A Constructive Characterization of the Split Closure of a Mixed Integer Linear Program

Juan Pablo Vielma

School of Industrial and Systems Engineering
Georgia Institute of Technology
19th International Symposium on Mathematical
Programming, 2006

Outline

(9) Introduction
(2) Characterization
(3) Lattices
4) Polyhedrality

History and Motivation

- History:
- Split Cuts were introduced by [Cook, et. al. 1990]. Special case of Balas's Disjunctive Cuts. "Equivalent" Intersection Cuts, Mixed Integer Gomory Cuts and MIR Cuts.
- The Split Closure is obtained by applying all split cuts.
- Split Closure is a polyhedron
[Cook, et. al. 1990, Andersen, et. al. 2005]. Non-constructive proofs.
- The Split Cloure has recently been studied by [Balas and Saxena, 2005] and by [Dash et. al. 2005].

- Motivation of Constructive Characterization:
 - Algorithm to generate Split Closure? (Naive)
 - Helps understand Split Cuts better.

History and Motivation

- History:
- Split Cuts were introduced by [Cook, et. al. 1990]. Special case of Balas's Disjunctive Cuts. "Equivalent" Intersection Cuts, Mixed Integer Gomory Cuts and MIR Cuts.
- The Split Closure is obtained by applying all split cuts.
- Split Closure is a polyhedron [Cook, et. al. 1990, Andersen, et. al. 2005]. Non-constructive proofs.
- The Split Cloure has recently been studied by [Balas and Saxena, 2005] and by [Dash et. al. 2005].
- Motivation of Constructive Characterization:
- Algorithm to generate Split Closure? (Naive).
- Helps understand Split Cuts better.

Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- $P:=\left\{x \in \mathbb{R}^{n}: a_{i}^{T} x \leq b_{i} \quad \forall i \in M\right\}$
- $P_{I}:=\left\{x \in P: x_{j} \in \mathbb{Z} \quad \forall j \in N_{I}\right\}$ for

Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- $P:=\left\{x \in \mathbb{R}^{n}: a_{i}^{T} x \leq b_{i} \quad \forall i \in M\right\}$
- $P_{I}:=\left\{x \in P: x_{j} \in \mathbb{Z} \quad \forall j \in N_{I}\right\}$ for $N_{I} \subseteq\{1, \ldots, n\}$

Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- $P:=\left\{x \in \mathbb{R}^{n}: a_{i}^{T} x \leq b_{i} \quad \forall i \in M\right\}$
- $P_{I}:=\left\{x \in P: x_{j} \in \mathbb{Z} \quad \forall j \in N_{I}\right\}$ for $N_{I} \subseteq\{1, \ldots, n\}$
Relaxations:
- P, LP Relaxation

Basic or Conic Relaxation

- $x(B)$ unique solution to $a_{i}^{T} x=b_{i} \quad \forall i \in B$

Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- $P:=\left\{x \in \mathbb{R}^{n}: a_{i}^{T} x \leq b_{i} \quad \forall i \in M\right\}$
- $P_{I}:=\left\{x \in P: x_{j} \in \mathbb{Z} \quad \forall j \in N_{I}\right\}$ for $N_{I} \subseteq\{1, \ldots, n\}$
Relaxations:
- P, LP Relaxation
- $P(B):=\left\{x \in \mathbb{R}^{n}: a_{i}^{T} x \leq b_{i} \quad \forall i \in B\right\}$ for $B \in \mathcal{B}:=\left\{B \subseteq M:|B|=n,\left\{a_{i}\right\}_{i \in B}\right.$ l.i. $\}$ Basic or Conic Relaxation

- $x(B)$ unique solution to $a_{i}^{T} x=b_{i} \quad \forall i \in B$

Feasible Set of a (Mixed) Integer Linear Program and Natural Relaxations

Feasible set:

