Introduction	Characterization	Lattices	Polyhedrality

A Constructive Characterization of the Split Closure of a Mixed Integer Linear Program

Juan Pablo Vielma

School of Industrial and Systems Engineering Georgia Institute of Technology

October 3, 2006

-

A B > A B >

Introduction ●○○○○○○○○	Characterization	Lattices 000	Polyhedrality
Outline			

∃ 990

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Introduction	Characterization	Lattices	Polyhedrality
0000000	00000	000	0000000

What is the Split Closure

• Split Cuts:

- Valid Inequalities "equivalent" to Intersection Cuts, Mixed Integer Gomory Cuts and MIR Cuts.
- Special case of Balas's Disjunctive Cuts.
- Closure:
 - Obtained by adding all cuts in a class.
 - Class could have infinite number of cuts, so closures are not immediately polyhedrons.
 - Example: Chvátal Closure (Is a polyhedron).

<ロ> (四) (四) (三) (三) (三)

Introduction	Characterization	Lattices	Polyhedrality
0000000	00000	000	0000000

What is the Split Closure

- Split Cuts:
 - Valid Inequalities "equivalent" to Intersection Cuts, Mixed Integer Gomory Cuts and MIR Cuts.
 - Special case of Balas's Disjunctive Cuts.
- Closure:
 - Obtained by adding all cuts in a class.
 - Class could have infinite number of cuts, so closures are not immediately polyhedrons.

Tech

3

(日)

• Example: Chvátal Closure (Is a polyhedron).

Introduction 00000000	Characterization	Lattices 000	Polyhedrality
History and Mot	tivation		

• History:

- Split Cuts were introduced by [Cook, et. al. 1990].
- Split Closure is a polyhedron [Cook, et. al. 1990, Andersen, et. al. 2005]. Non-constructive proofs.
- The Split Closure has recently been studied by [Balas and Saxena, 2005],[Dash et. al. 2005],[Vielma, 2005].
- Motivation of Constructive Characterization:
 - Algorithm to generate Split Closure? (Naive).
 - Helps understand Split Cuts better.
 - For fixed dimension. Is the number of inequalities defining the Split Closure polynomial in the size of the input? (Open even for two inequalities in \mathbb{R}^2).

eorgia Tech

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Introduction	Characterization	Lattices 000	Polyhedrality
History and Mo	tivation		

• History:

- Split Cuts were introduced by [Cook, et. al. 1990].
- Split Closure is a polyhedron [Cook, et. al. 1990, Andersen, et. al. 2005]. Non-constructive proofs.
- The Split Closure has recently been studied by [Balas and Saxena, 2005],[Dash et. al. 2005],[Vielma, 2005].
- Motivation of Constructive Characterization:
 - Algorithm to generate Split Closure? (Naive).
 - Helps understand Split Cuts better.
 - For fixed dimension. Is the number of inequalities defining the Split Closure polynomial in the size of the input? (Open even for two inequalities in \mathbb{R}^2).

eorgia Tech

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Introduction	Characterization	Lattices ooo	Polyhedrality

(ロ)、(型)、(E)、(E)、(E)、(O)への

Feasible set:

- $P := \{x \in \mathbb{R}^n : a_i^T x \le b_i \quad \forall i \in M\}$
- $P_I := \{x \in P : x_j \in \mathbb{Z} \mid \forall j \in N_I\}$ for $N_I \subseteq \{1, \ldots, n\}$

∃ <\0<</p>

(日)

Feasible set:

•
$$P := \{x \in \mathbb{R}^n : a_i^T x \le b_i \quad \forall i \in M\}$$

• $P_I := \{x \in P : x_j \in \mathbb{Z} \quad \forall j \in N_I\}$ for
 $N_I \subseteq \{1, \dots, n\}$

э

A B > A B >

Feasible set:

•
$$P := \{x \in \mathbb{R}^n : a_i^T x \le b_i \quad \forall i \in M\}$$

•
$$P_I := \{x \in P : x_j \in \mathbb{Z} \mid \forall j \in N_I\}$$
 for $N_I \subseteq \{1, \dots, n\}$

Relaxations:

- P, LP Relaxation
- $P(B) := \{x \in \mathbb{R}^n : a_i^T x \le b_i \quad \forall i \in B\}$ for $B \in \mathcal{B} := \{B \subseteq M : |B| = n, \{a_i\}_{i \in B} l.i.\}$ Basic or Conic Relaxation
- { $x \in P(B) : x_j \in \mathbb{Z} \quad \forall j \in N_I$ } is a relaxation of P_I .
- x(B) unique solution to $a_i^T x = b_i \quad \forall i \in B$

(日)

Feasible set:

•
$$P := \{x \in \mathbb{R}^n : a_i^T x \le b_i \quad \forall i \in M\}$$

•
$$P_I := \{x \in P : x_j \in \mathbb{Z} \mid \forall j \in N_I\}$$
 for $N_I \subseteq \{1, \dots, n\}$

Relaxations:

- P, LP Relaxation
- $P(B) := \{x \in \mathbb{R}^n : a_i^T x \le b_i \quad \forall i \in B\}$ for $B \in \mathcal{B} := \{B \subseteq M : |B| = n, \{a_i\}_{i \in B} \ l.i.\}$ Basic or Conic Relaxation
- { $x \in P(B) : x_j \in \mathbb{Z} \quad \forall j \in N_I$ } is a relaxation of P_I .
- x(B) unique solution to $a_i^T x = b_i \quad \forall i \in B$

(日)

Feasible set:

•
$$P := \{x \in \mathbb{R}^n : a_i^T x \le b_i \quad \forall i \in M\}$$

•
$$P_I := \{x \in P : x_j \in \mathbb{Z} \mid \forall j \in N_I\}$$
 for $N_I \subseteq \{1, \dots, n\}$

Relaxations:

