Mixed Integer Programming Models for Non-Separable Piecewise Linear Cost Functions

Juan Pablo Vielma

H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

Joint work with Shabbir Ahmed and George Nemhauser.

University of Pittsburgh, 2008 – Pittsburgh, PA

Piecewise Linear Optimization

 $\min f_0(x)$ s.t. $f_i(x) \le 0 \quad \forall i \in I$ $x \in X \subset \mathbb{R}^n$

2/26

∀i ∈ {0} ∪ I f_i(x) : D → ℝ is a piecewise linear function (PLF) and X is any compact set.
Convex = Linear Programming. Non-Convex = NP Hard.
Specialized algorithms (Tomlin 1981, ..., de Farias et al. 2008) or Mixed Integer Programming Models (12+ papers).

Mixed Integer Models for PLFs

Existing studies are for separable functions:

$$f(x) = \sum_{j=1}^{n} f_j(x_j) \text{ for } f_j(x_j) : \mathbb{R} \to \mathbb{R}$$

Contributions (Vielma et al. 2008a,b):

First models with a logarithmic # of binary variables.

 Theoretical and computational comparison: multivariate (non-separable) and lower semicontinuous functions in a unifying framework.

Outline

 Applications of Piecewise Linear Functions. Modeling Piecewise Linear Functions. Logarithmic Formulations. Comparison of Formulations. Extension to Lower Semicontinuous Functions. Final Remarks.

Economies of Scale: Concave

Single and multi-commodity network flow.
 Applications in telecommunications, transportation, and logistics.
 (Balakrishnan and Graves 1989, ..., Croxton, et al. 2007). 5/26

Fixed Charges and Discounts

 Fixed Costs in Logistics.
 Discounts (e.g. Auctions: Sandholm, et al. 2006, CombineNet).
 Discounts in fixed charges (Lowe 1984).

Non-Linear and PDE Constraints

p(x,t) = gas pressureq(x,t) = gas volume flow $A \frac{\partial \rho}{\partial t} + \rho_0 \frac{\partial q}{\partial x} = 0,$ $\frac{\partial p}{\partial x} = -\lambda \frac{|v|v}{2D} \rho.$

 Gas Network Optimization (Martin et al. 2006).

Non-Linear and PDE Constraints

p(x,t) = gas pressureq(x,t) = gas volume flow $A \frac{\partial \rho}{\partial t} + \rho_0 \frac{\partial q}{\partial x} = 0,$ $\frac{\partial p}{\partial x} = -\lambda \frac{|v|v}{2D} \rho.$

Discretize non-linear stationary solution $p_v = g(p_u, q_{uv})$

 Gas Network Optimization (Martin et al. 2006).

Non-Linear and PDE Constraints

p(x,t) = gas pressureq(x,t) = gas volume flow $A \frac{\partial \rho}{\partial t} + \rho_0 \frac{\partial q}{\partial x} = 0,$ $\frac{\partial p}{\partial x} = -\lambda \frac{|v|v}{2D} \rho.$

Discretize PDE (Fügenschuh, et al. 2008)

 Gas Network Optimization (Martin et al. 2006).

Numerically Exact Global Optimization

 Process engineering (Bergamini et al. 2005, 2008, Computers and Chemical Eng.)

Wetland restoration (Stralberg et al. 2009).

Numerically Exact Global Optimization

8/26

 Process engineering (Bergamini et al. 2005, 2008, Computers and Chemical Eng.)

Wetland restoration (Stralberg et al. 2009).

Piecewise Linear Functions: Definition

DEFINITION 1. Piecewise Linear $f: D \subset \mathbb{R}^n \to \mathbb{R}$: $f(x) := \begin{cases} m_P x + c_P & x \in P & \forall P \in \mathcal{P}. \end{cases}$

for finite family of polytopes \mathcal{P} such that $D = \bigcup_{P \in \mathcal{P}} P$

Piecewise Linear Functions: Definition

DEFINITION 1. Piecewise Linear $f: D \subset \mathbb{R}^n \to \mathbb{R}$: $f(x) := \begin{cases} m_P x + c_P & x \in P & \forall P \in \mathcal{P}. \end{cases}$

for finite family of polytopes \mathcal{P} such that $D = \bigcup_{P \in \mathcal{P}} P$