- $P:=\left\{x \in \mathbb{R}^{n}: a_{i}^{T} x \leq b_{i} \quad \forall i \in M\right\}$
- $P_{I}:=\left\{x \in P: x_{j} \in \mathbb{Z} \quad \forall j \in N_{I}\right\}$ for $N_{I} \subseteq\{1, \ldots, n\}$
Relaxations:
- P, LP Relaxation
- $P(B):=\left\{x \in \mathbb{R}^{n}: a_{i}^{T} x \leq b_{i} \quad \forall i \in B\right\}$ for $B \in \mathcal{B}:=\left\{B \subseteq M:|B|=n,\left\{a_{i}\right\}_{i \in B}\right.$ l.i. $\}$ Basic or Conic Relaxation

- $x(B)$ unique solution to $a_{i}^{T} x=b_{i} \quad \forall i \in B$

Split Cuts are Constructed from Valid Split Disjunctions

For $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{n+1}$ let:

- $F_{D\left(\pi, \pi_{0}\right)}^{l}:=\left\{x \in \mathbb{R}^{n}: \pi^{T} x \leq \pi_{0}\right\}$
- $F_{D\left(\pi, \pi_{0}\right)}^{g}:=\left\{x \in \mathbb{R}^{n}: \pi^{T} x \geq \pi_{0}+1\right\}$
- $F_{D\left(\pi, \pi_{0}\right)}:=F_{D\left(\pi, \pi_{0}\right)}^{l} \cup F_{D\left(\pi, \pi_{0}\right)}^{g}$

Split Cuts are Constructed from Valid Split Disjunctions

For $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{n+1}$ let:

- $F_{D\left(\pi, \pi_{0}\right)}^{l}:=\left\{x \in \mathbb{R}^{n}: \pi^{T} x \leq \pi_{0}\right\}$
- $F_{D\left(\pi, \pi_{0}\right)}^{g}:=\left\{x \in \mathbb{R}^{n}: \pi^{T} x \geq \pi_{0}+1\right\}$
- $F_{D\left(\pi, \pi_{0}\right)}:=F_{D\left(\pi, \pi_{0}\right)}^{l} \cup F_{D\left(\pi, \pi_{0}\right)}^{g}$

A split cut for $D\left(\pi, \pi_{0}\right)$ and P is an inequality valid for:

- $P \cap F_{D\left(\pi, \pi_{0}\right)}$
- $\operatorname{conv}\left(P \cap F_{D\left(\pi, \pi_{0}\right)}\right)$

Split Cuts are Constructed from Valid Split Disjunctions

For $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{n+1}$ let:

- $F_{D\left(\pi, \pi_{0}\right)}^{l}:=\left\{x \in \mathbb{R}^{n}: \pi^{T} x \leq \pi_{0}\right\}$
- $F_{D\left(\pi, \pi_{0}\right)}^{g}:=\left\{x \in \mathbb{R}^{n}: \pi^{T} x \geq \pi_{0}+1\right\}$
- $F_{D\left(\pi, \pi_{0}\right)}:=F_{D\left(\pi, \pi_{0}\right)}^{l} \cup F_{D\left(\pi, \pi_{0}\right)}^{g}$

A split cut for $D\left(\pi, \pi_{0}\right)$ and P is an inequality valid for:

- $P \cap F_{D\left(\pi, \pi_{0}\right)}$
- $\operatorname{conv}\left(P \cap F_{D\left(\pi, \pi_{0}\right)}\right)$

Split Cuts are Constructed from Valid Split Disjunctions

For $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{n+1}$ let:

- $F_{D\left(\pi, \pi_{0}\right)}^{l}:=\left\{x \in \mathbb{R}^{n}: \pi^{T} x \leq \pi_{0}\right\}$
- $F_{D\left(\pi, \pi_{0}\right)}^{g}:=\left\{x \in \mathbb{R}^{n}: \pi^{T} x \geq \pi_{0}+1\right\}$
- $F_{D\left(\pi, \pi_{0}\right)}:=F_{D\left(\pi, \pi_{0}\right)}^{l} \cup F_{D\left(\pi, \pi_{0}\right)}^{g}$

A split cut for $D\left(\pi, \pi_{0}\right)$ and P is an inequality valid for:

- $P \cap F_{D\left(\pi, \pi_{0}\right)}$
- $\operatorname{conv}\left(P \cap F_{D\left(\pi, \pi_{0}\right)}\right)$

Valid Split Disjunctions don't Cut Integer Feasible Points

For fixed N_{I} we are interested in $D\left(\pi, \pi_{0}\right)$
such that, for any P :

- $P_{I} \subseteq F_{D\left(\pi, \pi_{0}\right)} \subsetneq \mathbb{R}^{n}$

Valid Split Disjunctions don't Cut Integer Feasible Points

For fixed N_{I} we are interested in $D\left(\pi, \pi_{0}\right)$
such that, for any P :

- $P_{I} \subseteq F_{D\left(\pi, \pi_{0}\right)} \subsetneq \mathbb{R}^{n}$
so we study
- $\Pi\left(N_{I}\right):=\left\{\left(\pi, \pi_{0}\right) \in\left(\mathbb{Z}^{n} \backslash\{0\}\right) \times \mathbb{Z}:\right.$ $\left.\pi_{j}=0, j \notin N_{I}\right\}$

The Split Closure is the Polyhedron Formed by All Split Cuts

The split closure [Cook, et. al. 1990] of P_{I} is

$$
S C:=\bigcap_{\left(\pi, \pi_{0}\right) \in \Pi\left(N_{I}\right)} \operatorname{conv}\left(P \cap F_{D\left(\pi, \pi_{0}\right)}\right) .
$$

Theorem
[Cook, et. al. 1990] SC is a polyhedron

Sufficient to Study Split Cuts for Basic Relaxations

For $B \in \mathcal{B}$ let

$$
S C(B):=\bigcap_{\left(\pi, \pi_{0}\right) \in \Pi\left(N_{I}\right)} \operatorname{conv}\left(P(B) \cap F_{D\left(\pi, \pi_{0}\right)}\right) .
$$

Sufficient to Study Split Cuts for Basic Relaxations

For $B \in \mathcal{B}$ let

$$
S C(B):=\bigcap_{\left(\pi, \pi_{0}\right) \in \Pi\left(N_{I}\right)} \operatorname{conv}\left(P(B) \cap F_{D\left(\pi, \pi_{0}\right)}\right) .
$$

Theorem

[Andersen, et. al. 2005] $S C=\bigcap_{B \in \mathcal{B}} S C(B)$

Theorem

[Andersen, et. al. 2005] $S C(B)$ is a polyhedron for all $B \in \mathcal{B}$. Hence SC is a polyhedron.

- Let $P=P(B)=\left\{x \in \mathbb{R}^{n}: B x \leq b\right\}$, for $B \in \mathbb{Q}^{n \times n}$, $\operatorname{rank}(B)=n$

Proposition

[Andersen, et. al. 2005, Balas and Perregaard, 2003, Caprara and Letchford, 2003] All non-dominated valid inequalities for $\operatorname{conv}\left(P \cap F_{D\left(\pi, \pi_{0}\right)}\right)$ are of the form $\delta^{T} x \leq \delta_{0}$ where

$$
\begin{aligned}
& \delta=B^{T} \mu^{l}+\mu_{0}^{l} \pi=B^{T} \mu^{g}-\mu_{0}^{g} \pi \\
& \delta_{0}=b^{T} \mu^{l}+\mu_{0}^{l} \pi_{0}=b^{T} \mu^{g}-\mu_{0}^{g}\left(\pi_{0}+1\right)
\end{aligned}
$$

for $\mu_{0}^{l}, \mu_{0}^{g} \in \mathbb{R}_{+}$and $\mu^{l}, \mu^{g} \in \mathbb{R}_{+}^{m}$ solutions to

$$
\begin{aligned}
& B^{T} \mu^{g}-B^{T} \mu^{l}=\pi \\
& b^{T} \mu^{g}-b^{T} \mu^{l}=\pi_{0}+\mu_{0}^{g} \\
& \mu_{0}^{l}+\mu_{0}^{g}=1, \quad \mu_{0}^{g} \in(0,1), \quad \mu_{i}^{l} \cdot \mu_{i}^{g}=0
\end{aligned}
$$

