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                                                 is a piecewise linear 

function (PLF) and       is any compact set. 

Convex = Linear Programming. Non-Convex = NP Hard.

Specialized algorithms (Tomlin 1981, ..., de Farias et al. 

2008 ) or Mixed Integer Programming Models (12+ papers). 
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Piecewise Linear Optimization

2

min f0(x)

s.t.

fi(x) ≤0 ∀i ∈ I

x ∈X ⊂ R
n
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Mixed Integer Models for PLFs

Existing studies are for separable functions:

Contributions (Vielma et al. 2008a,b):

First models with a logarithmic # of binary variables.

Theoretical and computational comparison: 

multivariate (non-separable) and lower 

semicontinuous functions in a unifying framework.
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Outline

Applications of Piecewise Linear Functions.

Modeling Piecewise Linear Functions.

Logarithmic Formulations.

Comparison of Formulations.

Extension to Lower Semicontinuous Functions.

Final Remarks.
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Applications of Piecewise Linear Functions

Economies of Scale: Concave

Single and multi-commodity network flow.

Applications in telecommunications, transportation, 

and logistics.

(Balakrishnan and Graves 1989, ..., Croxton, et al. 2007).
5

0 1 3 5
0

2

3.5

4



/26

Applications of Piecewise Linear Functions

Fixed Charges and Discounts

1.Fixed Costs in Logistics. 

2.Discounts (e.g. Auctions: Sandholm, 

et al. 2006, CombineNet).

3.Discounts in fixed charges (Lowe 

1984).
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Gas Network Optimization 

(Martin et al. 2006).
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Applications of Piecewise Linear Functions

Non-Linear and PDE Constraints
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Applications of Piecewise Linear Functions

Numerically Exact Global Optimization 

Process engineering (Bergamini et al. 2005, 

2008, Computers and Chemical Eng.)

Wetland restoration (Stralberg et al. 2009).
8
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Modeling Piecewise Linear Functions

Piecewise Linear Functions: Definition

9

Definition 1. Piecewise Linear f : D ⊂R
n →R:

f(x) :=
{
mP x+ cP x∈ P ∀P ∈P.

for finite family of polytopes P such that D =
⋃

P∈P
P
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Modeling Piecewise Linear Functions

Modeling Function = Epigraph

 

Example: 
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Modeling Piecewise Linear Functions

Convex Combination (CC): Univariate
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Modeling Piecewise Linear Functions
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Univariate (Dantzig, 1960) ... Multivariate (Lee and 

Wilson (2001).
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Modeling Piecewise Linear Functions

Convex Combination (CC): Multivariate

12



∑
v∈V(P)

λvv = x,
∑

v∈V(P)

λv (mP v + cP )≤ z

λv ≥ 0 ∀v ∈ V(P) :=

⋃
P∈P

V (P ),
∑

v∈V(P)

λv = 1

λv ≤
∑

{P∈P :v∈V (P )}

yP ∀v ∈ V(P),
∑

P∈P

yP = 1, yP ∈ {0,1} ∀P ∈P

Univariate (Dantzig, 1960) ... Multivariate (Lee and 

Wilson (2001).
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Modeling Piecewise Linear Functions

Convex Combination (CC): Multivariate

SOS2 only for univariate

12

“Extra 

Constraints”



Nonzero variables are associated to vertices of a 

single polytope.

∑
v∈V(P)

λvv = x,
∑

v∈V(P)

λv (mP v + cP )≤ z

λv ≥ 0 ∀v ∈ V(P) :=

⋃
P∈P

V (P ),
∑

v∈V(P)

λv = 1

λv ≤
∑

{P∈P :v∈V (P )}

yP ∀v ∈ V(P),
∑

P∈P

yP = 1, yP ∈ {0,1} ∀P ∈P

Univariate (Dantzig, 1960) ... Multivariate (Lee and 

Wilson (2001).

/26

Modeling Piecewise Linear Functions
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Modeling Piecewise Linear Functions

Existing Models are Linear on 

Other models: Multiple Choice 

(MC), Incremental (Inc), 

Disaggregated Convex 

Combination (DCC).

Number of binary variables and 

combinatorial “extra” constraints

are linear in      .

For multivariate on a             

grid                     . 

Logarithmic sized formulations?
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SOS1-2 (Beale and Tomlin 1970):

SOS1: At most one variable is nonzero.

SOS2: Only 2 adjacent variables are nonzero.

! (0,1,1/2,0,0)       ! (0,1,0,1/2,0)

                     , allowed sets                             . 

SOS1: 

SOS2:

CC:
/26

Logarithmic Formulations

SOS1, SOS2 and CC constraints.

14
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Logarithmic Formulations

Logarithmic Formulation for SOS1

15
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Logarithmic Formulations

Logarithmic Formulation for SOS1
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In general:
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Logarithmic Formulations

Logarithmic Formulation for SOS2
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Logarithmic Formulations

Logarithmic Formulation for SOS2
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Where is     ?!

In general:

Gray Code.

λ2
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Logarithmic Formulations

Logarithmic Formulation for SOS2
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Logarithmic Formulations

Independent Branching: Dichotomies
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Logarithmic Formulations

Independent Branching for 2 var CC

Select Triangle by forbidding vertices.

2 stages: 

Select Square by SOS2 on each variable.

Select 1 triangle from each square. 

18
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Comparison of Formulations

Strength of LP Relaxations

Sharp Models: LP = lower convex envelope.

All popular models are sharp.

Locally Ideal: LP = Integral (All but CC, even Log).

Locally ideal implies Sharp.
19

(a) epi(f). (b) conv(epi(f)).

LP relaxation
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Instances

Transportation problems (10x10 & 5x2).

Univariate: Concave Separable Objective.

Multivariate: 2-commodity.

Functions: affine in k segments or k x k 

grid triangulation (100 instances per k).

Solver: CPLEX 11 on 2.4Ghz machine.

Logarithmic versions of CC = Log, 

DCC=DLog. /26

Comparison of Formulations

Computational Results
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Comparison of Formulations

Univariate Case (Separable)
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Comparison of Formulations

Multivariate Case (Non-Separable)
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Lower Semicontinuous Functions

Lower Semicontinuous PLFs
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Lower Semicontinuous Functions

Lower Semicontinuous Models

Direct from Disjunctive Programming (Jeroslow and 

Lowe)

“Extreme point” = DCC.

Traditional = Multiple Choice (MC).

Other models can be adapted to special types of 

discontinuities (e.g. simple fixed charges).

MC, DCC, DLog are locally ideal and sharp.

Computations: 2-commodity FC discount function.
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Final Remarks

Final Remarks

Unifying theoretical framework: allows for 

multivariate non-separable and lower 

semicontinuous functions. 

First logarithmic formulations: Theoretically 

strong and provides significant 

computational advantage for large      .

Revive forgotten formulations and 

functions: MC and fixed charge       

discount function.
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