Split Cuts for Convex Nonlinear Mixed Integer Programming

Juan Pablo Vielma University of Pittsburgh

joint work with

D. Dadush and S. S. Dey Georgia Institute of Technology S. Modaresi and M. Kılınç University of Pittsburgh

NSF CMMI-1030662 and ONR N000141110724

INFORMS Optimization Society Conference, February 2012 – Coral Gables, Florida

Outline

Introduction
Split Cut Formulas
Split Closure
Conclusions

Split Disjunctions and Split Cuts

Split Disjunctions and Split Cuts

Split Disjunctions and Split Cuts

Split Disjunction

$$L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \le \pi_0 \}$$
$$G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \ge \pi_1 \}$$

Split Disjunctions and Split Cuts

Split Disjunction

$$L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \le \pi_0 \}$$
$$G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \ge \pi_1 \}$$

Split Disjunctions and Split Cuts

Split Disjunction

$$L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \le \pi_0 \}$$
$$G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \ge \pi_1 \}$$

Split Disjunctions and Split Cuts

Split Disjunction

$$L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \le \pi_0 \}$$
$$G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \ge \pi_1 \}$$

Split Disjunctions and Split Cuts

Split Disjunction

$$L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \le \pi_0 \}$$
$$G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \ge \pi_1 \}$$

Split Disjunctions and Split Cuts

Split Disjunction

$$L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \le \pi_0 \}$$
$$G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \ge \pi_1 \}$$

$$C_{\pi_0,\pi_1}^{\pi} := \operatorname{conv} \left(C \cap (L_{\pi_0}^{\pi} \cup G_{\pi_1}^{\pi}) \right)$$

Split Disjunctions and Split Cuts

Split Disjunction

$$L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \le \pi_0 \}$$
$$G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \ge \pi_1 \}$$

 $C_{\pi_0,\pi_1}^{\pi} := \operatorname{conv}(C \cap (L_{\pi_0}^{\pi} \cup G_{\pi_1}^{\pi}))$

 $= \{x : g_i(x) \leq 0, i \in I,$

 $h_j(x) \leq 0, j \in J$

Split Disjunctions and Split Cuts

Known Facts for Rational Polyhedra

- Formulas for simplicial cones:
 MIG (Gomory 1960) and MIR (Nemhauser and Wolsey 1988)
- Split Closure $\bigcap_{(\pi,\pi_0)\in\mathbb{Z}^n\times\mathbb{Z}} C^{\pi}_{\pi_0,\pi_0+1}$:
 - Rational Polyhedron (Cook, Kannan and Shrijver 1990)
 - Constructive Proofs:
 Dash, Günlük and Lodi 2007; V. 2007

Split Cuts for Simplicial Cones

Formulas: (MIG: Gomory 1960 and MIR: Nemhauser and Wolsey 1988)

 $C := \{ x \in \mathbb{R}^n : Ax \le b \},\$ $\det(A) \neq 0$

$$\pi_0 < \left\langle \pi, A^{-1}b \right\rangle < \pi_1$$

 $C_{\pi_0,\pi_1}^{\pi} := \{ x \in \mathbb{R}^n : Ax \le b, \\ \langle a, x \rangle \le b \}$

Split Cuts for Simplicial Cones

Formulas: (MIG: Gomory 1960 and MIR: Nemhauser and Wolsey 1988)

 $C := \{ x \in \mathbb{R}^n : Ax \le b \},\$ $\det(A) \neq 0$

$$\pi_0 < \left\langle \pi, A^{-1}b \right\rangle < \pi_1$$

 $C_{\pi_0,\pi_1}^{\pi} := \{ x \in \mathbb{R}^n : Ax \le b, \\ \langle a, x \rangle \le b \}$

(e.g. V. 2007)

$$a := \left(2\frac{\pi_1 - \langle A^{-1}\pi, b \rangle}{\pi_1 - \pi_0} - 1\right)\pi + A^T \left|A^{-1}\pi\right|, \quad b := \left(2\frac{\pi_1 - \langle A^{-1}\pi, b \rangle}{\pi_1 - \pi_0} - 1\right)(\pi_0 + \pi_1) + \left|A^{-1}\pi\right|b + \pi_0$$

Split Cuts for Quadratic Cones

Formulas: (Modaresi, Kılınç, V. 2011)

 $C := \left\{ (x, t_0) \in \mathbb{R}^n \times \mathbb{R} : \\ \|A(x - c)\|_2 \le t_0 \right\}$

6/11

Split Cuts for Quadratic Cones

Formulas: (Modaresi, Kılınç, V. 2011)

 $C := \left\{ (x, t_0) \in \mathbb{R}^n \times \mathbb{R} : \\ \|A(x - c)\|_2 \le t_0 \right\}$

6/11

Split Cuts for Quadratic Cones

Formulas: (Modaresi, Kılınç, V. 2011)