Proposition

$$
\operatorname{conv}\left(P \cap F_{D\left(\pi, \pi_{0}\right)}\right)=\left\{x \in P: \delta^{T} x \leq \delta_{0}\right\}
$$

where $\delta(\mu)^{T} x \leq \delta_{0}(\mu)$ is defined equivalent to

$$
\left(\mu^{-}\right)^{T}(B x-b)+\left(1-f\left(\mu^{T} b\right)\right)\left(\mu^{T} B x-\left\lfloor\mu^{T} b\right\rfloor\right) \leq 0
$$

for μ unique solution (if it exists) to

$$
\begin{array}{ll}
B^{T} \mu=\pi & \mu \in \mathbb{R}^{r} \\
\mu^{T} b \notin \mathbb{Z} & \pi_{0}=\left\lfloor\mu^{T} b\right\rfloor
\end{array}
$$

($y^{-}=\max \{-y, 0\}, f(y)=y-\lfloor y\rfloor$ and operations over vectors are componentwise)

What Multipliers Induce Valid Split Disjunctions?

- We have

$$
\Pi\left(N_{I}\right):=\left\{\left(\pi, \pi_{0}\right) \in\left(\mathbb{Z}^{n} \backslash\{0\}\right) \times \mathbb{Z}: \pi_{j}=0, j \notin N_{I}\right\} \text { and }
$$

$$
\begin{array}{ll}
B^{T} \mu=\pi & \mu \in \mathbb{R}^{r} \\
\mu^{T} b \notin \mathbb{Z} & \pi_{0}=\left\lfloor\mu^{T} b\right\rfloor
\end{array}
$$

- Let $B=\left[B_{I} B_{C}\right]$ for $B_{I} \in \mathbb{R}^{n \times\left|N_{I}\right|}$ and $B_{C} \in \mathbb{R}^{n \times\left(n-\left|N_{I}\right|\right)}$ corresponding to the integer and continuous variables of P_{I}. Multipliers that induce valid split disjunctions are

$$
\mathcal{L}(B):=\left\{\mu \in \mathbb{R}^{n}: B_{I}{ }^{T} \mu \in \mathbb{Z}^{\left|N_{I}\right|}, \quad B_{C}{ }^{T} \mu=0\right\}
$$

What Multipliers Induce Valid Split Disjunctions?

- We have

$$
\begin{gathered}
\Pi\left(N_{I}\right):=\left\{\left(\pi, \pi_{0}\right) \in\left(\mathbb{Z}^{n} \backslash\{0\}\right) \times \mathbb{Z}: \pi_{j}=0, j \notin N_{I}\right\} \text { and } \\
B^{T} \mu=\pi \quad \mu \in \mathbb{R}^{r} \\
\mu^{T} b \notin \mathbb{Z} \quad \pi_{0}=\left\lfloor\mu^{T} b\right\rfloor
\end{gathered}
$$

- Let $B=\left[B_{I} B_{C}\right]$ for $B_{I} \in \mathbb{R}^{n \times\left|N_{I}\right|}$ and $B_{C} \in \mathbb{R}^{n \times\left(n-\left|N_{I}\right|\right)}$ corresponding to the integer and continuous variables of P_{I}. Multipliers that induce valid split disjunctions are

$$
\mathcal{L}(B):=\left\{\mu \in \mathbb{R}^{n}: B_{I}{ }^{T} \mu \in \mathbb{Z}^{\left|N_{I}\right|}, \quad B_{C}{ }^{T} \mu=0\right\}
$$

Valid Split Disjunctions are Related to Integer Lattices

- For $\left\{v^{i}\right\}_{i=1}^{r} \subseteq \mathbb{R}^{n}$ l.i. a lattice is

$$
\mathcal{L}:=\left\{\mu \in \mathbb{R}^{n}: \mu=\sum_{i=1}^{r} k_{i} v^{i} \quad k_{i} \in \mathbb{Z}\right\}
$$

- $\mathcal{L}(B)$ is a lattice,
$\left\lceil\mu^{-}\right\rceil^{T}(B x-b)+\left(1-f\left(\mu^{T} b\right)\right)\left(\mu^{T} B x-\left\lfloor\mu^{T} b\right\rfloor\right) \leq 0$

is valid for P_{I} and cuts $x(B)$.
[Köppe and Weismantel, 2004].
- Every $\mu \in \mathcal{L}(B)$ s.t. $\mu^{T} b \notin \mathbb{Z}$ induces a valid split disjunction.
[Bertsimas and Weismantel, 2005].