- P, LP Relaxation
- $P(B) := \{x \in \mathbb{R}^n : a_i^T x \le b_i \quad \forall i \in B\}$ for $B \in \mathcal{B} := \{B \subseteq M : |B| = n, \{a_i\}_{i \in B} \ l.i.\}$ Basic or Conic Relaxation
- $\{x \in P(B) : x_j \in \mathbb{Z} \quad \forall j \in N_I\}$ is a relaxation of P_I .
- x(B) unique solution to $a_i^T x = b_i \quad \forall i \in B$

(日)

- 31

Feasible set:

•
$$P := \{x \in \mathbb{R}^n : a_i^T x \le b_i \quad \forall i \in M\}$$

•
$$P_I := \{x \in P : x_j \in \mathbb{Z} \mid \forall j \in N_I\}$$
 for $N_I \subseteq \{1, \dots, n\}$

Relaxations:

- P, LP Relaxation
- $P(B) := \{x \in \mathbb{R}^n : a_i^T x \le b_i \quad \forall i \in B\}$ for $B \in \mathcal{B} := \{B \subseteq M : |B| = n, \{a_i\}_{i \in B} \ l.i.\}$ Basic or Conic Relaxation
- $\{x \in P(B) : x_j \in \mathbb{Z} \quad \forall j \in N_I\}$ is a relaxation of P_I .
- x(B) unique solution to $a_i^T x = b_i \quad \forall i \in B$

3

< □ > < 同 > < 回 > < 回 >

Introduction	Characterization	Lattices	Polyhedrality
000000000	00000	000	0000000
Split Cuts a	are Constructed from	om Valid Split	
Disjunction	S		

•
$$F^l := \{x \in \mathbb{R}^n : \pi^T x \le \pi_0\}$$

•
$$F^g := \{x \in \mathbb{R}^n : \pi^T x \ge \pi_0 + 1\}$$

Introduction	Characterization	Lattices 000	Polyhedrality
Split Cuts a	are Constructed fr	om Valid Split	
Disiunction	S		

•
$$F^l := \{x \in \mathbb{R}^n : \pi^T x \le \pi_0\}$$

•
$$F^g := \{x \in \mathbb{R}^n : \pi^T x \ge \pi_0 + 1\}$$

Use this to divide P into:

•
$$P^{l} := \{x \in P : \pi^{T}x \le \pi_{0}\}$$

• $P^{g} := \{x \in P : \pi^{T}x \ge \pi_{0} + 1\}$

≣ ୬९୯

Introduction	Characterization	Lattices 000	Polyhedrality
Split Cuts a	are Constructed fr	om Valid Split	
Disiunction	S		

•
$$F^l := \{x \in \mathbb{R}^n : \pi^T x \le \pi_0\}$$

•
$$F^g := \{x \in \mathbb{R}^n : \pi^T x \ge \pi_0 + 1\}$$

Use this to divide P into:

•
$$P^l := \{x \in P : \pi^T x \le \pi_0\}$$

•
$$P^g := \{x \in P : \pi^T x \ge \pi_0 + 1\}$$

A split cut for $D(\pi, \pi_0)$ and *P* is an inequality valid for:

• $\operatorname{conv}(P^l_{(\pi,\pi_0)} \cup P^g_{(\pi,\pi_0)})$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○

Introduction	Characterization	Lattices 000	Polyhedrality
Split Cuts a	are Constructed fr	om Valid Split	
Disiunction	S		

•
$$F^l := \{x \in \mathbb{R}^n : \pi^T x \le \pi_0\}$$

•
$$F^g := \{x \in \mathbb{R}^n : \pi^T x \ge \pi_0 + 1\}$$

Use this to divide P into:

•
$$P^l := \{x \in P : \pi^T x \le \pi_0\}$$

•
$$P^g := \{x \in \mathbf{P} : \pi^T x \ge \pi_0 + 1\}$$

A split cut for $D(\pi, \pi_0)$ and *P* is an inequality valid for:

•
$$P^l \cup P^g$$

•
$$\operatorname{conv}(P^l_{(\pi,\pi_0)} \cup P^g_{(\pi,\pi_0)})$$

3

<ロ> <同> <同> <同> <同> <同> <

Introduction	Characterization	Lattices 000	Polyhedrality
Valid Split Dis	sjunctions don't	Cut Integer Feasi	ble
Points			

For fixed N_I we are interested in (π, π_0) such that, for any *P*:

•
$$P_I \subseteq F^l \cup F^g \subsetneq \mathbb{R}^n$$

æ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Introduction	Characterization	Lattices 000	Polyhedrality
Valid Split I	Disjunctions don't	Cut Integer Feas	ible
Points			

For fixed N_I we are interested in (π, π_0) such that, for any *P*:

•
$$P_I \subseteq F^l \cup F^g \subsetneq \mathbb{R}^n$$

so we study

•
$$\Pi(N_I) := \{(\pi, \pi_0) \in (\mathbb{Z}^n \setminus \{0\}) \times \mathbb{Z} : \pi_j = 0, j \notin N_I\}$$

æ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Introduction Characterization Lattices Polyhedrality Occords The Split Closure is the Polyhedron Formed by All Split Cuts

The split closure [Cook, et. al. 1990] of P_I is

$$SC := \bigcap_{(\pi,\pi_0)\in\Pi(N_I)} \operatorname{conv}(P^l_{(\pi,\pi_0)}\cup P^g_{(\pi,\pi_0)})).$$

Theorem

[Cook, et. al. 1990] SC is a polyhedron

3

(日)

Introduction Characterization Lattices Polyhedrality

Sufficient to Study Split Cuts for Basic Relaxations

For basis $B \in \mathcal{B}$ let

•
$$P(B)^{l} := \{x \in P(B) : \pi^{T} x \le \pi_{0}\}$$

•
$$P(B)^g := \{x \in P(B) : \pi^T x \ge \pi_0 + 1\}$$

and

$$SC({oldsymbol B}):=igcap_{(\pi,\pi_0)\in\Pi(N_I)}\operatorname{conv}(P({oldsymbol B})^l_{(\pi,\pi_0)}\cup P({oldsymbol B})^g_{(\pi,\pi_0)}).$$

