}

@ [Dash et. al. 2005] also give a constructive
characterization with similar properties.
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