Piecewise Linear Functions: Definition

DEFINITION 1. Piecewise Linear $f: D \subset \mathbb{R}^n \to \mathbb{R}$: $f(x) := \begin{cases} m_P x + c_P & x \in P & \forall P \in \mathcal{P}. \end{cases}$

for finite family of polytopes \mathcal{P} such that $D = \bigcup_{P \in \mathcal{P}} P$

Modeling Function = Epigraph • $epi(f) := \{(x, z) \in D \times \mathbb{R} \subset \mathbb{R}^n \times \mathbb{R} : f(x) \le z\}.$

• Example: $f(x) \le 0 \Leftrightarrow (x, z) \in epi(f), z \le 0$

Convex Combination (CC): Univariate

Convex Combination (CC): Univariate

Convex Combination (CC): Univariate

idea: write $(x, y) \in epi(f)$ as convex combination of (v, f(v)) for $v \in \mathcal{V}(\mathcal{P})$.

Convex Combination (CC): Univariate

$$f(x) := \begin{cases} x+1 & x \in [0,2] \leftarrow P_1 \\ 6-3/2x & x \in [2,4] \leftarrow P_2 \\ V(P) = \text{vertices of P.} \\ \mathcal{V}(\mathcal{P}) := V(P_1) \cup V(P_2) = \{0,2,4\}. \end{cases}$$

idea: write $(x, y) \in epi(f)$ as convex combination of (v, f(v)) for $v \in \mathcal{V}(\mathcal{P})$.

$$\begin{aligned} x &= 0\lambda_0 + 2\lambda_2 + 4\lambda_4 \\ z &\ge 1\lambda_0 + 3\lambda_2 + 0\lambda_4 \\ 1 &= \lambda_0 + \lambda_2 + \lambda_4, \quad \lambda_0, \lambda_2, \lambda_4 \ge 0 \end{aligned}$$

Convex Combination (CC): Univariate

$$f(x) := \begin{cases} x+1 & x \in [0,2] \leftarrow P_1 \\ 6-3/2x & x \in [2,4] \leftarrow P_2 \end{cases}$$
$$V(P) = \text{vertices of P.} \\\mathcal{V}(\mathcal{P}) := V(P_1) \cup V(P_2) = \{0,2,4\}. \end{cases}$$

 λ_0 and λ_4 cannot be nonzero at the same time.

$$\begin{aligned} x &= 0\lambda_0 + 2\lambda_2 + 4\lambda_4 \\ z &\ge 1\lambda_0 + 3\lambda_2 + 0\lambda_4 \\ 1 &= \lambda_0 + \lambda_2 + \lambda_4, \quad \lambda_0, \lambda_2, \lambda_4 \ge 0 \end{aligned}$$

Convex Combination (CC): Univariate

/

$$f(x) := \begin{cases} x+1 & x \in [0,2] \leftarrow P_1 \\ 6-3/2x & x \in [2,4] \leftarrow P_2 \end{cases}$$
$$V(P) = \text{vertices of P.} \\\mathcal{V}(\mathcal{P}) := V(P_1) \cup V(P_2) = \{0,2,4\}. \end{cases}$$

 λ_0 and λ_4 cannot be nonzero at the same time.

$$\begin{aligned} x &= 0\lambda_0 + 2\lambda_2 + 4\lambda_4 \\ z &\ge 1\lambda_0 + 3\lambda_2 + 0\lambda_4 \\ 1 &= \lambda_0 + \lambda_2 + \lambda_4, \quad \lambda_0, \lambda_2, \lambda_4 \ge 0 \\ \lambda_0 &\le y_{P_1}, \quad \lambda_2 \le y_{P_1} + y_{P_2}, \quad \lambda_4 \le y_{P_2} \\ 1 &= y_{P_1} + y_{P_2}, \quad y_{P_1}, y_{P_2} \in \{0, 1\} \end{aligned}$$

Convex Combination (CC): Univariate

Convex Combination (CC): Multivariate

Convex Combination (CC): Multivariate

$$\begin{split} \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v v = x, \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v \left(m_P v + c_P \right) \leq z \\ \lambda_v \geq 0 \quad \forall v \in \mathcal{V}(\mathcal{P}) := \bigcup_{P \in \mathcal{P}} V(P), \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v = 1 \\ \lambda_v \leq \sum_{\{P \in \mathcal{P} : v \in V(P)\}} y_P \quad \forall v \in \mathcal{V}(\mathcal{P}), \quad \sum_{P \in \mathcal{P}} y_P = 1, \quad y_P \in \{0, 1\} \quad \forall P \in \mathcal{P} \end{split}$$

