Mixed Integer Programming Models for Non-Separable Piecewise Linear Cost Functions

Juan Pablo Vielma

H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

Joint work with Shabbir Ahmed and George Nemhauser.

University of Pittsburgh, 2008 - Pittsburgh, PA

Piecewise Linear Optimization

$\min f_{0}(x)$
s.t.

$$
\begin{gathered}
f_{i}(x) \leq 0 \quad \forall i \in I \\
x \in X \subset \mathbb{R}^{n}
\end{gathered}
$$

- $\forall i \in\{0\} \cup I \quad f_{i}(x): D \rightarrow \mathbb{R}$ is a piecewise linear function (PLF) and X is any compact set.
- Convex = Linear Programming. Non-Convex = NP Hard.
- Specialized algorithms (Tomlin 1981, ..., de Farias et al. 2008) or Mixed Integer Programming Models (12+ papers).

Mixed Integer Models for PLFs

- Existing studies are for separable functions:

$$
f(x)=\sum_{j=1}^{n} f_{j}\left(x_{j}\right) \text { for } f_{j}\left(x_{j}\right): \mathbb{R} \rightarrow \mathbb{R}
$$

o Contributions (Vielma et al. 2008a,b):

- First models with a logarithmic \# of binary variables.
- Theoretical and computational comparison: multivariate (non-separable) and lower semicontinuous functions in a unifying framework.

Outline

- Applications of Piecewise Linear Functions.
- Modeling Piecewise Linear Functions.
- Logarithmic Formulations.
- Comparison of Formulations.

O Extension to Lower Semicontinuous Functions.
o Final Remarks.

Applications of Piecewise Linear Functions

Economies of Scale: Concave

- Single and multi-commodity network flow.
- Applications in telecommunications, transportation, and logistics.
O (Balakrishnan and Graves 1989, ..., Croxton, et al. 2007).

Applications of Piecewise Linear Functions

Fixed Charges and Discounts

1. Fixed Costs in Logistics.
2.Discounts (e.g. Auctions: Sandholm, et al. 2006, CombineNet).
2. Discounts in fixed charges (Lowe 1984).

Applications of Piecewise Linear Functions

Non-Linear and PDE Constraints

Demand Points
$p(x, t)=$ gas pressure
$q(x, t)=$ gas volume flow

$$
\begin{gathered}
A \frac{\partial \rho}{\partial t}+\rho_{0} \frac{\partial q}{\partial x}=0 \\
\frac{\partial p}{\partial x}=-\lambda \frac{|v| v}{2 D} \rho
\end{gathered}
$$

- Gas Network Optimization (Martin et al. 2006).

Applications of Piecewise Linear Functions

Non-Linear and PDE Constraints

Demand Points
$p(x, t)=$ gas pressure
$q(x, t)=$ gas volume flow

$$
\begin{gathered}
A \frac{\partial \rho}{\partial t}+\rho_{0} \frac{\partial q}{\partial x}=0 \\
\frac{\partial p}{\partial x}=-\lambda \frac{|v| v}{2 D} \rho
\end{gathered}
$$

Discretize non-linear stationary solution $p_{v}=g\left(p_{u}, q_{u v}\right)$

- Gas Network Optimization (Martin et al. 2006).

Applications of Piecewise Linear Functions

Non-Linear and PDE Constraints

Demand Points
$p(x, t)=$ gas pressure
$q(x, t)=$ gas volume flow

$$
\begin{gathered}
A \frac{\partial \rho}{\partial t}+\rho_{0} \frac{\partial q}{\partial x}=0 \\
\frac{\partial p}{\partial x}=-\lambda \frac{|v| v}{2 D} \rho
\end{gathered}
$$

Discretize PDE
(Fügenschuh, et al. 2008)

- Gas Network Optimization (Martin et al. 2006).

Numerically Exact Global Optimization

o Process engineering (Bergamini et al. 2005,

- Process engineering (Bergamini et al. 2
2008, Computers and Chemical Eng.)
o Wetland restoration (Stralberg et al. 2009). CONSERVATION

\qquad

Applications of Piecewise Linear Functions

Numerically Exact Global Optimization

o Process engineering (Bergamini et al. 2005, 2008, Computers and Chemical Eng.)

O Wetland restoration (Stralberg et al. 2009).