Valid Split Disjunctions are Related to Integer Lattices

- For $\left\{v^{i}\right\}_{i=1}^{r} \subseteq \mathbb{R}^{n}$ I.i. a lattice is

$$
\mathcal{L}:=\left\{\mu \in \mathbb{R}^{n}: \mu=\sum_{i=1}^{r} k_{i} v^{i} \quad k_{i} \in \mathbb{Z}\right\}
$$

- $\mathcal{L}(B)$ is a lattice,

$$
\left\lceil\mu^{-}\right\rceil^{T}(B x-b)+\left(1-f\left(\mu^{T} b\right)\right)\left(\mu^{T} B x-\left\lfloor\mu^{T} b\right\rfloor\right) \leq 0
$$

is valid for P_{I} and cuts $x(B)$.
[Köppe and Weismantel, 2004].

- Every $\mu \in \mathcal{L}(B)$ s.t. $\mu^{T} b \notin \mathbb{Z}$ induces a valid
split disjunction.
[Bertsimas and Weismantel, 2005].

Valid Split Disjunctions are Related to Integer Lattices

- For $\left\{v^{i}\right\}_{i=1}^{r} \subseteq \mathbb{R}^{n}$ I.i. a lattice is

$$
\mathcal{L}:=\left\{\mu \in \mathbb{R}^{n}: \mu=\sum_{i=1}^{r} k_{i} v^{i} \quad k_{i} \in \mathbb{Z}\right\}
$$

- $\mathcal{L}(B)$ is a lattice,

$$
\left\lceil\mu^{-}\right\rceil^{T}(B x-b)+\left(1-f\left(\mu^{T} b\right)\right)\left(\mu^{T} B x-\left\lfloor\mu^{T} b\right\rfloor\right) \leq 0
$$

is valid for P_{I} and cuts $x(B)$.
[Köppe and Weismantel, 2004].

- Every $\mu \in \mathcal{L}(B)$ s.t. $\mu^{T} b \notin \mathbb{Z}$ induces a valid split disjunction.
[Bertsimas and Weismantel, 2005].

Proposition

$$
S C(B)=\bigcap_{\substack{\mu \in \mathcal{L}(B) \\ \mu^{T} b \notin \mathbb{Z}}}\left\{x \in P(B): \delta(\mu)^{T} x \leq \delta_{0}(\mu)\right\}
$$

Proposition

$$
S C(B)=\bigcap_{\substack{\mu \in \mathcal{L}(B) \\ \mu^{T} b \notin \mathbb{Z}}}\left\{x \in P(B): \delta(\mu)^{T} x \leq \delta_{0}(\mu)\right\}
$$

Proposition

For $\mu \in \mathcal{L}(B)$ s.t $\mu^{T} b \notin \mathbb{Z}$ split cut

$$
\left(\mu^{-}\right)^{T}(B x-b)+\left(1-f\left(\mu^{T} b\right)\right)\left(\mu^{T} B x-\left\lfloor\mu^{T} b\right\rfloor\right) \leq 0
$$

dominates

$$
\left\lceil\mu^{-}\right\rceil^{T}(B x-b)+\left(1-f\left(\mu^{T} b\right)\right)\left(\mu^{T} B x-\left\lfloor\mu^{T} b\right\rfloor\right) \leq 0
$$

Studying $\mathcal{L}(B)$ in Each Orthant Decomposes $S C(B)$ to the Intersection of a Finite Number of Sets