3

・ロト ・聞 ト ・ ヨト ・ ヨト

Introduction Characterization Lattices Polyhedrality

Sufficient to Study Split Cuts for Basic Relaxations

For basis $B \in \mathcal{B}$ let

•
$$P(\mathbf{B})^l := \{x \in P(\mathbf{B}) : \pi^T x \le \pi_0\}$$

•
$$P(B)^g := \{x \in P(B) : \pi^T x \ge \pi_0 + 1\}$$

and

$$SC({oldsymbol B}):=igcap_{(\pi,\pi_0)\in\Pi(N_I)}\operatorname{conv}(P({oldsymbol B})^l_{(\pi,\pi_0)}\cup P({oldsymbol B})^g_{(\pi,\pi_0)}).$$

Theorem

[Andersen, et. al. 2005] $SC = \bigcap_{B \in \mathcal{B}} SC(B)$

Theorem

[Andersen, et. al. 2005] SC(B) is a polyhedron for all $B \in B$. Hence SC is a polyhedron.

• Let
$$P = P(B) = \{x \in \mathbb{R}^n : Bx \le b\}$$
, for $B \in \mathbb{Q}^{n \times n}$, rank $(B) = n$

・ロト ・聞 ト ・ ヨト ・ ヨト

E 990

Introduction 000000000	Characterization ●○○○○	Lattices 000	Polyhedrality
Farkas's Lemm	a Can be Used t	o Characterize	Split
Cuts			

• Let
$$P = P(B) = \{x \in \mathbb{R}^n : Bx \le b\}$$
, for $B \in \mathbb{Q}^{n \times n}$, rank $(B) = n$

• For
$$(\pi, \pi_0) \in \Pi(N_I)$$
 such that
 $\pi^T x(B) \in (\pi_0, \pi_0 + 1)$ let
• $P^l := \{x \in P : \pi^T x \le \pi_0\}$
• $P^g := \{x \in P : \pi^T x \ge \pi_0 + 1\}$

• Let
$$P = P(B) = \{x \in \mathbb{R}^n : Bx \le b\}$$
, for $B \in \mathbb{Q}^{n \times n}$, rank $(B) = n$

• For
$$(\pi, \pi_0) \in \Pi(N_I)$$
 such that
 $\pi^T x(B) \in (\pi_0, \pi_0 + 1)$ let
• $P^l := \{x \in P : \pi^T x < \pi_0\}$

•
$$P^g := \{x \in P : \pi^T x \ge \pi_0 + 1\}$$

• Split cut $\delta^T x \leq \delta_0$ is valid for P^l and P^g :

• F.L. for
$$P^l$$
: $\exists (\mu_0^l, \mu^l) \in \mathbb{R}_+ \times \mathbb{R}_+^n$ s.t.

•
$$\delta = B^T \mu^l + \mu_0^l \pi$$

•
$$\delta_0 b^I \mu^l + \mu_0^l \pi_0$$

• F.L. for
$$P^g$$
: $\exists (\mu_0^g, \mu^g) \in \mathbb{R}_+ \times \mathbb{R}^n_+$ s.t.

•
$$\delta = B^T \mu^g - \mu_0^g \pi$$

•
$$\delta_0 b^T \mu^g - \mu_0^g (\pi_0 + 1)$$

(日)

3

• Let
$$P = P(B) = \{x \in \mathbb{R}^n : Bx \le b\}$$
, for
 $B \in \mathbb{Q}^{n \times n}$, rank $(B) = n$
• For $(\pi, \pi_0) \in \Pi(N_I)$ such that
 $\pi^T x(B) \in (\pi_0, \pi_0 + 1)$ let
• $P^l := \{x \in P : \pi^T x \le \pi_0\}$
• $P^g := \{x \in P : \pi^T x \ge \pi_0 + 1\}$
• Split cut $\delta^T x \le \delta_0$ is valid for P^l and P^g :
• F.L. for P^l : $\exists (\mu_0^l, \mu^l) \in \mathbb{R}_+ \times \mathbb{R}^n_+$ s.t.
• $\delta = B^T \mu^l + \mu_0^l \pi$
• $\delta_0 \ge b^T \mu^l + \mu_0^l \pi_0$
• F.L. for P^g : $\exists (\mu_0^g, \mu^g) \in \mathbb{R}_+ \times \mathbb{R}^n_+$ s.t.
• $\delta = B^T \mu^g - \mu_0^g \pi$
• $\delta_0 \ge b^T \mu^g - \mu_0^g \pi$

< ∃→

< □ > < 同 > < 回 > <</p>

æ

• Let
$$P = P(B) = \{x \in \mathbb{R}^n : Bx \le b\}$$
, for
 $B \in \mathbb{Q}^{n \times n}$, rank $(B) = n$
• For $(\pi, \pi_0) \in \Pi(N_I)$ such that
 $\pi^T x(B) \in (\pi_0, \pi_0 + 1)$ let
• $P^l := \{x \in P : \pi^T x \le \pi_0\}$
• $P^g := \{x \in P : \pi^T x \ge \pi_0 + 1\}$
• Split cut $\delta^T x \le \delta_0$ is valid for P^l and P^g :
• F.L. for P^l : $\exists (\mu_0^l, \mu^l) \in \mathbb{R}_+ \times \mathbb{R}^n_+$ s.t.
• $\delta = B^T \mu^l + \mu_0^l \pi$
• $\delta_0 \ge b^T \mu^l + \mu_0^l \pi$
• $\delta = B^T \mu^g - \mu_0^g \pi$
• $\delta_0 \ge b^T \mu^g - \mu_0^g (\pi_0 + 1)$

