Integer Programming Approaches for Imposing Connectivity in Forest Management

Juan Pablo Vielma

University of Pittsburgh

SSAFR, 2011 – Maitencillo, Chile

Rodolfo Carvajal Georgia Tech

Marcos Goycoolea Adolfo Ibañes University

Miguel Constantino Lisbon University

Andres Weintraub University of Chile

Outline

Introduction IP Models Connectivity in Forestry Models Computation Final Thoughts

Forest Management

Forest Management

Schedule "stands" for different uses

Connectivity in Forestry

Clearcut size constraints
Old growth patches
Reserve selection
Wildlife corridors

Where are we?

Peder Wikström

6/27

Where are we?

Peder Wikström

Other connectivity?

Types of Connectivity 1

Rooted Multi-Patch

Unrooted Multi-Patch

Rooted Single Patch

Unrooted Single Patch

Types of Connectivity 2

t=1

t=2

Static Patch

Dynamic Patch

t=3

Today: Rooted Single Patch

IP Models for Forest Management

1

$$z_{v,t} + y_{v,t} \le 1 \quad \forall t, v$$

$$\{v: z_{v,t} = 1\}$$
 is
connected $\forall t$

$$y_{v,t} = \begin{cases} 1 & \text{if stand } v \text{ is harvested} \\ & \text{in period } t. \\ 0 & \text{otherwise} \end{cases}$$
$$z_{v,t} = \begin{cases} 1 & \text{if stand } v \text{ is old-growth} \\ & \text{or reserve in period } t \\ 0 & \text{otherwise} \end{cases}$$

10/27

Linear Constraints/Objective: Profits, timber flow, ending age of forest, etc.

 Z_{n}

$$S := \left\{ x \in \mathbb{Z}^n : \sum_{i=1}^n |x_i| \le 1 \right\}$$

$$S := \left\{ x \in \mathbb{Z}^n : \sum_{i=1}^n |x_i| \le 1 \right\}$$

$$x_1, x_2 \in \mathbb{Z}^2$$

Two Types of (Strongest) IP Models

$$S := \left\{ x \in \mathbb{Z}^n : \sum_{i=1}^n |x_i| \le 1 \right\}$$

$$x_1, x_2 \in \mathbb{Z}^2$$

12

 $x_1 + x_2 \le 1$

Two Types of (Strongest) IP Models

$$S := \left\{ x \in \mathbb{Z}^n : \sum_{i=1}^n |x_i| \le 1 \right\}$$

$$x_1, x_2 \in \mathbb{Z}^2$$

 $\begin{aligned} x_1 + x_2 &\le 1\\ -x_1 - x_2 &\le 1 \end{aligned}$

Two Types of (Strongest) IP Models

$$S := \left\{ x \in \mathbb{Z}^n : \sum_{i=1}^n |x_i| \le 1 \right\}$$

$$x_1, x_2 \in \mathbb{Z}^2$$

 $x_1 + x_2 \le 1$ $-x_1 - x_2 \le 1$ $+x_1 - x_2 \le 1$

Two Types of (Strongest) IP Models

$$S := \left\{ x \in \mathbb{Z}^n : \sum_{i=1}^n |x_i| \le 1 \right\}$$

 $x_1, x_2 \in \mathbb{Z}^2$ $-x_1 - x_1 - x$

 $x_1 + x_2 \le 1$ $-x_1 - x_2 \le 1$ $+x_1 - x_2 \le 1$ $-x_1 + x_2 \le 1$

Two Types of (Strongest) IP Models

 $x_1, x_2 \in \mathbb{Z}^2$

$$S := \left\{ x \in \mathbb{Z}^n : \sum_{i=1}^n |x_i| \le 1 \right\}$$

$$\sum_{i=1}^{n} s_i x_i \leq 1 \quad \forall s \in \{-1, 1\}^n$$
$$x_i \in \mathbb{Z} \quad \forall i \in \{1, \dots, n\}$$
Original Space: Size= $O(2^n)$

$$\begin{aligned}
 x_1 + x_2 &\leq 1 \\
 -x_1 - x_2 &\leq 1 \\
 +x_1 - x_2 &\leq 1 \\
 -x_1 + x_2 &\leq 1
 \end{aligned}$$

$$S := \left\{ x \in \mathbb{Z}^n : \sum_{i=1}^n |x_i| \le 1 \right\}$$

$$\sum_{i=1}^{n} s_i x_i \leq 1 \quad \forall s \in \{-1, 1\}^n$$
$$x_i \in \mathbb{Z} \quad \forall i \in \{1, \dots, n\}$$
Original Space: Size= $O(2^n)$

$$\sum_{i=1}^{n} y_i \leq 1$$

- $y_i \leq x_i \leq y_i \quad \forall i \in \{1, \dots, n\}$
 $x_i \in \mathbb{Z} \quad \forall i \in \{1, \dots, n\}$
Extended Formulation: Size= $O(n)$

$$S := \left\{ x \in \mathbb{Z}^n : \sum_{i=1}^n |x_i| \le 1 \right\}$$

$$\sum_{i=1}^{n} s_i x_i \leq 1 \quad \forall s \in \{-1, 1\}^n$$
$$x_i \in \mathbb{Z} \quad \forall i \in \{1, \dots, n\}$$
Original Space: Size= $O(2^n)$

$$\begin{split} \sum_{i=1}^{n} y_i &\leq 1 \\ \neg g_i \leq x_i \leq y_i \quad \forall j \in \{1, \dots, n\} \\ \gamma_i \in \Sigma \quad \forall i \in \{1, \dots, n\} \end{split}$$

