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The Problem

min
∑

j∈N

fj(xj)

s.t.
∑

j∈N

gijxj ≤ bi ∀ i ∈ {1, . . . , m}

0 ≤ xj ≤ uj ∀ j ∈ N := {1, . . . , n}

fj(xj) : [0, uj] → R is lower semicontinuous, nonconvex and
piecewise linear.

Simplifying assumption m = 1.
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History and Objectives

History:
Problem is NP-hard and has many applications. Keha et. al
(2004):

Network flow problems with non-convex objectives and fixed
charges.

Branch-and-Cut algorithm without binary variables for the
continuous case. Keha et. al (2004).
Extension of model to the non-lower semicontinuous case
and new cuts. de Farias et. al (2005).

Objective:
Extend cuts from Keha et. al (2004) to the lower
semicontinuous case.
New cuts for fixed charge case.
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The SOS2 Based Model

min
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aj defined appropriately from original linear constraint.

Fixing λ0
j = 0 removes fixed charge.

Obs: λ0
j ∈ {0, 1} is not artificial.
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Because model is still SOS2 cuts from Keha et. al
(2004) are directly valid.

Small care with ak
j ≤ ak+1

j instead of ak
j < ak+1

j .

Lifted Convexity Constraints:
Obtained by lifting

∑T
k=0 λk

j = 1.
For i 6= j ∈ N:
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T
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αk
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Lifted Cover Constraints:
Extend the concept of a cover to SOS2 continuous
variables.
For C ⊆ N:
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j∈C

(αjλ
kj−1
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T
∑

k=kj

λk
j ) ≤ |C| − 1
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Lifted Convexity Constraints can be Improved

Aggregated Lifted Convexity Constraints:
Obtained by adding groups of convexity constraints and
then lifting.
For l ∈ N and I ⊆ N \ {l}:

∑

i∈I

T
∑

k=1

λk
i + αkl

l λkl
l ≤ |I|
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SOS2 Model can be Relaxed to Variable Upper Bound
Model
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SOS2 Model can be Relaxed to Variable Upper Bound
Model
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Flow Cover Cuts can be Obtained from Variable Upper
Bound Relaxation

For C ⊆ N and kj ≥ 1, j ∈ C such that
∑

j∈C akj
j = b + ∆ with

∆ > 0 we get the Fixed Charge Flow Cover Cut:
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j ≤ b

Stronger cuts can be used (i.e. Lifted flow cover cuts).
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SOS2 Model can be Relaxed to Binary Knapsack
Model
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Model can be improved by fixing λk
i = 0, k ≥ ki + 1.

Cover cuts for this model need to be lifted.
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Lifting Back Continuous Variables λk
i Yields Valid Cut

For C ⊆ N and kj ≥ 1, j ∈ N \ C such that

ρ = b −
∑

i∈N\C

aki
i > 0 (1)

∑

i∈N\C

aki
i + aT

j ≥ b ∀j ∈ C (2)

∑

i∈N\(C∪{j})

aki
i + a

kj+1
j ≥ b ∀j ∈ N \ C (3)

we get Fixed Charge Cover Cut:

∑

j∈C

λ0
j +

∑

i∈N\C





(

aki
i − aki+1

i

ρ

)

λki+1
i −

T
∑

k=ki+2

λk
i



 ≤ |C| − 1

Not clear how to lift stronger cuts (i.e. Lifted cover cover
cuts).



Introduction SOS2 model Valid Inequalities Computational Results

Lifting Back Continuous Variables λk
i Yields Valid Cut

For C ⊆ N and kj ≥ 1, j ∈ N \ C such that

ρ = b −
∑

i∈N\C

aki
i > 0 (1)

∑

i∈N\C

aki
i + aT

j ≥ b ∀j ∈ C (2)

∑

i∈N\(C∪{j})

aki
i + a

kj+1
j ≥ b ∀j ∈ N \ C (3)

we get Fixed Charge Cover Cut:

∑

j∈C

λ0
j +

∑

i∈N\C





(

aki
i − aki+1

i

ρ

)

λki+1
i −

T
∑

k=ki+2

λk
i



 ≤ |C| − 1

Not clear how to lift stronger cuts (i.e. Lifted cover cover
cuts).



Introduction SOS2 model Valid Inequalities Computational Results

Branch–and-Cut without Binary Variables isn’t Always
Practical

Branch–and-Cut without binary variables implemented in
Minto is faster than binary variable version (Keha et. al
(2004))
“Good” implementation of SOS2 requirements using
variable branching:

Disaggregated convex combination model.
Sherali (2001), Croxton et. al. (2003).

CPLEX’s binary variables implementation more advanced
that SOS2 implementation:

Branching (Pseudocosts, strong branching, etc.)
Heuristics (RINS, etc.)
Preprocessing.
Cuts for binary variables.

Using binary variables is currently best “practical”
implementation of SOS2.
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Test instances

Transportation problems with various supply×demand
nodes:

10 × 10,12 × 18,15 × 15 and ,20 × 20.
5 randomly generated instances for each size.
Minimization of 4 types of nonconvex separable piecewise
linear function with 4 and 5 segments.

Solved with CPLEX 9.0:
Using binary variables to implement SOS2.
Default CPLEX and Default CPLEX + SOS2 Cuts.
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Types of Objective Functions
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Total Decrease in # of Branch–and–Bound Nodes
When Adding SOS2 Cuts

Continuous Discontinuous

Without Fixed Charge 91% 88%
With Fixed Charge 94% 94%
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Total Decrease in Solve Time When Adding SOS2
Cuts

Continuous Discontinuous

Without Fixed Charge 21% 17 %
With Fixed Charge 18% 16%
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Conclusions

Cuts for continuous piecewise linear SOS2 models can be
extended to the lower semicontinuous case.

Lifted convexity constraints can be strengthened by
aggregation.

Cuts for fixed charge linear transportation problems can be
extended to the piecewise linear case.

Binary variables currently best way of implementing SOS2.

Cuts for SOS2 improve performance of solves using
CPLEX.
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