э

< □ > < 同 > < 回 >

æ

• Let
$$P = P(B) = \{x \in \mathbb{R}^n : Bx \le b\}$$
, for
 $B \in \mathbb{Q}^{n \times n}$, rank $(B) = n$
• For $(\pi, \pi_0) \in \Pi(N_I)$ such that
 $\pi^T x(B) \in (\pi_0, \pi_0 + 1)$ let
• $P^I := \{x \in P : \pi^T x \le \pi_0\}$
• $P^g := \{x \in P : \pi^T x \ge \pi_0 + 1\}$
• Split cut $\delta^T x \le \delta_0$ is valid for P^I and P^g :
• F.L. for P^I : $\exists (\mu_0^I, \mu^I) \in \mathbb{R}_+ \times \mathbb{R}^n_+$ s.t.
• $\delta = B^T \mu^I + \mu_0^I \pi$
• $\delta_0 = b^T \mu^I + \mu_0^I \pi$
• F.L. for P^g : $\exists (\mu_0^g, \mu^g) \in \mathbb{R}_+ \times \mathbb{R}^n_+$ s.t.
• $\delta = B^T \mu^g = \mu_0^g \pi$

•
$$\delta_0 = b^T \mu^g - \mu_0^g (\pi_0 + 1)$$

< ∃→

< □ > < 同 > < 回 >

æ

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○へ⊙

ntroduction	Characterization	Lattices	Polyhedrality
	00000		

Proposition

[Andersen, et. al. 2005, Balas and Perregaard, 2003, Caprara and Letchford, 2003] All non-dominated valid inequalities for $\operatorname{conv}(P^l_{(\pi,\pi_0)} \cup P^g_{(\pi,\pi_0)})$ are of the form $\delta^T x \leq \delta_0$ where

$$\delta = B^T \mu^l + \mu_0^l \pi = B^T \mu^g - \mu_0^g \pi$$

$$\delta_0 = b^T \mu^l + \mu_0^l \pi_0 = b^T \mu^g - \mu_0^g (\pi_0 + 1)$$

for $\mu_0^l, \mu_0^g \in \mathbb{R}_+$ and $\mu^l, \mu^g \in \mathbb{R}_+^n$ solutions to

$$B^{T}\mu^{g} - B^{T}\mu^{l} = \pi$$

$$b^{T}\mu^{g} - b^{T}\mu^{l} = \pi_{0} + \mu_{0}^{g}$$

$$\mu_{0}^{l} + \mu_{0}^{g} = 1, \quad \mu_{0}^{g} \in (0, 1), \quad \mu_{i}^{l} \cdot \mu_{i}^{g} = 0$$

FOCH The IC Million School of Industrial and Systems Engineering

A B > A B >

Introduction	Characterization	Lattices	Polyhedrality
00000000	00000	000	0000000

$$B^{T}\mu^{g} - B^{T}\mu^{l} = \pi$$

$$b^{T}\mu^{g} - b^{T}\mu^{l} = \pi_{0} + \mu_{0}^{g}$$

$$\mu^{l}, \mu^{g} \in \mathbb{R}^{n}_{+}, \quad \mu_{i}^{l} \cdot \mu_{i}^{g} = 0$$

$$\mu_{0}^{g} \in (0, 1), \quad \pi_{0} \in \mathbb{Z}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ へ () ●

Introduction	Characterization	Lattices	Polyhedrality
	00000		

$$B^{T}\mu^{g} - B^{T}\mu^{l} = \pi$$

$$b^{T}\mu^{g} - b^{T}\mu^{l} = \pi_{0} + \mu_{0}^{g}$$

$$\mu^{l}, \mu^{g} \in \mathbb{R}^{n}_{+}, \quad \mu_{i}^{l} \cdot \mu_{i}^{g} = 0$$

$$\mu_{0}^{g} \in (0, 1), \quad \pi_{0} \in \mathbb{Z}$$

三 のへで

(日)

Introduction	Characterization	Lattices	Polyhedrality
	00000		

$$B^{T} \mu = \pi$$
$$b^{T} \mu = \pi_{0} + \mu_{0}^{g}$$
$$\mu \in \mathbb{R}^{n}$$
$$\mu_{0}^{g} \in (0, 1), \quad \pi_{0} \in \mathbb{Z}$$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}$$

æ

< □ > < □ > < □ > < □ > < □ > < □ >

Introduction	Characterization	Lattices	Polyhedrality
00000000		000	0000000

$$egin{aligned} B^T \mu &= \pi \ b^T \mu &= \pi_0 + \mu_0^g \ \mu \in \mathbb{R}^n \ \mu_0^g \in (0,1), \quad \pi_0 \in \mathbb{Z} \end{aligned}$$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}$$

æ

▲口→ ▲圖→ ▲注→ ▲注→
Introduction 00000000	Characterization	Lattices ooo	Polyhedrality

$$egin{aligned} B^T \mu &= \pi \ \lfloor b^T \mu
floor &= \pi_0 \ \mu \in \mathbb{R}^n \ \mu^T b
otin \mathbb{Z} \end{aligned}$$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu) := b^T \mu - \lfloor b^T \mu \rfloor$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○へ⊙

Introduction 00000000	Characterization	Lattices 000	Polyhedrality

$$egin{aligned} B^T \mu &= \pi \ \lfloor b^T \mu
floor &= \pi_0 \ \mu \in \mathbb{R}^n \ \mu^T b
otin \mathbb{Z} \end{aligned}$$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu) := b^T \mu - \lfloor b^T \mu \rfloor$$

Bx(B) = b

E 990

ヘロン ヘロン ヘロン ヘロン

Introduction	Characterization	Lattices	Polyhedrality
00000000	○○○●○	000	

$$egin{aligned} egin{aligned} egi$$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu) := b^T \mu - \lfloor b^T \mu \rfloor$$

$$\mu^T B x(B) = \mu^T b$$

三 のへで

Introduction 00000000	Characterization	Lattices ooo	Polyhedrality

 $B^{T}\mu = \pi$ $\lfloor b^{T}\mu \rfloor = \pi_{0}$ $\mu \in \mathbb{R}^{n}$ $\mu^{T}b \notin \mathbb{Z}$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu) := b^T \mu - \lfloor b^T \mu \rfloor$$

