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Schedule “stands” for different uses 

Introduction
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Connectivity in Forestry
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Clearcut size constraints

Old growth patches

Reserve selection

Wildlife corridors
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Introduction

Where are we?
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 Clearcut constraint:

Peder Wikström
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 Clearcut constraint:

 Other connectivity?

Peder Wikström
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Types of Connectivity 1
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Rooted Single Patch

Unrooted Single Patch

Rooted Multi-Patch

Unrooted Multi-Patch
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Types of Connectivity 2

Static Patch

Dynamic Patch

t=1 t=2 t=3
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Introduction

Today: Rooted Single Patch
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zv,t =











1 if stand v is old-growth

or reserve in period t

0 otherwise
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Introduction

IP Models for Forest Management

Linear Constraints/Objective:

Profits, timber flow, ending age of forest, etc.
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zv,t + yv,t ≤ 1 ∀t, v

{v : zv,t = 1} is

connected ∀t
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Using Large Formulations: Separate
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Key is Fast Separation
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IP Models

In Practice ...

Branch and Cut

Linear Programming = Solution Quality Bounds

Heuristics = Actual Solutions

Modern IP for many applications:

Traveling Salesman, Vehicle Routing, etc. 
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Still (Cool) compact extended formulations have 
applications 
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Back to Connected 

Forests, i.e. Trees
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Connectivity in Forestry: Models

Connectivity Formulations in Forestry

17

Compact Extended and Large Formulations:

Önal and Briers (2006), Önal and Wang 
(2008), Rebain and McDill (2003), Martins et 
al. (2005), Carvajal et al. (2010), etc
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Connectivity in Forestry: Models

Connectivity Formulations in Forestry

Today = Carvajal et al. Large Formulation
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Compact Extended and Large Formulations:

Önal and Briers (2006), Önal and Wang 
(2008), Rebain and McDill (2003), Martins et 
al. (2005), Carvajal et al. (2010), etc
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Graph Representation of Forest
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Connectivity in Forestry: Models

Rooted (Lack of) Connectivity

19
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Connectivity in Forestry: Computation

Maximum Clearcut Area (ARM)
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Connectivity in Forestry: Computation

Test Problem: Harvest Scheduling

3 Periods

Maximize NPV of schedule

Maximum clear-cut

Volume flow

Average ending age of forest

Connected old-growth 
patch (rooted model)

21
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Connectivity in Forestry: Computation

Instances = FMOS, Solver=CPLEX 11

22

Instance Stands

El Dorado 1363

Shulkell 1039

NBCL5A 5581

Instance Stands

Gavin 352

Hardwicke 423

Time Limit = 4 hours

Dynamic SetStatic Set



           =

Root = LP relaxation + cuts

Final = Best B&B node left

            = best known solution 

For Max, 
GAP = 100×

(Bound− BestSol)

BestSol

Bound

BestSol
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Connectivity in Forestry: Computation

Modern IP = Quality Bounds = GAP
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Connectivity in Forestry: Computation

Results for Static Patch
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Results for Static Patch
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Connectivity in Forestry: Computation

Results for Dynamic Patch
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Connectivity in Forestry: Computation

Solutions Sometime Look Good
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El Dorado
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Connectivity in Forestry: Computation

Solutions Sometime Don’t Look Good
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Final Thoughts

Final Thoughts...

Don’t blindly use IP:

Optimization can be “too” clever

Don’t fear “Large” formulations 

Do use special purpose heuristics

BIG open problem in IP: Compact extended 
formulation (Strongest) for general matching

Known large formulation is similar to Önal and 
Wang (2008)
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