Convex Combination (CC): Multivariate

$$\begin{split} \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v v = x, \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v \left(m_P v + c_P \right) \leq z \\ \lambda_v \geq 0 \quad \forall v \in \mathcal{V}(\mathcal{P}) := \bigcup_{P \in \mathcal{P}} V(P), \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v = 1 \\ \lambda_v \leq \sum_{\{P \in \mathcal{P} : v \in V(P)\}} y_P \quad \forall v \in \mathcal{V}(\mathcal{P}), \quad \sum_{P \in \mathcal{P}} y_P = 1, \quad y_P \in \{0, 1\} \quad \forall P \in \mathcal{P} \end{split}$$

Convex Combination (CC): Multivariate

$$\begin{array}{l} \text{``Original Constraints''} \qquad \qquad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v v = x, \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v \left(m_P v + c_P \right) \leq z \\ \lambda_v \geq 0 \quad \forall v \in \mathcal{V}(\mathcal{P}) := \bigcup_{P \in \mathcal{P}} V(P), \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v = 1 \end{array} \\ \lambda_v \leq \sum_{\{P \in \mathcal{P} : v \in V(P)\}} y_P \quad \forall v \in \mathcal{V}(\mathcal{P}), \quad \sum_{P \in \mathcal{P}} y_P = 1, \quad y_P \in \{0, 1\} \quad \forall P \in \mathcal{P} \end{cases}$$

Convex Combination (CC): Multivariate

$$\begin{aligned} & \text{``Extra Constraints''} \qquad & \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v v = x, \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v (m_P v + c_P) \leq z \\ & \lambda_v \geq 0 \quad \forall v \in \mathcal{V}(\mathcal{P}) := \bigcup_{P \in \mathcal{P}} V(P), \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v = 1 \\ & \lambda_v \leq \sum_{\{P \in \mathcal{P} : v \in V(P)\}} y_P \quad \forall v \in \mathcal{V}(\mathcal{P}), \quad \sum_{P \in \mathcal{P}} y_P = 1, \quad y_P \in \{0, 1\} \quad \forall P \in \mathcal{P} \end{aligned}$$

Convex Combination (CC): Multivariate

Univariate (Dantzig, 1960) ... Multivariate (Lee and Wilson (2001).

"Extra Constraints" $\sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v v = x, \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v (m_P v + c_P) \leq z$ $\lambda_v \geq 0 \quad \forall v \in \mathcal{V}(\mathcal{P}) := \bigcup_{P \in \mathcal{P}} V(P), \quad \sum_{v \in \mathcal{V}(\mathcal{P})} \lambda_v = 1$ **SOS2 only for univariate**

Convex Combination (CC): Multivariate

Univariate (Dantzig, 1960) ... Multivariate (Lee and Wilson (2001).

12/26

Existing Models are Linear on $|\mathcal{P}|$

 Other models: Multiple Choice (MC), Incremental (Inc), Disaggregated Convex Combination (DCC).

• Number of binary variables and combinatorial "extra" constraints are linear in $|\mathcal{P}|$.

For multivariate on a $k \times k$ grid $|\mathcal{P}| = O(k^2)$.

Logarithmic sized formulations?

SOS1, SOS2 and CC constraints.

SOS1-2 (Beale and Tomlin 1970): SOS1: At most one variable is nonzero. SOS2: Only 2 adjacent variables are nonzero. \checkmark (0,1,1/2,0,0) \times (0,1,0,1/2,0) • $(\lambda_i)_{i \in J} \in \mathbb{R}^J_+$, allowed sets $(S_i)_{i \in I}$, $S_i \subset J_i$ • SOS1: I = J, $S_i = \{i\}$. • SOS2: $J = \{0, ..., m\}, I = J \setminus \{m\}, S_i = \{i, i+1\}.$ • CC: $J = \mathcal{V}(\mathcal{P}), I = \mathcal{P}, S_P = V(P).$

Logarithmic Formulation for SOS1

$$\sum_{j=0}^{3} \lambda_{j} = 1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \ge 0, \text{ at most } 1 \ \lambda_{j} \text{ is nonzero.}$$