For $\sigma \in\{0,1\}^{n}$ let

$$
\mathcal{L}(B, \sigma):=\left\{\mu \in \mathcal{L}(B):(-1)^{\sigma_{i}} \mu_{i} \geq 0, \quad \forall i \in\{1, \ldots, n\}\right\}
$$

so that

$$
S C(B)=\bigcap_{\sigma \in\{0,1\}^{n}} S C(B, \sigma)
$$

where

$$
S C(B, \sigma)=\bigcap_{\substack{\mu \in \mathcal{L}(B, \sigma) \\ \mu^{T} b \notin \mathbb{Z}}}\left\{x \in P(B): \delta(\mu)^{T} x \leq \delta_{0}(\mu)\right\}
$$

Studying $\mathcal{L}(B, \sigma)$ Allows Detecting Dominated Cuts

Lemma

Let $\sigma \in\{0,1\}^{n}$ and let $\mu \in \mathcal{L}(B, \sigma)$ with $\mu=\alpha+\beta$ for $\alpha, \beta \in \mathcal{L}(B, \sigma)$ such that $\beta^{T} b \in \mathbb{Z}$. Then $\delta(\mu)^{T} x \leq \delta_{0}(\mu)$ is dominated by $\delta(\alpha)^{T} x \leq \delta_{0}(\alpha)$ in $P(B)$.

Proof.

Uses the fact that for α, β in the same orthant $|\alpha+\beta|=|\alpha|+|\beta|$.

A Finite Integral Generating Set (FIGS) of $\mathcal{L}(B, \sigma)$

 Induces a Finite Subset of $\mathcal{L}(B, \sigma)$- Let $\left\{\nu^{i}\right\}_{i \in \mathcal{V}(\sigma)} \subseteq \mathcal{L}(B, \sigma)$ be a (FIGS), i.e. a finite set such that

$$
\mathcal{L}(B, \sigma)=\left\{\mu \in \mathbb{R}^{r}: \mu=\sum_{i \in \mathcal{V}(\sigma)} k_{i} v^{i} \quad k_{i} \in \mathbb{Z}_{+}\right\}
$$

- We want $\mu^{T} b \notin \mathbb{Z}$, so for $i \in \mathcal{V}(\sigma)$ let

$$
m_{i}=\min \left\{m \in \mathbb{Z}_{+} \backslash\{0\}: m b^{T} v^{i} \in \mathbb{Z}\right\}
$$

and define the following finite subset of $\mathcal{L}(B, \sigma)$.

A Finite Integral Generating Set (FIGS) of $\mathcal{L}(B, \sigma)$ Induces a Finite Subset of $\mathcal{L}(B, \sigma)$

- Let $\left\{v^{i}\right\}_{i \in \mathcal{V}(\sigma)} \subseteq \mathcal{L}(B, \sigma)$ be a (FIGS), i.e. a finite set such that

$$
\mathcal{L}(B, \sigma)=\left\{\mu \in \mathbb{R}^{r}: \mu=\sum_{i \in \mathcal{V}(\sigma)} k_{i} v^{i} \quad k_{i} \in \mathbb{Z}_{+}\right\}
$$

- We want $\mu^{T} b \notin \mathbb{Z}$, so for $i \in \mathcal{V}(\sigma)$ let

$$
m_{i}=\min \left\{m \in \mathbb{Z}_{+} \backslash\{0\}: m b^{T} v^{i} \in \mathbb{Z}\right\}
$$

and define the following finite subset of $\mathcal{L}(B, \sigma)$.

$$
\mathcal{L}^{0}(B, \sigma):=\left\{\mu \in \mathcal{L}(B, \sigma): \mu=\sum_{i \in \mathcal{V}(\sigma)} r_{i} v^{i}, r_{i} \in\left\{0, \ldots, m_{i}-1\right\}\right\}
$$

Proving the Polyhedrality of $S C(B, \sigma)$ Yields the Polyhedrality of $S C$

Theorem

$S C(B, \sigma)$ the polyhedron given by

$$
S C(B, \sigma)=\bigcap_{\substack{\mu \in \mathcal{L}^{0}(B, \sigma) \\ \mu^{T} b \notin \mathbb{Z}}}\left\{x \in P(B): \delta(\mu)^{T} x \leq \delta_{0}(\mu)\right\}
$$

Corollary

$S C(B)$ is a polyhedron for all $B \in \mathcal{B}$. $S C$ is a polyhedron.