Modeling Piecewise Linear Functions

Piecewise Linear Functions: Definition

$$
f(x):=\left\{\begin{array}{rl}
22 x+10 & x \in[0,1] \\
8 x+24 & x \in[1,2] \\
-17.5 x+75 & x \in[2,4] \\
10 x-35 & x \in[4,5]
\end{array}\right.
$$

DEFINITION 1. Piecewise Linear $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
f(x):=\left\{m_{P} x+c_{P} \quad x \in P \quad \forall P \in \mathcal{P}\right.
$$

for finite family of polytopes \mathcal{P} such that $D=\bigcup_{P \in \mathcal{P}} P$

Modeling Piecewise Linear Functions

Piecewise Linear Functions: Definition

Definition 1. Piecewise Linear $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
f(x):= \begin{cases}m_{P} x+c_{P} & x \in P \quad \forall P \in \mathcal{P} .\end{cases}
$$

for finite family of polytopes \mathcal{P} such that $D=\bigcup_{P \in \mathcal{P}} P$

Modeling Piecewise Linear Functions

Piecewise Linear Functions: Definition

Definition 1. Piecewise Linear $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
f(x):= \begin{cases}m_{P} x+c_{P} & x \in P \quad \forall P \in \mathcal{P} .\end{cases}
$$

for finite family of polytopes \mathcal{P} such that $D=\bigcup_{P \in \mathcal{P}} P$

Modeling Piecewise Linear Functions

Modeling Function $=$ Epigraph

- epi $(f):=\left\{(x, z) \in D \times \mathbb{R} \subset \mathbb{R}^{n} \times \mathbb{R}: f(x) \leq z\right\}$.

(b) epi(f).

Example: $f(x) \leq 0 \Leftrightarrow(x, z) \in \operatorname{epi}(f), z \leq 0$

Modeling Piecewise Linear Functions

Gonvex Combination (CC): Univariate

$$
\begin{aligned}
& f(x):= \begin{cases}x+1 & x \in[0,2] \leftarrow P_{1} \\
6-3 / 2 x & x \in[2,4] \leftarrow P_{2}\end{cases} \\
& V(P)=\text { vertices of } P . \\
& \mathcal{V}(\mathcal{P}):=V\left(P_{1}\right) \cup V\left(P_{2}\right)=\{0,2,4\} .
\end{aligned}
$$

Modeling Piecewise Linear Functions

Gonvex Combination (CC): Univariate

$$
\begin{aligned}
f(x):= & \begin{cases}x+1 & x \in[0,2] \leftarrow P_{1} \\
6-3 / 2 x & x \in[2,4] \leftarrow P_{2}\end{cases} \\
& V(P)=\text { vertices of P. } \\
& \mathcal{V}(\mathcal{P}):=V\left(P_{1}\right) \cup V\left(P_{2}\right)=\{0,2,4\} .
\end{aligned}
$$

Modeling Piecewise Linear Functions

Gonvex Combination (CC): Univariate

$$
\underbrace{f(x):= \begin{cases}x+1 & x \in[0,2] \leftarrow P_{1} \\
6-3 / 2 x & x \in[2,4] \leftarrow P_{2}\end{cases} }_{4} \begin{aligned}
& V(P)=\text { vertices of } \mathrm{P} . \\
& \mathcal{V}(\mathcal{P}):=V\left(P_{1}\right) \cup V\left(P_{2}\right)=\{0,2,4\} .
\end{aligned}
$$

idea: write $(x, y) \in \operatorname{epi}(f)$
as convex combination of $(v, f(v))$ for $v \in \mathcal{V}(\mathcal{P})$.

Modeling Piecewise Linear Functions

Gonvex Combination (CC): Univariate

$$
\begin{array}{r}
f(x):= \begin{cases}x+1 & x \in[0,2] \leftarrow P_{1} \\
6-3 / 2 x & x \in[2,4] \leftarrow P_{2}\end{cases} \\
V(P)=\text { vertices of } P . \\
V(\mathcal{P}):=V\left(P_{1}\right) \cup V\left(P_{2}\right)=\{0,2,4\} .
\end{array}
$$

idea: write $(x, y) \in \operatorname{epi}(f) \quad x=0 \lambda_{0}+2 \lambda_{2}+4 \lambda_{4}$
as convex combination of $z \geq 1 \lambda_{0}+3 \lambda_{2}+0 \lambda_{4}$
$(v, f(v))$ for $v \in \mathcal{V}(\mathcal{P}) . \quad 1=\lambda_{0}+\lambda_{2}+\lambda_{4}, \quad \lambda_{0}, \lambda_{2}, \lambda_{4} \geq 0$