 $\mu^T B x(B) = \mu^T b$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Introduction	Characterization	Lattices	Polyhedrality
00000000	○○○●○	000	

$$egin{aligned} egin{aligned} egi$$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu) := b^T \mu - \lfloor b^T \mu \rfloor$$

$$\pi^T x(B) = \mu^T b$$

三 のへで

Introduction 00000000	Characterization	Lattices ooo	Polyhedrality

 $B^{T}\mu = \pi$ $\lfloor b^{T}\mu \rfloor = \pi_{0}$ $\mu \in \mathbb{R}^{n}$ $\mu^{T}b \notin \mathbb{Z}$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu) := b^T \mu - \lfloor b^T \mu \rfloor$$
$$\pi^T x(B) = \mu^T b$$

Introduction 00000000	Characterization	Lattices ooo	Polyhedrality

$$egin{aligned} egin{aligned} egi$$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu) := b^T \mu - \lfloor b^T \mu \rfloor$$

$$\pi_0 < \pi^T x(B) < \pi_0 + 1$$

三 のへで

Introduction 00000000	Characterization	Lattices ooo	Polyhedrality

$$egin{aligned} m{B}^T \mu &= \pi \ ig b^T \mu ig] &= \pi_0 \ \mu \in \mathbb{R}^n \ \mu^T b
otin \mathbb{Z} \end{aligned}$$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu) := b^T \mu - \lfloor b^T \mu \rfloor$$

$$\delta = B^T \mu^l + \mu_0^l \pi$$

$$\delta_0 = b^T \mu^l + \mu_0^l \pi_0$$

Introduction 00000000	Characterization	Lattices ooo	Polyhedrality

$$egin{aligned} egin{aligned} egi$$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^g = f(b^T \mu), \quad \mu_0^l = 1 - \mu_0^g$$

$$\delta = B^T \mu^l + \mu_0^l \pi$$
$$\delta_0 = b^T \mu^l + \mu_0^l \pi_0$$

三 のへで

Introduction	Characterization	Lattices	Polyhedrality
	00000		

$$egin{aligned} B^T \mu &= \pi \ \lfloor b^T \mu
floor &= \pi_0 \ \mu \in \mathbb{R}^n \ \mu^T b
otin \mathbb{Z} \end{aligned}$$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^l = 1 - f(b^T \mu)$$

$$\delta = B^T \mu^l + \mu_0^l \pi$$
$$\delta_0 = b^T \mu^l + \mu_0^l \pi_0$$

Introduction	Characterization	Lattices	Polyhedrality
	00000		

$$egin{aligned} B^T \mu &= \pi \ \lfloor b^T \mu
floor &= \pi_0 \ \mu \in \mathbb{R}^n \ \mu^T b
otin \mathbb{Z} \end{aligned}$$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^l = 1 - f(b^T \mu)$$

$$\delta = B^T \mu^l + \mu_0^l \pi$$
$$\delta_0 = b^T \mu^l + \mu_0^l \pi_0$$

Introduction	Characterization	Lattices	Polyhedrality
	00000		

$$egin{aligned} egin{aligned} egi$$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^l = 1 - f(b^T \mu)$$

$$\delta = B^T \mu^- + (1 - f(b^T \mu))\pi$$

$$\delta_0 = b^T \mu^- + (1 - f(b^T \mu))\pi_0$$

Introduction	Characterization ○○○●○	Lattices ooo	Polyhedrality

 $B^{T}\mu = \pi$ $\lfloor b^{T}\mu \rfloor = \pi_{0}$ $\mu \in \mathbb{R}^{n}$ $\mu^{T}b \notin \mathbb{Z}$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^l = 1 - f(b^T \mu)$$

$$\delta = B^T \mu^- + (1 - f(b^T \mu))\pi$$

$$\delta_0 = b^T \mu^- + (1 - f(b^T \mu))\pi_0$$

Introduction	Characterization	Lattices	Polyhedrality
	00000		

$$egin{aligned} B^T \mu &= \pi \ \lfloor b^T \mu
floor &= \pi_0 \ \mu \in \mathbb{R}^n \ \mu^T b
otin \mathbb{Z} \end{aligned}$$

$$\mu_i^l = (\mu_i)^- := \max\{-\mu_i, 0\}, \quad \mu_0^l = 1 - f(b^T \mu)$$

$$\delta = B^T \mu^- + (1 - f(b^T \mu)) B^T \mu$$

$$\delta_0 = b^T \mu^- + (1 - f(b^T \mu)) \lfloor b^T \mu \rfloor$$

Introduction	Characterization	Lattices	Polyhedrality
	00000		

Proposition

$$\operatorname{conv}(P^l_{(\pi,\pi_0)} \cup P^g_{(\pi,\pi_0)}) = \{x \in P \, : \, \delta^T x \le \delta_0\}$$

where $\delta(\mu)^T x \leq \delta_0(\mu)$ is defined equivalent to

$$(\mu^{-})^{T}(Bx-b) + (1 - f(\mu^{T}b))(\mu^{T}Bx - \lfloor \mu^{T}b \rfloor) \leq 0$$

for μ unique solution (if it exists) to

$$B^{T}\mu = \pi \qquad \mu \in \mathbb{R}^{n}$$
$$\mu^{T}b \notin \mathbb{Z} \qquad \pi_{0} = \lfloor \mu^{T}b \rfloor$$

 $(y^-=\max\{-y,0\}$, $f(y)=y-\lfloor y\rfloor$ and operations over vectors are component wise)

rgia fech

(日)

= √Q<</p>

00000000	00000	•••	0000000
Introduction	Characterization	Lattices	Polyhedrality

What Multipliers Induce Valid Split Disjunctions?