Proof Idea.

- Goal: For $\mu \in \mathcal{L}(B, \sigma), \delta(\mu)^{T} x \leq \delta_{0}(\mu)$ is dominated by $\delta(\alpha)^{T} x \leq \delta_{0}(\alpha)$ for some $\alpha \in \mathcal{L}^{0}(B, \sigma)$.
- For $\mu \in \mathcal{L}(B, \sigma)$ show that $\mu=\alpha+\beta$ for α, β such that:
- $\alpha \in \mathcal{L}^{0}(B, \sigma), \beta \in \mathcal{L}(B, \sigma)$
- $\beta^{T} b \in \mathbb{Z}$
- Use Lemma.

Proof Idea.

- Goal: For $\mu \in \mathcal{L}(B, \sigma), \delta(\mu)^{T} x \leq \delta_{0}(\mu)$ is dominated by $\delta(\alpha)^{T} x \leq \delta_{0}(\alpha)$ for some $\alpha \in \mathcal{L}^{0}(B, \sigma)$.
- How:
- For $\mu \in \mathcal{L}(B, \sigma)$ show that $\mu=\alpha+\beta$ for α, β such that:
- $\alpha \in \mathcal{L}^{0}(B, \sigma), \beta \in \mathcal{L}(B, \sigma)$
- $\beta^{T} b \in \mathbb{Z}$
- Use Lemma.

Proof of Theorem.

Let $\left\{v^{i}\right\}_{i \in \mathcal{V}(\sigma)}$ be a FIGS for $\mathcal{L}(B, \sigma)$ and let $\left\{k_{i}\right\}_{i \in \mathcal{V}(\sigma)} \subseteq \mathbb{Z}_{+}$be such that

$$
\mu=\sum_{i \in \mathcal{V}(\sigma)} k_{i} v^{i}
$$

Proof of Theorem.

Let $\left\{v^{i}\right\}_{i \in \mathcal{V}(\sigma)}$ be a FIGS for $\mathcal{L}(B, \sigma)$ and let $\left\{k_{i}\right\}_{i \in \mathcal{V}(\sigma)} \subseteq \mathbb{Z}_{+}$be such that

$$
\mu=\sum_{i \in \mathcal{V}(\sigma)} k_{i} v^{i} .
$$

For each $i \in \mathcal{V}(\sigma)$ we have

$$
k_{i}=n_{i} m_{i}+r_{i}
$$

for some $n_{i}, r_{i} \in \mathbb{Z}_{+}, 0 \leq r_{i}<m_{i}$. Let

$$
\alpha=\sum_{i \in \mathcal{V}(\sigma)} r_{i} v^{i} \quad \text { and } \quad \beta=\sum_{i \in \mathcal{V}(\sigma)} n_{i} m_{i} v^{i}
$$

We have $\alpha \in \mathcal{L}^{0}(B, \sigma)$ and, as m_{i} is such that $m_{i} b^{T} v^{i} \in \mathbb{Z}$ we have $b^{T} \beta \in \mathbb{Z}$.

Final Remarks

- The proof of the Theorem gives a way of enumerating the inequalities of $S C(B, \sigma), S C(B)$ and $S C$:
- Not practical for anything buy toy problems.
- There is redundancy in the enumeration for $S C$ and $S C(B)$
- There is also redundancy in the enumeration of $S C(B, \sigma)$. In fact we can reduce $\mathcal{L}^{0}(B, \sigma)$ to

and $\left\{r_{i}\right\}_{i \in \mathcal{V}(\sigma)}$ are relatively prime $\}$
- [Dash et. al. 2005] also give a constructive characterization with similar properties.