Modeling Piecewise Linear Functions

Gonvex Combination (CC): Univariate

$$
\begin{aligned}
& f(x):= \begin{cases}x+1 & x \in[0,2] \leftarrow P_{1} \\
6-3 / 2 x & x \in[2,4] \leftarrow P_{2}\end{cases} \\
& \\
& \begin{array}{l}
V(P)=\text { vertices of } \mathrm{P} . \\
\mathcal{V}(\mathcal{P}):=V\left(P_{1}\right) \cup V\left(P_{2}\right)=\{0,2,4\}
\end{array} \\
& \begin{array}{ll}
\lambda_{0} \text { and } \lambda_{4} \text { cannot be } & x=0 \lambda_{0}+2 \lambda_{2}+4 \lambda_{4} \\
\text { nonzero at the same } & z \geq 1 \lambda_{0}+3 \lambda_{2}+0 \lambda_{4} \\
\text { time. } & 1=\lambda_{0}+\lambda_{2}+\lambda_{4}, \quad \lambda_{0}, \lambda_{2}, \lambda_{4} \geq 0
\end{array}
\end{aligned}
$$

Modeling Piecewise Linear Functions

Convex Combination (CC): Univariate

$$
\begin{aligned}
f(x):= \begin{cases}x+1 & x \in[0,2] \leftarrow P_{1} \\
6-3 / 2 x & x \in[2,4] \leftarrow P_{2}\end{cases} \\
V(P)=\text { vertices of } \mathrm{P} .
\end{aligned}
$$

λ_{0} and λ_{4} cannot be nonzero at the same time.

$$
\begin{aligned}
& x=0 \lambda_{0}+2 \lambda_{2}+4 \lambda_{4} \\
& z \geq 1 \lambda_{0}+3 \lambda_{2}+0 \lambda_{4} \\
& 1=\lambda_{0}+\lambda_{2}+\lambda_{4}, \quad \lambda_{0}, \lambda_{2}, \lambda_{4} \geq 0
\end{aligned}
$$

$$
\begin{gathered}
\lambda_{0} \leq y_{P_{1}}, \quad \lambda_{2} \leq y_{P_{1}}+y_{P_{2}}, \quad \lambda_{4} \leq y_{P_{2}} \\
1=y_{P_{1}}+y_{P_{2}}, \quad y_{P_{1}}, y_{P_{2}} \in\{0,1\}
\end{gathered}
$$

Modeling Piecewise Linear Functions

Convex Combination (CC): Univariate

$$
\begin{aligned}
& \qquad \begin{array}{ll}
f(x):= \begin{cases}x+1 & x \in[0,2] \leftarrow P_{1} \\
6-3 / 2 x & x \in[2,4] \leftarrow P_{2}\end{cases} \\
V(P)=\text { vertices of } P . \\
\mathcal{V}(\mathcal{P}):=V\left(P_{1}\right) \cup V\left(P_{2}\right)=\{0,2,4\}
\end{array} \\
& \begin{array}{l}
x=0 \lambda_{0}+2 \lambda_{2}+4 \lambda_{4} \\
z \geq 1 \lambda_{0}+3 \lambda_{2}+0 \lambda_{4} \\
1=\lambda_{0}+\lambda_{2}+\lambda_{4}, \quad \lambda_{0}, \lambda_{2}, \lambda_{4} \geq 0
\end{array} \\
& \lambda_{4} \text { 'S are SOS } \longrightarrow \begin{array}{ll}
\lambda_{0} \leq y_{P_{1}}, & \lambda_{2} \leq y_{P_{1}}+y_{P_{2}}, \quad \lambda_{4} \leq y_{P_{2}} \\
1=y_{P_{1}}+y_{P_{2}}, & y_{P_{1}}, y_{P_{2}} \in\{0,1\}
\end{array}
\end{aligned}
$$

Modeling Piecewise Linear Functions

Gonvex Combination (CC): Multivariate

- Univariate (Dantzig, 1960) ... Multivariate (Lee and Wilson (2001).

Modeling Piecewise Linear Functions

Convex Combination (CC): Multivariate

o Univariate (Dantzig, 1960) ... Multivariate (Lee and Wilson (2001).

$$
\begin{array}{r}
\sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v} v=x, \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v}\left(m_{P} v+c_{P}\right) \leq z \\
\lambda_{v} \geq 0 \quad \forall v \in \mathcal{V}(\mathcal{P}):=\bigcup_{P \in \mathcal{P}} V(P), \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v}=1 \\
\lambda_{v} \leq \sum_{\{P \in \mathcal{P}: v \in V(P)\}} y_{P} \quad \forall v \in \mathcal{V}(\mathcal{P}), \quad \sum_{P \in \mathcal{P}} y_{P}=1, \quad y_{P} \in\{0,1\} \quad \forall P \in \mathcal{P}
\end{array}
$$

