Imposing Old-growth Patch Constraints in Forest Harvest Scheduling Models

Juan Pablo Vielma
University of Pittsburgh and IBM Watson Research Center
http://www.pitt.edu/~jvielma

September, 2009 - Pittsburgh, PA

Rodolfo Carvajal
Georgia Tech

Marcos Goycoolea
Adolfo Ibañes University

Miguel Constantino
Lisbon University

Andres Weintraub University of Chile

Forest Harvest Scheduling

Forest Harvest Scheduling

Protect Environment: Connectivity

- Forbid large clear-cut areas:
- Area Restriction Model (ARM)
- Good IP models (6000 stands)
- Goycoolea, Murray, V. and Weintraub, 2009.
o Protect some contiguous areas:
O Harder problems (400 stands)
o Old-growth, reserve selection, wildlife corridors

Outline

O Introduction

- Connectivity Constraints
- ARM
- Area Protection
- Computational Example
o Conclusions and Future Work

Introduction

IP Models for Harvest Scheduling

$$
y_{v, t}= \begin{cases}1 & \text { if stand } v \text { is harvested } \\ \text { in period } t . \\ 0 & \text { otherwise }\end{cases}
$$

- Linear Constraints/Objective:

O Profits, timber flow, ending age of forest, etc.
O Combinatorial Constraints:
O Protect Environment

Introduction

Gonnectivity: Single Patch

o Rooted

O Unrooted

Introduction

Gonnectivity: Multiple Patches

- Rooted

O Unrooted

Introduction

Graph Representation of Forest

Area Restriction Model (ARM)

- Limit area of contiguous clear-cut region
o Unrooted multi-patch model:
O Limit maximum area of patches

Assumptions and Notation

$$
y_{v, t}= \begin{cases}1 & \text { if stand } v \text { is harvested } \\ \text { in period } t . \\ 0 & \text { otherwise }\end{cases}
$$

- Harvested stands are clear-cut and replanted

Stand harvested in t is clear-cut only in t

- ARM constraints span only one period
- Stands can only be harvested once

ARM Constraints: Forbid Sets

- Connected set of stands C :
- Area is strictly greater than maximum area
- Minimal with respect to inclusion

ARM Gonstraints: Forbid Sets

- Connected set of stands C :
- Area is strictly greater than maximum area
- Minimal with respect to inclusion

$$
\sum_{v \in C} y_{v, t} \leq|C|-1
$$

ARM Gonstraints: Forbid Sets

- Connected set of stands C :
- Area is strictly greater than maximum area
- Minimal with respect to inclusion

[JUsually few of these sets exist

Connectivity Constraints

ARM solution = Fragmentation

Need Min Area Connected Patch

- $1+$ connected regions:
- minimum (average) area

O is old-growth, contains animal population, contain water source, etc.

O Other: shape, edge, etc.

o Force connectivity and add other constraints

Unrooted (Lack off) Connectivity

\square Selected Nodes

Disconnected Nodes

O Select red nodes for old-growth/reserve
ORed nodes are disconnected because:

Unrooted (Lack off) Connectivity

\square Selected Nodes

Disconnected Nodes

Cut Nodes

O Select red nodes for old-growth/reserve
O Red nodes are disconnected because:
OThere is a node-cut separating 1 and 11 with no selected nodes

Connectivity Constraints

Selected Set Is Connected if ...

- Set is connected \Leftrightarrow pairs of nodes are connected
- Pairs are connected \Leftrightarrow every cut separating them intersects selected nodes

Selected Set Is Connected if ...

- Set is connected \Leftrightarrow pairs of nodes are connected
- Pairs are connected \Leftrightarrow every cut separating them intersects selected nodes

\square Selected pair of nodes
\square
Separating cutSeparating cut intersects selected nodes

Connectivity Constraints

Force Connectivity Constraints

$$
z_{v}= \begin{cases}1 & \text { if stand } v \text { is selected to be old-growth/reserve } \\ 0 & \text { otherwise }\end{cases}
$$

Connectivity Constraints

Force Connectivity Constraints

$$
z_{v}= \begin{cases}1 & \text { if stand } v \text { is selected to be old-growth/reserve } \\ 0 & \text { otherwise }\end{cases}
$$

$\sum z_{w} \geq z_{u}+z_{v}-1$
$\forall u, v$
For every cut S separating u and v

Force Connectivity Constraints

$$
z_{v}= \begin{cases}1 & \text { if stand } v \text { is selected to be old-growth/reserve } \\ 0 & \text { otherwise }\end{cases}
$$

$$
\sum_{w, C} z_{w} \geq z_{u}+z_{v}-1 \quad \forall u, v
$$

For every cut S separating u and v
o Rooted: All selected stands connected to root r

$$
\sum_{w \in S} z_{w} \geq z_{v}
$$

For every cut S separating r and v

Advantages and Disadvantages

Can easily add extra requirements

- e.g. minimum area

$$
\sum_{v} a_{v} z_{v} \geq A_{\text {Min }} \quad a_{v}=\text { area of stand } v
$$

Advantages and Disadvantages

Can easily add extra requirements
O e.g. minimum area

$$
\sum_{v} a_{v} z_{v} \geq A_{\text {Min }} \quad a_{v}=\text { area of stand } v
$$

Too many separating-cut constraints Separating the constraints is easy

Connectivity Constraints

Gutting Plane Procedure

$$
\sum_{w \in S} z_{w} \geq z_{u}+z_{v}-1
$$

$$
z^{*}=\text { current solution }
$$

Find cut S^{*} that separates u, v and minimizes $\sum_{w \in S^{*}} z_{w}^{*}$

For every pair u, v check if $z_{u}^{*}+z_{v}^{*}-1>0$

Use max-flow solver

$$
\begin{aligned}
& \text { If } \sum_{w \in S^{*}} z_{w}^{*}<z_{u}^{*}+z_{v}^{*}-1 \\
& \text { add cut }
\end{aligned}
$$

Problem Specification

1.Maximize NPV of harvest schedule s.t.:

- ARM Constraints: maximum clear-cut
- Volume flow constraints
- Bound on average ending age of forest
2.Additionally:
o Reserve 10\% of forest area as a contiguous old-growth path (unrooted model)

Instances and Solvers

- 5-period instances from FMOS repository:

Instance	Stands	Total area	Max CC Area
El Dorado	1363	$52,255.5$	120
Shulkell	1039	$11,116.65$	40
NBCL5A	5581	149,235	80
FLG9A	850	$24,708.1$	80

o CPLEX 11 on a Quad-core Xeon with 32Gb RAM

Computational Example

Results: Time limit of 4 hours

1.ARM:

- Directly solved by CPLEX
- 3 optimal in <400 s, 1 reaches 0.03\% GAP
2.ARM+old-growth
o CPLEX based branch-and-cut: need heuristics, use of rooted formulations, "ring" cuts, etc.

03 with <1\% GAP, 1 with 2.2% GAP

Economic Effect

- ARM: 2-5\% loss in NPV

O ARM+old-growth: additional loss of:

Computational Example

Solutions Sometime Look Good

Computational Example

Solutions Sometime Don't Look Good

FLG9A

Gonclusions and Future Work

o Done:

- Connectivity for environmental protection
- Can obtain good solutions for old-growth
o Optimization: Cost is moderate
o To do:
o Optimization too "clever": snake like patches
O Some challenges in branch-and-cut