 $C := \left\{ (x, t_0) \in \mathbb{R}^n \times \mathbb{R} : \\ \|A(x - c)\|_2 \le t_0 \right\}$

6/11

Split Cuts for Quadratic Cones

Formulas: (Modaresi, Kılınç, V. 2011)

 $C := \left\{ (x, t_0) \in \mathbb{R}^n \times \mathbb{R} : \\ \|A(x - c)\|_2 \le t_0 \right\}$

6/11

Split Cuts for Quadratic Cones

- Formulas: (Modaresi, Kılınç, V. 2011)

(also see Atamturk and Narayanan 2010 for elementary integer splits)

Split Cuts for Quadratic Cones

- Formulas: (Modaresi, Kılınç, V. 2011)

(also see Atamturk and Narayanan 2010 for elementary integer splits)

Split Cuts for Quadratic Cones

- Formulas: (Modaresi, Kılınç, V. 2011)

(also see Atamturk and Narayanan 2010 for elementary integer splits)

Split Cuts for Quadratic Cones

Formulas: (Modaresi, Kılınç, V. 2011)

 $C := \left\{ (x, t_0) \in \mathbb{R}^n \times \mathbb{R} : \\ \|A(x - c)\|_2 \le t_0 \right\}$

$$egin{aligned} C^{\pi}_{\pi_0,\pi_1} &:= \{(x,t_0) \in \mathbb{R}^n imes \mathbb{R} \, : \ & \|A(x-c)\|_2 \leq t_0, \ & \|Bx-d\|_2 \leq t_0 \} \end{aligned}$$

(also see Atamturk and Narayanan 2010 for elementary integer splits)

Conic MIR and Nonlinear Split Cut

$C := \left\{ (x, t_0) \in \mathbb{R}^n \times \mathbb{R} : \|A(x - c)\|_2 \le t_0 \right\}$

Conic MIR and Nonlinear Split Cut

 $C := \{ (x, t_0) \in \mathbb{R}^n \times \mathbb{R} : \|A(x - c)\|_2 \le t_0 \}$

Extended Formulation: $(x, t, t_0) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}_+$

$$|A(x-c)| \le t$$
$$||t||_2 \le t_0$$

Conic MIR and Nonlinear Split Cut

 $C := \{ (x, t_0) \in \mathbb{R}^n \times \mathbb{R} : \|A(x - c)\|_2 \le t_0 \}$

Extended Formulation: $(x, t, t_0) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}_+$

$$|A(x-c)| \le t \qquad \longleftarrow \text{ Linear Part}$$
$$\|t\|_2 \le t_0$$

Conic MIR and Nonlinear Split Cut

 $C := \{ (x, t_0) \in \mathbb{R}^n \times \mathbb{R} : \|A(x - c)\|_2 \le t_0 \}$

Extended Formulation: $(x, t, t_0) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}_+$

 $|A(x-c)| \le t \qquad \longleftarrow \text{ Linear Part}$ $||t||_2 \le t_0 \qquad \longleftarrow \text{ Nonlinear Part}$

Conic MIR and Nonlinear Split Cut

 $C := \left\{ (x, t_0) \in \mathbb{R}^n \times \mathbb{R} : \|A(x - c)\|_2 \le t_0 \right\}$

Extended Formulation: $(x, t, t_0) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}_+$

Conic MIR = Split cuts for linear part \neq Nonlinear split cut $(1 - 2f) \left(\lambda^T A x - \lfloor \lambda^T B c \rfloor\right) + f \leq |\lambda|^T t$

 $\lambda \in \mathbb{R}^n, \quad A^T \lambda \in \mathbb{Z}^n, \quad f := \lambda^T Bc - \lfloor \lambda^T Bc \rfloor$

Split Cuts for Ellipsoids

- Formulas: (Dadush, Dey and V. 2011)

 $C := \left\{ x \in \mathbb{R}^n : \|A(x-c)\|_2 \le 1 \right\}$

 $C_{\pi_0,\pi_1}^{\pi} := \{ x \in \mathbb{R}^n : \|A(x-c)\|_2 \le 1, \|Bx-d\|_2 \le \langle a, x \rangle + b \}$

(also see Belotti, Góez, Polik, Ralphs, Terlaky 2011)

Split Closure

Split Closure is Finitely Generated

• Theorem (Dadush, Dey, V. 2011): If C is a strictly convex set then there exists a finite $D \subseteq \mathbb{Z}^n \times \mathbb{Z}$ such that:

Does <u>not</u> imply polyhedrality of split closure

Split Closure is <u>not</u> stable

Split Closure

Split Closure Can Be Non-Polyhedral

Split Closure

Split Closure Can Be Non-Polyhedral

Other Results and Open Questions

 Formulas for nonlinear split cuts Quadratic cones and ellipsoids Strong ties to conic MIR Split closure: Finitely generated, not polyhedral • Future: More formulas Computation More general/constructive split closure