Modeling Piecewise Linear Functions

Convex Combination (CC): Multivariate

- Univariate (Dantzig, 1960) ... Multivariate (Lee and Wilson (2001).

$$
\begin{array}{r}
\sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v} v=x, \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v}\left(m_{P} v+c_{P}\right) \leq z \\
\lambda_{v} \geq 0 \quad \forall v \in \mathcal{V}(\mathcal{P}):=\bigcup_{P \in \mathcal{P}} V(P), \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v}=1
\end{array}
$$

$$
\lambda_{v} \leq \sum_{\{P \in \mathcal{P}: v \in V(P)\}} y_{P} \quad \forall v \in \mathcal{V}(\mathcal{P}), \quad \sum_{P \in \mathcal{P}} y_{P}=1, \quad y_{P} \in\{0,1\} \quad \forall P \in \mathcal{P}
$$

Modeling Piecewise Linear Functions

Convex Combination (CC): Multivariate

- Univariate (Dantzig, 1960) ... Multivariate (Lee and Wilson (2001).
"Original
Constraints"

$$
\sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v} v=x, \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v}\left(m_{P} v+c_{P}\right) \leq z
$$

$$
\lambda_{v} \geq 0 \quad \forall v \in \mathcal{V}(\mathcal{P}):=\bigcup_{P \in \mathcal{P}} V(P), \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v}=1
$$

$\lambda_{v} \leq \sum_{\{P \in \mathcal{P}: v \in V(P)\}} y_{P} \quad \forall v \in \mathcal{V}(\mathcal{P}), \quad \sum_{P \in \mathcal{P}} y_{P}=1, \quad y_{P} \in\{0,1\} \quad \forall P \in \mathcal{P}$

Modeling Piecewise Linear Functions

Convex Combination (CC): Multivariate

- Univariate (Dantzig, 1960) ... Multivariate (Lee and Wilson (2001).
"Extra
Constraints"

$$
\sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v} v=x, \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v}\left(m_{P} v+c_{P}\right) \leq z
$$

$$
\lambda_{v} \geq 0 \quad \forall v \in \mathcal{V}(\mathcal{P}):=\bigcup_{P \in \mathcal{P}} V(P), \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v}=1
$$

$$
\lambda_{v} \leq \sum_{\{P \in \mathcal{P}: v \in V(P)\}} y_{P} \quad \forall v \in \mathcal{V}(\mathcal{P}), \quad \sum_{P \in \mathcal{P}} y_{P}=1, \quad y_{P} \in\{0,1\} \quad \forall P \in \mathcal{P}
$$

Modeling Piecewise Linear Functions

Gonvex Combination (CC): Multivariate

- Univariate (Dantzig, 1960) ... Multivariate (Lee and Wilson (2001).
"Extra
Constraints"

$$
\sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v} v=x, \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v}\left(m_{P} v+c_{P}\right) \leq z
$$

$$
\lambda_{v} \geq 0 \quad \forall v \in \mathcal{V}(\mathcal{P}):=\bigcup_{P \in \mathcal{P}} V(P), \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v}=1
$$

SOS2 only for univariate

Modeling Piecewise Linear Functions

Gonvex Combination (CC): Multivariate

- Univariate (Dantzig, 1960) ... Multivariate (Lee and Wilson (2001).
"Extra
Constraints"

$$
\sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v} v=x, \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v}\left(m_{P} v+c_{P}\right) \leq z
$$

$$
\lambda_{v} \geq 0 \quad \forall v \in \mathcal{V}(\mathcal{P}):=\bigcup_{P \in \mathcal{P}} V(P), \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_{v}=1
$$

$\exists P \in \mathcal{P}$ s.t. $\left\{v \in \mathcal{V}(\mathcal{P}): \lambda_{v}>0\right\} \subset V(P)$
o Nonzero variables are associated to vertices of a single polytope.

Modeling Piecewise Linear Functions

Existing Models are Linear on $|\mathcal{P}|$

- Other models: Multiple Choice (MC), Incremental (Inc),

Disaggregated Convex
Combination (DCC).

- Number of binary variables and
 combinatorial "extra" constraints are linear in $|\mathcal{P}|$.
O For multivariate on a $k \times k$ grid $|\mathcal{P}|=O\left(k^{2}\right)$.
OLogarithmic sized formulations?

Logarithmic Formulations

SOS1, SOS2 and CC constraints.