We have

 $\Pi(N_I) := \{(\pi, \pi_0) \in (\mathbb{Z}^n \setminus \{0\}) \times \mathbb{Z} \ : \ \pi_j = 0, j \notin N_I\} \text{ and }$

$$B^{T}\mu = \pi \qquad \mu \in \mathbb{R}^{r}$$
$$\mu^{T}b \notin \mathbb{Z} \qquad \pi_{0} = \lfloor \mu^{T}b \rfloor$$

• Let $B = [B_I B_C]$ for $B_I \in \mathbb{R}^{n \times |N_I|}$ and $B_C \in \mathbb{R}^{n \times (n - |N_I|)}$ corresponding to the integer and continuous variables of P_I . Multipliers that induce valid split disjunctions are

$$\mathcal{L}(B) := \{ \mu \in \mathbb{R}^n : B_I^{T} \mu \in \mathbb{Z}^{|N_I|}, \quad B_C^{T} \mu = 0 \}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Introduction	Characterization	Lattices	Polyhedrality
00000000	00000	●oo	
What Multipliers	Induce Valid Spli	t Disjunctions?	

• We have

 $\Pi(N_I) := \{(\pi, \pi_0) \in (\mathbb{Z}^n \setminus \{0\}) \times \mathbb{Z} : \pi_j = 0, j \notin N_I\} \text{ and }$

$$B^{T} \mu = \pi \qquad \mu \in \mathbb{R}^{r}$$
$$\mu^{T} b \notin \mathbb{Z} \qquad \pi_{0} = \lfloor \mu^{T} b \rfloor$$

• Let $B = [B_I B_C]$ for $B_I \in \mathbb{R}^{n \times |N_I|}$ and $B_C \in \mathbb{R}^{n \times (n - |N_I|)}$ corresponding to the integer and continuous variables of P_I . Multipliers that induce valid split disjunctions are

$$\mathcal{L}(B) := \{ \mu \in \mathbb{R}^n : B_I^T \mu \in \mathbb{Z}^{|N_I|}, \quad B_C^T \mu = 0 \}$$

・ロット (雪) (日) (日)

		alata dita lata a	and a trans
000000000			
Introduction	Characterization	Lattinga	Debuke deality

valid Split Disjunctions are Related to integer Lattices

• For $\{v^i\}_{i=1}^r \subseteq \mathbb{R}^n$ l.i. a lattice is

$$\mathcal{L} := \{ \mu \in \mathbb{R}^n : \mu = \sum_{i=1}^r k_i v^i \quad k_i \in \mathbb{Z} \}$$

• $\mathcal{L}(B)$ is a lattice,

 $\left\lceil \mu^{-} \right\rceil^{T} (Bx - b) + (1 - f(\mu^{T}b))(\mu^{T}Bx - \lfloor \mu^{T}b \rfloor) \leq 0$

is valid for P_I and cuts x(B). [Köppe and Weismantel, 2004].

Every μ ∈ L(B) s.t. μ^Tb ∉ Z induces a valid split disjunction.
 [Bertsimas and Weismantel, 2005].

- コット (雪) (日) (日)

Introduction 000000000	Characterization	Lattices ○●○	Polyhedrality
Valid Split Disju	nctions are F	Related to Integer	Lattices

• For $\{v^i\}_{i=1}^r \subseteq \mathbb{R}^n$ l.i. a lattice is

$$\mathcal{L} := \{ \mu \in \mathbb{R}^n : \mu = \sum_{i=1}^r k_i v^i \quad k_i \in \mathbb{Z} \}$$

• $\mathcal{L}(B)$ is a lattice,

$$\lceil \mu^{-} \rceil^{T} (Bx - b) + (1 - f(\mu^{T}b))(\mu^{T} Bx - \lfloor \mu^{T}b \rfloor) \le 0$$

is valid for P_I and cuts x(B). [Köppe and Weismantel, 2004].

Every µ ∈ L(B) s.t. µ^Tb ∉ Z induces a valid split disjunction.
 [Bertsimas and Weismantel, 2005].

3

(日)

Introduction 00000000	Characterization	Lattices o●o	Polyhedrality
Valid Split Disju	nctions are Related	d to Integer Lat	tices

• For $\{v^i\}_{i=1}^r \subseteq \mathbb{R}^n$ l.i. a lattice is

$$\mathcal{L} := \{ \mu \in \mathbb{R}^n : \mu = \sum_{i=1}^r k_i v^i \quad k_i \in \mathbb{Z} \}$$

• $\mathcal{L}(B)$ is a lattice,

$$\lceil \mu^{-} \rceil^{T} (Bx - b) + (1 - f(\mu^{T}b))(\mu^{T} Bx - \lfloor \mu^{T}b \rfloor) \le 0$$

is valid for P_I and cuts x(B). [Köppe and Weismantel, 2004].

Every μ ∈ L(B) s.t. μ^Tb ∉ ℤ induces a valid split disjunction.
 [Bertsimas and Weismantel, 2005].

< □ > < 同 > < 回 > < 回 >

Introduction 00000000	Characterization 00000	Lattices ○○●	Polyhedrality 0000000
Propositio	n		
	$SC(B) = \bigcap_{\substack{\mu \in \mathcal{L}(B) \\ \mu^T b \notin \mathbb{Z}}} \{ x \in P(B) \}$): $\delta(\mu)^T x \leq \delta_0(\mu)$ }.	

・ロト・日本・日本・日本・日本

ntroduction Doooooooo	Characterization 00000	Lattices ○○●	Polyhedrality 0000000
Propositio	n		
	$SC(B) = \bigcap_{\substack{\mu \in \mathcal{L}(B) \\ \mu^T b \notin \mathbb{Z}}} \{ x \in P(B) \}$): $\delta(\mu)^T x \le \delta_0(\mu)$ }.	