Final Remarks

- The proof of the Theorem gives a way of enumerating the inequalities of $S C(B, \sigma), S C(B)$ and $S C$:
- Not practical for anything buy toy problems.
- There is redundancy in the enumeration for $S C$ and $S C(B)$.
- There is also redundancy in the enumeration of $\operatorname{SC}(B, \sigma)$. In fact we can reduce $\mathcal{L}^{0}(B, \sigma)$ to

and $\left\{r_{i}\right\}_{i \in \mathcal{V}(\sigma)}$ are relatively prime $\}$
- [Dash et. al. 2005] also give a constructive characterization with similar properties.

Final Remarks

- The proof of the Theorem gives a way of enumerating the inequalities of $S C(B, \sigma), S C(B)$ and $S C$:
- Not practical for anything buy toy problems.
- There is redundancy in the enumeration for $S C$ and $S C(B)$.
fact we can reduce $\mathcal{L}^{0}(B, \sigma)$ to
and $\left\{r_{i}\right\}_{i \in \mathcal{V}(\sigma)}$ are relatively prime $\}$
- [Dash et. al. 2005] also give a constructive characterization with similar properties.

Final Remarks

- The proof of the Theorem gives a way of enumerating the inequalities of $S C(B, \sigma), S C(B)$ and $S C$:
- Not practical for anything buy toy problems.
- There is redundancy in the enumeration for $S C$ and $S C(B)$.
- There is also redundancy in the enumeration of $\operatorname{SC}(B, \sigma)$. In fact we can reduce $\mathcal{L}^{0}(B, \sigma)$ to

$$
\begin{gathered}
\mathcal{L}^{0}(B, \sigma):=\left\{\mu \in \mathcal{L}(B, \sigma): \mu=\sum_{i \in \mathcal{V}(\sigma)} r_{i} v^{i}, r_{i} \in\left\{0, \ldots, m_{i}-1\right\}\right. \\
\text { and } \left.\left\{r_{i}\right\}_{i \in \mathcal{V}(\sigma)} \text { are relatively prime }\right\}
\end{gathered}
$$

- [Dash et. al. 2005] also give a constructive characterization with similar properties.

Final Remarks

- The proof of the Theorem gives a way of enumerating the inequalities of $S C(B, \sigma), S C(B)$ and $S C$:
- Not practical for anything buy toy problems.
- There is redundancy in the enumeration for $S C$ and $S C(B)$.
- There is also redundancy in the enumeration of $S C(B, \sigma)$. In fact we can reduce $\mathcal{L}^{0}(B, \sigma)$ to

$$
\begin{gathered}
\mathcal{L}^{0}(B, \sigma):=\left\{\mu \in \mathcal{L}(B, \sigma): \mu=\sum_{i \in \mathcal{V}(\sigma)} r_{i} v^{i}, r_{i} \in\left\{0, \ldots, m_{i}-1\right\}\right. \\
\text { and } \left.\left\{r_{i}\right\}_{i \in \mathcal{V}(\sigma)} \text { are relatively prime }\right\}
\end{gathered}
$$

- [Dash et. al. 2005] also give a constructive characterization with similar properties.
D. Bertsimas, R. Weismantel.

Optimization over Integers.
Dynamic Ideas, Belmont, 2005.
© K. Andersen, G. Cornuejols, Y. Li
Split Closure and Intersection Cuts.
Mathematical Programming, 102:457-493. 2005.
(i. E. Balas, M. Perregaard

A precise correspondence between lift-and-project cuts, simple disjunctive cuts and mixed integer Gomory cuts for 0
1 programming.
Mathematical Programming 94:221-245. 2003.
© A. Caprara, A.N. Letchford
On the separation of split cuts and related inequalities.
Mathematical Programming 94:279-294. 2003.
B. Cook, R. Kannan, A. Schrijver.

Chvátal closures for mixed integer programming problems. Mathematical Programming, 47:155-174. 1990.
© S. Dash, O. Günlük, A. Lodi
On the MIR closure of polyhedra.
Working Paper.
B. M. Köppe, R. Weismantel

Cutting planes from a mixed integer Farkas lemma.
Operations Research Letters 32:207-211. 2004