- SOS1-2 (Beale and Tomlin 1970):
- SOS1: At most one variable is nonzero.
- SOS2: Only 2 adjacent variables are nonzero.

$$
\checkmark(0,1,1 / 2,0,0) \quad \times(0,1,0,1 / 2,0)
$$

- $\left(\lambda_{i}\right)_{i \in J} \in \mathbb{R}_{+}^{J}$, allowed sets $\left(S_{i}\right)_{i \in I}, \quad S_{i} \subset J$.
oSOS1: $I=J, \quad S_{i}=\{i\}$.
OSOS2: $J=\{0, \ldots, m\}, I=J \backslash\{m\}, S_{i}=\{i, i+1\}$.
OCD: $J=\mathcal{V}(\mathcal{P}), I=\mathcal{P}, S_{P}=V(P)$.

Logarithmic Formulations

Logarithmic Formulation for SOS1

$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero.
Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$.

Logarithmic Formulations

Logarithmic Formulation for SOS1

$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero. Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$.

O Injective function:
$B:\{0, \ldots, m-1\} \rightarrow\{0,1\}^{\left\lceil\log _{2} m\right\rceil}$

- Variables:

$$
w \in\{0,1\}^{\left[\log _{2} m \mid\right.}
$$

O ldea:

$$
\lambda_{j}>0 \Leftrightarrow w=B(j)
$$

Logarithmic Formulations

Logarithmic Formulation for SOS1

$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero. Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$.

O Injective function:
$B:\{0, \ldots, m-1\} \rightarrow\{0,1\}^{\left\lceil\log _{2} m\right\rceil}$

- Variables:

$$
w \in\{0,1\}^{\left[\log _{2} m \mid\right.}
$$

O Idea:

$$
\lambda_{j}>0 \Leftrightarrow w=B(j)
$$

Logarithmic Formulations

Logarithmic Formulation for SOS1

$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero. Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$.
$\left\{\begin{array}{lcl}\hline i & S_{i} & B(i) \\ 0 & \{0\} & \longleftrightarrow \\ 0 & 0 \\ 1 & \{1\} & \hookrightarrow\end{array} \lambda_{1}+\lambda_{3} \leq w_{1}\right.$

O Injective function:
$B:\{0, \ldots, m-1\} \rightarrow\{0,1\}^{\left\lfloor\log _{2} m\right\rceil}$

- Variables:

$$
w \in\{0,1\}^{\left[\log _{2} m\right\rceil}
$$

O Idea:

$$
\lambda_{j}>0 \Leftrightarrow w=B(j)
$$

Logarithmic Formulations

Logarithmic Formulation for SOS1

$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero. Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$.

O Injective function:
$B:\{0, \ldots, m-1\} \rightarrow\{0,1\}^{\left\lceil\log _{2} m\right\rceil}$
O Variables:

$$
w \in\{0,1\}^{\left|\log _{2} m\right|}
$$

O ldea:

$$
\lambda_{j}>0 \Leftrightarrow w=B(j)
$$

Logarithmic Formulations

Logarithmic Formulation for SOS1

$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero. Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$.

O Injective function:
$B:\{0, \ldots, m-1\} \rightarrow\{0,1\}^{\left\lceil\log _{2} m\right\rceil}$
$\lambda_{0}+\lambda_{2} \leq\left(1-w_{1}\right)$ OVariables:

$$
w \in\{0,1\}^{\left|\log _{2} m\right|}
$$

O ldea:

$$
\lambda_{j}>0 \Leftrightarrow w=B(j)
$$

Logarithmic Formulations

Logarithmic Formulation for SOS1

$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero. Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$.

Logarithmic Formulations

Logarithmic Formulation for SOS1

$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero. Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$.

Logarithmic Formulations

Logarithmic Formulation for SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

Logarithmic Formulations

Logarithmic Formulation for SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

	S_{i}	$B(i)$	
0	\{0, 1\}	0	0
1	1,2\}	1	0
2	, 3$\}$		1
3	4\}	1	1

O Injective function:
$B:\{0, \ldots, m-1\} \rightarrow\{0,1\}^{\left\lfloor\log _{2} m \mid\right.}$
O Variables:

$$
w \in\{0,1\}^{\left|\log _{2} m\right|}
$$

O ldea:

$$
\lambda_{j}, \lambda_{j+1}>0 \Leftrightarrow w=B(j)
$$

Logarithmic Formulations

Logarithmic Formulation for SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