Allowed sets: $S_{0} = \{0\}, S_{1} = \{1\}, S_{2} = \{2\}, S_{3} = \{3\}.$

Logarithmic Formulation for SOS1

$$\sum_{j=0}^{3} \lambda_{j} = 1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \ge 0, \text{ at most } 1 \ \lambda_{j} \text{ is nonzero.}$$

Allowed sets: $S_{0} = \{0\}, S_{1} = \{1\}, S_{2} = \{2\}, S_{3} = \{3\}.$

• Injective function: $B: \{0, \dots, m-1\} \rightarrow \{0, 1\}^{\lceil \log_2 m \rceil}$ • Variables: $w \in \{0, 1\}^{\lceil \log_2 m \rceil}$ • Idea: $\lambda_j > 0 \Leftrightarrow w = B(j)$

Logarithmic Formulation for SOS1

$$\sum_{j=0}^{3} \lambda_{j} = 1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \ge 0, \text{ at most } 1 \ \lambda_{j} \text{ is nonzero.}$$

Allowed sets: $S_{0} = \{0\}, S_{1} = \{1\}, S_{2} = \{2\}, S_{3} = \{3\}.$

• Injective function: $B: \{0, \dots, m-1\} \rightarrow \{0, 1\}^{\lceil \log_2 m \rceil}$ • Variables: $w \in \{0, 1\}^{\lceil \log_2 m \rceil}$ • Idea: $\lambda_j > 0 \Leftrightarrow w = B(j)$

Logarithmic Formulation for SOS1

$$\sum_{j=0}^{3} \lambda_{j} = 1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \ge 0, \text{ at most } 1 \ \lambda_{j} \text{ is nonzero.}$$

Allowed sets: $S_{0} = \{0\}, S_{1} = \{1\}, S_{2} = \{2\}, S_{3} = \{3\}.$

Logarithmic Formulation for SOS1

$$\sum_{j=0}^{3} \lambda_{j} = 1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \ge 0, \text{ at most } 1 \lambda_{j} \text{ is nonzero.}$$

Allowed sets: $S_{0} = \{0\}, S_{1} = \{1\}, S_{2} = \{2\}, S_{3} = \{3\}.$

Logarithmic Formulation for SOS1

$$\sum_{j=0}^{3} \lambda_j = 1, \quad \lambda_0, \lambda_1, \lambda_2, \lambda_3 \ge 0, \text{ at most } 1 \lambda_j \text{ is nonzero.}$$
Allowed sets: $S_0 = \{0\}, S_1 = \{1\}, S_2 = \{2\}, S_3 = \{3\}.$

$$i \quad S_i \quad B(i)$$

$$0 \quad \{0\} \longrightarrow 0 \quad 0 \quad \lambda_1 + \lambda_3 \le w_1$$

$$B: \{0, \dots, 1\} \longrightarrow \{0, 1\} | \log m$$

Logarithmic Formulation for SOS1

$$\sum_{j=0}^{3} \lambda_{j} = 1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \ge 0, \text{ at most } 1 \ \lambda_{j} \text{ is nonzero.}$$

Allowed sets: $S_{0} = \{0\}, S_{1} = \{1\}, S_{2} = \{2\}, S_{3} = \{3\}.$

Logarithmic Formulation for SOS1

$$\sum_{j=0}^{3} \lambda_{j} = 1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \ge 0, \text{ at most } 1 \lambda_{j} \text{ is nonzero.}$$

Allowed sets: $S_{0} = \{0\}, S_{1} = \{1\}, S_{2} = \{2\}, S_{3} = \{3\}.$

Logarithmic Formulation for SOS2

 $\sum_{j=0}^{4} \lambda_j = 1, \quad \lambda_0, \dots, \lambda_4 \ge 0, \text{ only 2 adjacent } \lambda_j \text{'s ar nonzero.}$ Allowed sets: $S_i = \{i, i+1\} \text{ for } i \in \{0, \dots, 3\}.$

Logarithmic Formulation for SOS2

 $\sum_{j=0}^{4} \lambda_j = 1, \quad \lambda_0, \dots, \lambda_4 \ge 0, \text{ only } 2 \text{ adjacent } \lambda_j \text{'s ar nonzero.}$ Allowed sets: $S_i = \{i, i+1\} \text{ for } i \in \{0, \dots, 3\}.$