Extended Formulation: Size= $O(n)$

$$S := \left\{ x \in \mathbb{Z}^n : \sum_{i=1}^n |x_i| \le 1 \right\}$$

$$\sum_{i=1}^{n} c_i x_i \leq 1 \quad \forall s \in \{-1,1\}^n$$

if $i \in \mathbb{Z}$ $\forall i \in \{1,\ldots,n\}$
Original Space: Size= $O(2^n)$

$$\begin{split} \sum_{i=1}^{n} y_{i} &\leq 1 \\ \neg j_{i} \leq x_{i} \leq y_{i}, \quad \forall j \in \{1, \dots, n\} \\ x_{i} \in \lambda, \quad \forall i \in \{1, \dots, n\} \end{split}$$

Extended Formulation: Size= $O(n)$

Two Types of (Strongest) IP Models

$$S := \left\{ x \in \mathbb{Z}^n : \sum_{i=1}^n |x_i| \le 1 \right\}$$

 $\sum_{i=1}^{n} y_i \leq 1$ $\neg j_i \leq x_i \leq y_i \quad \forall j \in \{1, \dots, n\}$ $x_i \in \Sigma \quad \forall i \in \{1, \dots, n\}$ Extended Formulation: Size= O(n)

Using Large Formulations: Separate

 $-1 \le x_i \le 1 \quad \forall i \in \{1, \dots, n\}$

Key is Fast Separation

In Practice Branch and Cut Linear Programming = Solution Quality Bounds Heuristics = Actual Solutions Modern IP for many applications: Traveling Salesman, Vehicle Routing, etc.

In Practice Branch and Cut Linear Programming = Solution Quality Bounds Heuristics = Actual Solutions Modern IP for many applications: Traveling Salesman, Vehicle Routing, etc. Still (Cool) compact extended formulations have applications

Back to Connected Forests, i.e. Trees

Connectivity Formulations in Forestry

- Compact Extended and Large Formulations:
 - Önal and Briers (2006), Önal and Wang (2008), Rebain and McDill (2003), Martins et al. (2005), Carvajal et al. (2010), etc

Connectivity Formulations in Forestry

Compact Extended and Large Formulations:

 Önal and Briers (2006), Önal and Wang (2008), Rebain and McDill (2003), Martins et al. (2005), Carvajal et al. (2010), etc

Today = Carvajal et al. Large Formulation

Graph Representation of Forest

Graph Representation of Forest

Graph Representation of Forest

$$z_{v,t} = \begin{cases} 1 & \text{if stand } v \text{ is old-growth} \\ & \text{or reserve in period } t \\ 0 & \text{otherwise} \end{cases}$$

Rooted (Lack of) Connectivity

Root

Selected Nodes

Cut Nodes

Rooted (Lack of) Connectivity

Root

Selected Nodes

Cut Nodes

Rooted (Lack of) Connectivity

Root

Selected Nodes

Cut Nodes

 $z_6 + z_9 + z_{11} \ge z_{10}$

Rooted (Lack of) Connectivity

Root

Selected Nodes

Cut Nodes

 $z_6 + z_9 + z_{11} \ge z_{10}$

Rooted (Lack of) Connectivity

Root

Selected Nodes

Cut Nodes

 $z_6 + z_9 + z_{11} \ge z_{10}$

Rooted (Lack of) Connectivity

Root

Selected Nodes

Cut Nodes

 $z_6 + z_9 + z_{11} \ge z_{10}$

Rooted (Lack of) Connectivity

Root

Selected Nodes

Cut Nodes

Solution:

 $z_6 + z_9 + z_{11} > z_{10}$

 $z_2 + z_5 + z_6 \ge z_{10}$

Rooted (Lack of) Connectivity

Root

Selected Nodes

Cut Nodes

Solution:

 $z_6 + z_9 + z_{11} > z_{10}$

 $z_2 + z_5 + z_6 \ge z_{10}$

Rooted (Lack of) Connectivity

Root

Selected Nodes

Cut Nodes

Solution:

 $z_6 + z_9 + z_{11} \ge z_{10}$

 $z_2 + z_5 + z_6 \ge z_{10}$

Maximum Clearcut Area (ARM) $20/2^{-1}$

Maximum Clearcut Area (ARM)

Partial Solution: Connected Old Growth Patch

Maximum Clearcut Area (ARM)

Partial Solution: Connected Old Growth Patch

n de la factorie de la companya de Sectore de la companya de la companya

Maximum Clearcut Area (ARM)

Partial Solution: Connected Old Growth Patch

a fra grean de familie de la companya de la company Internationa de familie de la companya de la company

Test Problem: Harvest Scheduling

S Periods

- Maximize NPV of schedule
- Maximum clear-cut
- Volume flow
- Average ending age of forest

 Connected old-growth patch (rooted model)

Instances = FMOS, Solver=CPLEX 11

Instance	Stands
El Dorado	1363
Shulkell	1039
NBCL5A	5581

Instance	Stands
Gavin	352
Hardwicke	423

Static Set

Dynamic Set

Modern IP = Quality Bounds = GAP

• For Max, GAP = $100 \times$

 $\frac{(\text{Bound} - \text{BestSol})}{\text{BestSol}}$

• Bound =

Root = LP relaxation + cuts
 Final = Best B&B node left
 BestSol = best known solution

Results for Static Patch

24/2⁻

Results for Dynamic Patch

Root Solve Time < 4 min</p>

Solutions Sometime Look Good

Solutions Sometime Don't Look Good

27/27

Final Thoughts

Final Thoughts... Don't blindly use IP: Optimization can be "too" clever Don't fear "Large" formulations Do use special purpose heuristics BIG open problem in IP: Compact extended formulation (Strongest) for general matching Known large formulation is similar to Onal and Wang (2008)