O Injective function:
$B:\{0, \ldots, m-1\} \rightarrow\{0,1\}^{\left|\log _{2} m\right|}$
O Variables:

$$
w \in\{0,1\}^{\left|\log _{2} m\right|}
$$

O ldea:

$$
\lambda_{j}, \lambda_{j+1}>0 \Leftrightarrow w=B(j)
$$

Logarithmic Formulations

Logarithmic Formulation for SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

O Injective function:
$B:\{0, \ldots, m-1\} \rightarrow\{0,1\}^{\left[\log _{2} m\right\rceil}$

- Variables:

$$
w \in\{0,1\}^{\left[\log _{2} m\right\rceil}
$$

O Idea:

$$
\lambda_{j}, \lambda_{j+1}>0 \Leftrightarrow w=B(j)
$$

Logarithmic Formulations

Logarithmic Formulation for SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

O Injective function:
$B:\{0, \ldots, m-1\} \rightarrow\{0,1\}^{\left[\log _{2} m\right\rceil}$

- Variables:

$$
w \in\{0,1\}^{\left[\log _{2} m\right\rceil}
$$

O ldea:

$$
\lambda_{j}, \lambda_{j+1}>0 \Leftrightarrow w=B(j)
$$

Logarithmic Formulations

Logarithmic Formulation for SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

O Injective function:
$B:\{0, \ldots, m-1\} \rightarrow\{0,1\}^{\left[\log _{2} m\right\rceil}$

- Variables:

$$
w \in\{0,1\}^{\left[\log _{2} m\right\rceil}
$$

O Idea:

$$
\lambda_{j}, \lambda_{j+1}>0 \Leftrightarrow w=B(j)
$$

Logarithmic Formulations

Logarithmic Formulation for SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

O Injective function:
$B:\{0, \ldots, m-1\} \rightarrow\{0,1\}^{\left|\log _{2} m\right|}$
O Variables:

$$
w \in\{0,1\}^{\left|\log _{2} m\right|}
$$

O ldea:

$$
\lambda_{j}, \lambda_{j+1}>0 \Leftrightarrow w=B(j)
$$

Logarithmic Formulations

Logarithmic Formulation for SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

$$
\begin{aligned}
& \text { i } S_{i} \quad B(i) \quad \text { Injective function: } \\
& \lambda_{0} \leq w_{1} \\
& B:\{0, \ldots, m-1\} \rightarrow\{0,1\}^{\left|\log _{2} m\right|} \\
& \lambda_{4} \leq\left(1-w_{1}\right) \quad \text { Variables: } \\
& w \in\{0,1\}^{\left|\log _{2} m\right|} \\
& \text { O ldea: } \\
& \lambda_{j}, \lambda_{j+1}>0 \Leftrightarrow w=B(j)
\end{aligned}
$$

Logarithmic Formulations

Logarithmic Formulation for SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

$$
\begin{aligned}
& i \quad S_{i} \quad B(i) \\
& 0 \quad\{0,1\} \longleftrightarrow 00 \\
& \lambda_{0} \leq w_{1} \\
& 1 \begin{array}{l|l|l|}
\{1,2\} & 1 & 0 \\
& \lambda_{4} \leq\left(1-w_{1}\right)
\end{array} \\
& 2 \leftrightarrow\{2,3\} \longleftrightarrow 0 \quad 1 \quad \lambda_{0}+\lambda_{1} \leq\left(1-w_{2}\right) \\
& 3 \leftrightarrow\{3,4\} \longleftrightarrow 1 \quad 1 \quad \lambda_{3}+\lambda_{4} \leq w_{2} \\
& w_{1} w_{2} \in\{0,1\}
\end{aligned}
$$

Logarithmic Formulations

Logarithmic Formulation for SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

$$
\begin{aligned}
& i \quad S_{i} \quad B(i) \\
& \lambda_{0} \leq w_{1} \\
& 1 \begin{array}{l|l|l|}
\{1,2\} & 1 & 0
\end{array} \quad \lambda_{4} \leq\left(1-w_{1}\right) \\
& 2 \leftrightarrow\{2,3\} \longleftrightarrow 0 \quad 1 \quad \lambda_{0}+\lambda_{1} \leq\left(1-w_{2}\right) \\
& 3 \leftrightarrow\{3,4\} \longleftrightarrow 1 \quad 1 \quad \lambda_{3}+\lambda_{4} \leq w_{2} \\
& w_{1} w_{2} \in\{0,1\}
\end{aligned}
$$

OWhere is λ_{2} ?!