Proposition

For $\mu \in \mathcal{L}(B)$ s.t $\mu^T b \notin \mathbb{Z}$ split cut

$$(\mu^{-})^{T}(Bx-b) + (1-f(\mu^{T}b))(\mu^{T}Bx - \lfloor \mu^{T}b \rfloor) \leq 0$$

dominates

$$\lceil \mu^- \rceil^T (Bx - b) + (1 - f(\mu^T b))(\mu^T Bx - \lfloor \mu^T b \rfloor) \le 0$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction Characterization Lattices Polyhedrality Studying $\mathcal{L}(B)$ in Each Orthant Decomposes SC(B) to the Intersection of a *Finite* Number of Sets

For $\sigma \in \{0,1\}^n$ let

 $\mathcal{L}(B,\sigma) := \{ \mu \in \mathcal{L}(B) : (-1)^{\sigma_i} \mu_i \ge 0, \quad \forall i \in \{1,\ldots,n\} \}$

so that

$$SC(B) = \bigcap_{\sigma \in \{0,1\}^n} SC(B,\sigma)$$

where

$$SC(B, \sigma) = \bigcap_{\substack{\mu \in \mathcal{L}(B, \sigma) \\ \mu^T b \notin \mathbb{Z}}} \{ x \in P(B) : \delta(\mu)^T x \le \delta_0(\mu) \}$$

3

(日)

Lemma

Let $\sigma \in \{0,1\}^n$ and let $\mu \in \mathcal{L}(B,\sigma)$ with $\mu = \alpha + \beta$ for $\alpha, \beta \in \mathcal{L}(B,\sigma)$ such that $\beta^T b \in \mathbb{Z}$. Then $\delta(\mu)^T x \leq \delta_0(\mu)$ is dominated by $\delta(\alpha)^T x \leq \delta_0(\alpha)$ in P(B).

Proof.

Uses the fact that for α, β in the same orthant $|\alpha_i + \beta_i| = |\alpha_i| + |\beta_i|$ for all $i \in \{1, \dots, n\}$.

-

(日)

Let {vⁱ}_{i∈V(σ)} ⊆ L(B, σ) be a (FIGS), i.e. a finite set such that

$$\mathcal{L}(B,\sigma) = \{\mu \in \mathbb{R}^r : \mu = \sum_{i \in \mathcal{V}(\sigma)} k_i v^i \quad k_i \in \mathbb{Z}_+ \}$$

• We want $\mu^T b \notin \mathbb{Z}$, so for $i \in \mathcal{V}(\sigma)$ let

 $m_i = \min\{m \in \mathbb{Z}_+ \setminus \{0\} : m b^T v^i \in \mathbb{Z}\}$

and define the following finite subset of $\mathcal{L}(B, \sigma)$.

 $\mathcal{L}^{0}(B,\sigma) := \{ \mu \in \mathcal{L}(B,\sigma) \, : \, \mu = \sum_{i \in \mathcal{V}(\sigma)} r_{i}v^{i}, \, r_{i} \in \{0,\ldots,m_{i}-1\} \}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

• Let $\{v^i\}_{i \in \mathcal{V}(\sigma)} \subseteq \mathcal{L}(B, \sigma)$ be a (FIGS), i.e. a finite set such that

$$\mathcal{L}(B,\sigma) = \{\mu \in \mathbb{R}^r : \mu = \sum_{i \in \mathcal{V}(\sigma)} k_i v^i \quad k_i \in \mathbb{Z}_+ \}$$

• We want $\mu^T b \notin \mathbb{Z}$, so for $i \in \mathcal{V}(\sigma)$ let

$$m_i = \min\{m \in \mathbb{Z}_+ \setminus \{0\} : m b^T v^i \in \mathbb{Z}\}$$

and define the following finite subset of $\mathcal{L}(B, \sigma)$.

$$\mathcal{L}^{0}(B,\sigma) := \{ \mu \in \mathcal{L}(B,\sigma) \, : \, \mu = \sum_{i \in \mathcal{V}(\sigma)} r_{i} v^{i}, \, r_{i} \in \{0, \dots, m_{i}-1\} \}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Introduction Characterization Charaterization Characterization Characterization Characteri

Theorem

 $SC(B, \sigma)$ the polyhedron given by

$$SC(B,\sigma) = \bigcap_{\substack{\mu \in \mathcal{L}^{0}(B,\sigma) \\ \mu^{T}b \notin \mathbb{Z}}} \{ x \in P(B) : \delta(\mu)^{T}x \le \delta_{0}(\mu) \}$$

Corollary

SC(B) is a polyhedron for all $B \in \mathcal{B}$. SC is a polyhedron.

3

(日)

Introduction	Characterization	Lattices	Polyhedrality
00000000		ooo	○○○○●○○

Proof Idea.

• Goal: For $\mu \in \mathcal{L}(B, \sigma)$, $\delta(\mu)^T x \leq \delta_0(\mu)$ is dominated by $\delta(\alpha)^T x \leq \delta_0(\alpha)$ for some $\alpha \in \mathcal{L}^0(B, \sigma)$.

How:

• For $\mu \in \mathcal{L}(B, \sigma)$ show that $\mu = \alpha + \beta$ for α, β such that: • $\alpha \in \mathcal{L}^0(B, \sigma), \beta \in \mathcal{L}(B, \sigma)$

 $\ \beta^*b \in \mathbb{Z}$

Use Lemma.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Characterization	Lattices	Polyhedrality
			0000000

Proof Idea.

- Goal: For $\mu \in \mathcal{L}(B, \sigma)$, $\delta(\mu)^T x \leq \delta_0(\mu)$ is dominated by $\delta(\alpha)^T x \leq \delta_0(\alpha)$ for some $\alpha \in \mathcal{L}^0(B, \sigma)$.
- How:
 - For $\mu \in \mathcal{L}(B, \sigma)$ show that $\mu = \alpha + \beta$ for α, β such that:
 - $\alpha \in \mathcal{L}^{0}(B,\sigma), \beta \in \mathcal{L}(B,\sigma)$
 - $\beta^T b \in \mathbb{Z}$

Use Lemma.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Introduction	Characterization	Lattices	Polyhedrality
00000000		ooo	○○○○○●○

Proof of Theorem.

Let $\{v^i\}_{i\in\mathcal{V}(\sigma)}$ be a FIGS for $\mathcal{L}(B,\sigma)$ and let $\{k_i\}_{i\in\mathcal{V}(\sigma)}\subseteq\mathbb{Z}_+$ be such that

$$\mu = \sum_{i \in \mathcal{V}(\sigma)} k_i v^i.$$

≣ ୬९୯

<ロ> <同> <同> <同> <同> <同> <

Introduction	Characterization	Lattices	Polyhedrality
00000000	00000	000	0000000

Proof of Theorem.