Logarithmic Formulation for SOS2

 $\sum_{j=0}^{4} \lambda_j = 1, \quad \lambda_0, \dots, \lambda_4 \ge 0, \text{ only } 2 \text{ adjacent } \lambda_j \text{'s ar nonzero.}$ Allowed sets: $S_i = \{i, i+1\} \text{ for } i \in \{0, \dots, 3\}.$

Logarithmic Formulation for SOS2

 $\sum_{j=0}^{4} \lambda_j = 1, \quad \lambda_0, \dots, \lambda_4 \ge 0, \text{ only 2 adjacent } \lambda_j \text{'s ar nonzero.}$ Allowed sets: $S_i = \{i, i+1\} \text{ for } i \in \{0, \dots, 3\}.$

Logarithmic Formulation for SOS2

 $\sum_{j=0}^{4} \lambda_j = 1, \quad \lambda_0, \dots, \lambda_4 \ge 0, \text{ only 2 adjacent } \lambda_j \text{'s ar nonzero.}$ Allowed sets: $S_i = \{i, i+1\} \text{ for } i \in \{0, \dots, 3\}.$

Logarithmic Formulation for SOS2

 $\sum_{j=0}^{4} \lambda_j = 1, \quad \lambda_0, \dots, \lambda_4 \ge 0, \text{ only } 2 \text{ adjacent } \lambda_j \text{'s ar nonzero.}$ Allowed sets: $S_i = \{i, i+1\} \text{ for } i \in \{0, \dots, 3\}.$

• Injective function: $B: \{0, \dots, m-1\} \rightarrow \{0, 1\}^{\lceil \log_2 m \rceil}$ • Variables: $w \in \{0, 1\}^{\lceil \log_2 m \rceil}$ • Idea: $\lambda_j, \lambda_{j+1} > 0 \Leftrightarrow w = B(j)$

Logarithmic Formulation for SOS2

 $\sum_{j=0}^{4} \lambda_j = 1, \quad \lambda_0, \dots, \lambda_4 \ge 0, \text{ only } 2 \text{ adjacent } \lambda_j \text{'s ar nonzero.}$ Allowed sets: $S_i = \{i, i+1\} \text{ for } i \in \{0, \dots, 3\}.$

Logarithmic Formulation for SOS2

 $\sum_{j=0}^{4} \lambda_j = 1, \quad \lambda_0, \dots, \, \lambda_4 \ge 0, \text{ only } 2 \text{ adjacent } \lambda_j \text{'s ar nonzero.}$ Allowed sets: $S_i = \{i, i+1\}$ for $i \in \{0, ..., 3\}$. i S_i B(i)Injective function: $(0,1) \rightarrow$ → 0 0 0 $\lambda_0 \le w_1$ $B: \{0, \ldots, m-1\} \to \{0, 1\}^{\lceil \log_2 m \rceil}$ • Variables: $(\{1,2\})$ · **1** $\lambda_4 \le (1 - w_1)$ 1 0 $w \in \{0,1\}^{\lceil \log_2 m \rceil}$ (2,3) $\lambda_0 + \lambda_1 \le (1 - w_2)$ 21 0 ldea: $\lambda_3 + \lambda_4 \le w_2$ $({3,4})$ 3 $\lambda_j, \lambda_{j+1} > 0 \Leftrightarrow w = B(j)$ $w_1 \ w_2 \in \{0, 1\}$

Logarithmic Formulation for SOS2

 $\sum_{j=0}^{4} \lambda_j = 1, \quad \lambda_0, \dots, \lambda_4 \ge 0, \text{ only } 2 \text{ adjacent } \lambda_j \text{'s ar nonzero.}$ Allowed sets: $S_i = \{i, i+1\} \text{ for } i \in \{0, \dots, 3\}.$

Logarithmic Formulation for SOS2

2
$$(\{2,3\}) \longrightarrow 0$$
 1 $\lambda_0 + \lambda_1 \le (1 - w_2)$

$$3 \quad \underbrace{\{3,4\}} \longleftrightarrow \begin{array}{c} \mathbf{1} \quad \mathbf{1} \\ w_1 \quad w_2 \in \{0,1\} \end{array} \qquad \lambda_3 + \lambda_4 \leq w_2$$