Logarithmic Formulations

Logarithmic Formulation for SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

Logarithmic Formulations

Logarithmic Formulation for SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

$$
\begin{aligned}
& 1 \begin{array}{l|l|l|}
\hline\{1,2\} & \lambda_{0} & 0 \\
& \lambda_{0}+\lambda_{4} \leq\left(1-w_{1}\right)
\end{array} \\
& 2 \leftrightarrow\{2,3\} \longleftrightarrow 1 \quad 1 \quad \lambda_{0}+\lambda_{1} \leq\left(1-w_{2}\right) \\
& 3 \stackrel{\{3,4\}}{ } \leftrightarrow \begin{array}{|c|c|}
\hline 0 & 1 \\
& w_{1} w_{2} \in\{0,1\}
\end{array} \quad \lambda_{3}+\lambda_{4} \leq w_{2}
\end{aligned}
$$

OWhere is λ_{2} ?!

Logarithmic Formulations

Logarithmic Formulation for SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

Logarithmic Formulations

Independent Branching: Dichotomies

Logarithmic Formulations

Independent Branching: Dichotomies

Logarithmic Formulations

Independent Branching for 2 var CC

- Select Triangle by forbidding vertices.
- 2 stages:
- Select Square by SOS2 on each variable.
- Select 1 triangle from each square.

Logarithmic Formulations

Independent Branching for 2 var CC

- Select Triangle by forbidding vertices.
- 2 stages:
- Select Square by SOS2 on each variable.
- Select 1 triangle from each square.

Logarithmic Formulations

Independent Branching for 2 var CC

- Select Triangle by forbidding vertices.
- 2 stages:
- Select Square by SOS2 on each variable.
- Select 1 triangle from each square.

$$
\begin{aligned}
\bar{L}= & \{(r, s) \in J: \\
& r \text { even and } s \text { odd }\} \\
= & \{\text { square vertices }\} \\
\bar{R}= & \{(r, s) \in J: \\
& r \text { odd and } s \text { even }\} \\
= & \{\text { diamond vertices }\}
\end{aligned}
$$

Comparison of Formulations

Strength of LP Relaxations

- Sharp Models: LP = lower convex envelope.

(a) $\operatorname{epi}(f)$.

LP relaxation

(b) $\operatorname{conv}(\operatorname{epi}(f))$.

- All popular models are sharp.

O Locally Ideal: LP = Integral (All but CC, even Log).

- Locally ideal implies Sharp.

Comparison of Formulations

Strength of LP Relaxations

- Sharp Models: LP = lower convex envelope.

${ }^{(a)} \operatorname{epi}(f)$.

(b) $\operatorname{conv}(\operatorname{epi}(f))$.
- All popular models are sharp.

O Locally Ideal: LP = Integral (All but CC, even Log).

- Locally ideal implies Sharp.

Computational Results

- Instances
- Transportation problems (10x10 \& 5x2).
- Univariate: Concave Separable Objective.
- Multivariate: 2-commodity.

- Functions: affine in k segments or $\mathrm{k} \times \mathrm{k}$ grid triangulation (100 instances per k).

$$
\begin{aligned}
& (x, y) \rightarrow g(\|(x, y)\|) \\
& \text { Concave PLF } g(\cdot)
\end{aligned}
$$

- Solver: CPLEX 11 on 2.4Ghz machine.

O Logarithmic versions of CC = Log, DCC=DLog.

Univariate Case (Separable)

Univariate Case (Separable)

Comparison of Formulations

Univariate Case (Separable)

Univariate Case (Separable)

Multivariate Case (Non-Separable)

Lower Semicontinuous Functions

Lower Semicontinuous PLFs

$$
f(x):= \begin{cases}1.5 x+1 & x \in[0,2) \\ 2 & x \in[2,2] \\ -1.5 x+6 & x \in(2,4] \\ 2 x-7 & x \in(4,5]\end{cases}
$$

$f(x):=\left\{m_{P} x+c_{P} \quad x \in P \quad \forall P \in \mathcal{P}\right.$
Finite family of copolytopes

$$
\begin{aligned}
P=\left\{x \in \mathbb{R}^{n}:\right. & a_{i} x \leq b_{i} \forall i \in\{1, \ldots, p\} \\
& \left.a_{i} x<b_{i} \forall i \in\{p, \ldots, m\}\right\}
\end{aligned}
$$

Lower Semicontinuous Functions

Lower Semicontinuous PLFs

$$
f(x):=\left\{\begin{array}{lr}
1.5 x+1 & x \in[0,2) \\
2 & x \in[2,2] \\
-1.5 x+6 & x \in(2,4] \\
2 x-7 & x \in(4,5]
\end{array}\right.
$$