Let $\{v^i\}_{i\in\mathcal{V}(\sigma)}$ be a FIGS for $\mathcal{L}(B,\sigma)$ and let $\{k_i\}_{i\in\mathcal{V}(\sigma)}\subseteq\mathbb{Z}_+$ be such that

$$\mu = \sum_{i \in \mathcal{V}(\sigma)} k_i v^i.$$

For each $i \in \mathcal{V}(\sigma)$ we have

$$k_i = n_i m_i + r_i$$

for some $n_i, r_i \in \mathbb{Z}_+$, $0 \le r_i < m_i$.Let

$$\alpha = \sum_{i \in \mathcal{V}(\sigma)} r_i v^i$$
 and $\beta = \sum_{i \in \mathcal{V}(\sigma)} n_i m_i v^i$

We have $\alpha \in \mathcal{L}^{0}(B, \sigma)$ and, as m_i is such that $m_i b^T v^i \in \mathbb{Z}$ we have $b^T \beta \in \mathbb{Z}$.

・ロ・・聞・・思・・日・ のへの

Introduction	Characterization	Lattices	Polyhedrality
000000000		000	○○○○○○●
Final Remarks			

 The proof of the Theorem gives a way of enumerating the inequalities of SC(B, σ), SC(B) and SC:

- Not practical for anything buy toy problems.
- There is redundancy in the enumeration for SC and SC(B).
- There is also redundancy in the enumeration of SC(B, σ). In fact we can reduce L⁰(B, σ) to

$$\mathcal{L}^{0}(B,\sigma) := \{ \mu \in \mathcal{L}(B,\sigma) : \mu = \sum_{i \in \mathcal{V}(\sigma)} r_{i}v^{i}, r_{i} \in \{0,\ldots,m_{i}-1\}$$

and $\{r_i\}_{i \in \mathcal{V}(\sigma)}$ are relatively prime}

orgia Tech

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Introduction	Characterization	Lattices	Polyhedrality
000000000		000	○○○○○○●
Final Remarks			

- The proof of the Theorem gives a way of enumerating the inequalities of SC(B, σ), SC(B) and SC:
 - Not practical for anything buy toy problems.
 - There is redundancy in the enumeration for *SC* and *SC*(*B*).
 - There is also redundancy in the enumeration of SC(B, σ). In fact we can reduce L⁰(B, σ) to

$$\mathcal{L}^{0}(B,\sigma) := \{ \mu \in \mathcal{L}(B,\sigma) : \mu = \sum_{i \in \mathcal{V}(\sigma)} r_{i}v^{i}, r_{i} \in \{0,\ldots,m_{i}-1\}$$

Tech

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Introduction	Characterization	Lattices	Polyhedrality
00000000		000	○○○○○○●
Final Remarks			

- The proof of the Theorem gives a way of enumerating the inequalities of SC(B, σ), SC(B) and SC:
 - Not practical for anything buy toy problems.
 - There is redundancy in the enumeration for *SC* and *SC*(*B*).
 - There is also redundancy in the enumeration of SC(B, σ). In fact we can reduce L⁰(B, σ) to

$$\mathcal{L}^{0}(B,\sigma) := \{ \mu \in \mathcal{L}(B,\sigma) : \mu = \sum_{i \in \mathcal{V}(\sigma)} r_{i}v^{i}, r_{i} \in \{0,\ldots,m_{i}-1\}$$

Tech

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

- The proof of the Theorem gives a way of enumerating the inequalities of SC(B, σ), SC(B) and SC:
 - Not practical for anything buy toy problems.
 - There is redundancy in the enumeration for *SC* and *SC*(*B*).
 - There is also redundancy in the enumeration of SC(B, σ). In fact we can reduce L⁰(B, σ) to

$$\mathcal{L}^{0}(B,\sigma) := \{ \mu \in \mathcal{L}(B,\sigma) : \mu = \sum_{i \in \mathcal{V}(\sigma)} r_{i}v^{i}, r_{i} \in \{0,\ldots,m_{i}-1\}$$

Tech

- コット (雪) (日) (日)

- The proof of the Theorem gives a way of enumerating the inequalities of SC(B, σ), SC(B) and SC:
 - Not practical for anything buy toy problems.
 - There is redundancy in the enumeration for *SC* and *SC*(*B*).
 - There is also redundancy in the enumeration of SC(B, σ). In fact we can reduce L⁰(B, σ) to

$$\mathcal{L}^{0}(B,\sigma) := \{ \mu \in \mathcal{L}(B,\sigma) : \mu = \sum_{i \in \mathcal{V}(\sigma)} r_{i}v^{i}, r_{i} \in \{0,\ldots,m_{i}-1\}$$

Tech

- コット (雪) (日) (日)
Lattices

- D. Bertsimas, R. Weismantel.
 Optimization over Integers.
 Dynamic Ideas, Belmont, 2005.
- K. Andersen, G. Cornuejols, Y. Li Split Closure and Intersection Cuts. Mathematical Programming, 102:457–493. 2005.
- 📔 E. Balas, M. Perregaard

A precise correspondence between lift-and-project cuts, simple disjunctive cuts and mixed integer Gomory cuts for 0 1 programming.

Mathematical Programming 94:221–245. 2003.

A. Caprara, A.N. Letchford On the separation of split cuts and related inequalities. *Mathematical Programming* 94:279–294. 2003.

- W. Cook, R. Kannan, A. Schrijver. Chvátal closures for mixed integer programming problems. Mathematical Programming, 47:155–174. 1990.
- S. Dash, O. Günlük, A. Lodi On the MIR closure of polyhedra. Working Paper.
- M. Köppe, R. Weismantel Cutting planes from a mixed integer Farkas lemma. *Operations Research Letters* 32:207–211. 2004

・ロット (雪) (日) (日)