Logarithmic Formulation for SOS2

 $\sum_{j=0}^{4} \lambda_j = 1, \quad \lambda_0, \dots, \, \lambda_4 \ge 0, \text{ only } 2 \text{ adjacent } \lambda_j \text{'s ar nonzero.}$ Allowed sets: $S_i = \{i, i+1\}$ for $i \in \{0, ..., 3\}$. i S_i B(i)• Where is λ_2 ?! $(\{0,1\}) \longleftrightarrow 0 0$ 0 $\lambda_0 \leq w_1$ 1 $(\{1,2\})$ $\lambda_4 \le (1 - w_1)$

16/26

 $(\{2,3\}) \longleftrightarrow 0 \mid 1 \quad \forall \lambda_0 + \lambda_1 \le (1 - w_2)$ 2 $3 \quad \boxed{\{3,4\}} \longrightarrow \boxed{1} \quad \boxed{1} \quad \lambda_3 + \lambda_4 \leq w_2$ $w_1 \ w_2 \in \{0, 1\}$

1 0

Logarithmic Formulation for SOS2

 $\sum_{j=0}^{4} \lambda_j = 1, \quad \lambda_0, \dots, \, \lambda_4 \ge 0, \text{ only } 2 \text{ adjacent } \lambda_j \text{'s ar nonzero.}$ Allowed sets: $S_i = \{i, i+1\}$ for $i \in \{0, ..., 3\}$. i S_i B(i)• Where is λ_2 ?! $(\{0,1\}) \longrightarrow 0 \mid 0 \mid$ 0 $\lambda_2 \le w_1$ $1 \quad (\{1,2\}) \leftarrow$ $\lambda_0 + \lambda_4 \le (1 - w_1)$ 1 0 $2 \quad (\{2,3\}) \leftarrow$ $\lambda_0 + \lambda_1 \le (1 - w_2)$ 1 | 1 | $3 ({3,4}) \leftarrow$ $\lambda_3 + \lambda_4 \le w_2$ 0

16/26

 $w_1 \ w_2 \in \{0, 1\}$

Logarithmic Formulation for SOS2

 $\sum_{j=0}^{4} \lambda_j = 1, \quad \lambda_0, \dots, \, \lambda_4 \ge 0, \text{ only } 2 \text{ adjacent } \lambda_j \text{'s ar nonzero.}$ Allowed sets: $S_i = \{i, i+1\}$ for $i \in \{0, ..., 3\}$. i S_i B(i)• Where is λ_2 ?! $\{0,1\}$ \longleftrightarrow 0 0 0 $\lambda_2 \leq w_1$ In general: $\lambda_0 + \lambda_4 \le (1 - w_1)$ $(\{1,2\})$ 1 1 0 B(i) and B(i+1) $\lambda_0 + \lambda_1 \le (1 - w_2)$ (2,3)21 differ in one component $({3,4})$ $\lambda_3 + \lambda_4 \le w_2$ 3 Gray Code. $w_1 \ w_2 \in \{0, 1\}$

Independent Branching: Dichotomies

Independent Branching: Dichotomies

Independent Branching for 2 var CC

- Select Triangle by forbidding vertices.
- 2 stages:
 - Select Square by SOS2 on each variable.
 Select 1 triangle from each square.

Independent Branching for 2 var CC

- Select Triangle by forbidding vertices.
- 2 stages:
 - Select Square by SOS2 on each variable.
 Select 1 triangle from each square.

Independent Branching for 2 var CC

- Select Triangle by forbidding vertices.
- 2 stages:
 - Select Square by SOS2 on each variable.
 Select 1 triangle from each square.

$$\bar{L} = \{(r, s) \in J :$$

$$r \text{ even and } s \text{ odd} \}$$

$$= \{\text{square vertices} \}$$

$$\bar{R} = \{(r, s) \in J :$$

$$r \text{ odd and } s \text{ even} \}$$

$$= \{\text{diamond vertices} \}$$

Strength of LP Relaxations

Sharp Models: LP = lower convex envelope.

(a) $\operatorname{epi}(f)$.

(b) $\operatorname{conv}(\operatorname{epi}(f))$.

All popular models are sharp.
Locally Ideal: LP = Integral (All but CC, even Log).
Locally ideal implies Sharp.

Strength of LP Relaxations

Sharp Models: LP = lower convex envelope.

(a) $\operatorname{epi}(f)$.

(b) $\operatorname{conv}(\operatorname{epi}(f))$.