$f(x):=\left\{m_{P} x+c_{P} \quad x \in P \quad \forall P \in \mathcal{P}\right.$
Finite family of copolytopes

$$
\begin{aligned}
P=\left\{x \in \mathbb{R}^{n}:\right. & a_{i} x \leq b_{i} \forall i \in\{1, \ldots, p\} \\
& \left.a_{i} x<b_{i} \forall i \in\{p, \ldots, m\}\right\}
\end{aligned}
$$

Lower Semicontinuous Functions

Lower Semicontinuous PLFs

$$
f(x):= \begin{cases}1.5 x+1 & x \in[0,2) \\ 2 & x \in[2,2] \\ -1.5 x+6 & x \in(2,4] \\ 2 x-7 & x \in(4,5]\end{cases}
$$

$f(x):=\left\{m_{P} x+c_{P} \quad x \in P \quad \forall P \in \mathcal{P}\right.$
Finite family of copolytopes

$$
\begin{aligned}
P=\left\{x \in \mathbb{R}^{n}:\right. & a_{i} x \leq b_{i} \forall i \in\{1, \ldots, p\} \\
& \left.a_{i} x<b_{i} \forall i \in\{p, \ldots, m\}\right\}
\end{aligned}
$$

Lower Semicontinuous Functions

Lower Semicontinuous PLFs

$f(x):=\left\{m_{P} x+c_{P} \quad x \in P \quad \forall P \in \mathcal{P}\right.$
Finite family of copolytopes

$$
P=\left\{x \in \mathbb{R}^{n}: a_{i} x \leq b_{i} \forall i \in\{1, \ldots, p\}\right.
$$

$$
\left.a_{i} x<b_{i} \forall i \in\{p, \ldots, m\}\right\}
$$

Lower Semicontinuous Functions

Lower Semicontinuous PLFs

$$
\underbrace{}_{y} f(x, y):=\begin{array}{ll}
3 & (x, y) \in(0,1]^{2} \\
2 & (x, y) \in\left\{(x, y) \in \mathbb{R}^{2}: x=0, y>0\right\} \\
2 & (x, y) \in\left\{(x, y) \in \mathbb{R}^{2}: y=0, x>0\right\} \\
0 & (x, y) \in\{(0,0)\} .
\end{array}
$$

$f(x):=\left\{m_{P} x+c_{P} \quad x \in P \quad \forall P \in \mathcal{P}\right.$
Finite family of copolytopes
$P=\left\{x \in \mathbb{R}^{n}: a_{i} x \leq b_{i} \forall i \in\{1, \ldots, p\}\right.$,

$$
\left.a_{i} x<b_{i} \forall i \in\{p, \ldots, m\}\right\}
$$

Lower Semicontinuous Functions

Lower Semicontinuous PLFs

$f(x):=\left\{m_{P} x+c_{P} \quad x \in P \quad \forall P \in \mathcal{P}\right.$
Finite family of copolytopes

$$
\begin{aligned}
P=\left\{x \in \mathbb{R}^{n}:\right. & a_{i} x \leq b_{i} \forall i \in\{1, \ldots, p\}, \\
& \left.a_{i} x<b_{i} \forall i \in\{p, \ldots, m\}\right\}
\end{aligned}
$$

Lower Semicontinuous Functions

Lower Semicontinuous PLFs

$f(x):= \begin{cases}m_{P} x+c_{P} & x \in P \quad \forall P \in \mathcal{P}\end{cases}$
Finite family of copolytopes

$$
\begin{aligned}
P=\left\{x \in \mathbb{R}^{n}:\right. & a_{i} x \leq b_{i} \forall i \in\{1, \ldots, p\}, \\
& \left.a_{i} x<b_{i} \forall i \in\{p, \ldots, m\}\right\}
\end{aligned}
$$

Lower Semicontinuous Functions

Lower Semicontinuous Models

- Direct from Disjunctive Programming (Jeroslow and Lowe)
- "Extreme point" = DCC.
- Traditional = Multiple Choice (MC).
- Other models can be adapted to special ty
 discontinuities (e.g. simple fixed charges).
- MC, DCC, DLog are locally ideal and sharp.

O Computations: 2-commodity FC discount function.

Multivariate Lower Semicontinuous

Multivariate Lower Semicontinuous

Multivariate Lower Semicontinuous

Final Remarks

- Unifying theoretical framework: allows for multivariate non-separable and lower semicontinuous functions.
- First logarithmic formulations: Theoretically strong and provides significant computational advantage for large $\mid \mathcal{P}$.
o Revive forgotten formulations and functions: MC and fixed charge discount function.