All popular models are sharp.
Locally Ideal: LP = Integral (All but CC, even Log).
Locally ideal implies Sharp.

Computational Results

Instances

- Transportation problems (10x10 & 5x2).
- Univariate: Concave Separable Objective.
- Multivariate: 2-commodity.
- Functions: affine in k segments or k x k grid triangulation (100 instances per k).
- Solver: CPLEX 11 on 2.4Ghz machine.
- Logarithmic versions of CC = Log, DCC=DLog.

 $(x, y) \rightarrow g(||(x, y)||)$ Concave PLF $g(\cdot)$

Univariate Case (Separable)

Univariate Case (Separable)

Univariate Case (Separable)

Univariate Case (Separable)

Multivariate Case (Non-Separable)

$$f(x,y) := \begin{cases} 3 & (x,y) \in (0,1]^2 \\ 2 & (x,y) \in \{(x,y) \in \mathbb{R}^2 : x = 0, y > 0\} \\ 2 & (x,y) \in \{(x,y) \in \mathbb{R}^2 : y = 0, x > 0\} \\ 0 & (x,y) \in \{(0,0)\}. \end{cases}$$

$$f(x) := \begin{cases} m_P x + c_P \quad x \in P \quad \forall P \in \mathcal{P} \\ 0 & (x,y) \in \{(0,0)\}. \end{cases}$$
Finite family of copolytopes
$$P = \{x \in \mathbb{R}^n : a_i x \le b_i \,\forall i \in \{1, \dots, p\}, \\ a_i x < b_i \,\forall i \in \{p, \dots, m\}\} \end{cases}$$

Lower Semicontinuous PLFs

 $P = \{ x \in \mathbb{R}^n : a_i x \le b_i \,\forall i \in \{1, \dots, p\}, \\ a_i x < b_i \,\forall i \in \{p, \dots, m\} \}$

$$f(x,y) := \begin{cases} 3 & (x,y) \in (0,1]^2 \\ 2 & (x,y) \in \{(x,y) \in \mathbb{R}^2 : x = 0, y > 0\} \\ 2 & (x,y) \in \{(x,y) \in \mathbb{R}^2 : y = 0, x > 0\} \\ 0 & (x,y) \in \{(0,0)\}. \end{cases}$$

$$f(x) := \begin{cases} m_P x + c_P & x \in P \quad \forall P \in \mathcal{P} \\ 0 & (x,y) \in \{(0,0)\}. \end{cases}$$
Finite family of copolytopes
$$P = \{x \in \mathbb{R}^n : a_i x \le b_i \,\forall i \in \{1, \dots, p\}, \\ a_i x < b_i \,\forall i \in \{p, \dots, m\}\} \end{cases}$$

Lower Semicontinuous PLFs

$$f(x,y) := \begin{cases} 3 & (x,y) \in (0,1]^2 \\ 2 & (x,y) \in \{(x,y) \in \mathbb{R}^2 : x = 0, y > 0\} \\ 2 & (x,y) \in \{(x,y) \in \mathbb{R}^2 : y = 0, x > 0\} \\ 0 & (x,y) \in \{(0,0)\}. \end{cases}$$

$$f(x) := \begin{cases} m_P x + c_P & x \in P \quad \forall P \in \mathcal{P} \\ m_P x + c_P & x \in P \quad \forall P \in \mathcal{P} \end{cases}$$
Finite family of

 $P = \{ x \in \mathbb{R}^n : a_i x \le b_i \,\forall i \in \{1, \dots, p\}, \\ a_i x < b_i \,\forall i \in \{p, \dots, m\} \}$

copolytopes
Lower Semicontinuous Functions

Lower Semicontinuous Models

- Direct from Disjunctive Programming (Jeroslow and Lowe)
 - "Extreme point" = DCC.
 - Traditional = Multiple Choice (MC).

- MC, DCC, DLog are locally ideal and sharp.
- Computations: 2-commodity FC discount function.

U

Multivariate Lower Semicontinuous

25/26

Multivariate Lower Semicontinuous

Multivariate Lower Semicontinuous

25/26

Final Remarks

- Unifying theoretical framework: allows for multivariate non-separable and lower semicontinuous functions.
- First logarithmic formulations: Theoretically strong and provides significant computational advantage for large $|\mathcal{P}|$.
- Revive forgotten formulations and functions: MC and fixed charge discount function.

