Imposing Old-growth Patch Constraints in Forest Harvest Scheduling Models

Juan Pablo Vielma

University of Pittsburgh and IBM Watson Research Center http://www.pitt.edu/~jvielma

September, 2009 – Pittsburgh, PA

Rodolfo Carvajal Georgia Tech

Marcos Goycoolea Adolfo Ibañes University

Miguel Constantino Lisbon University

Andres Weintraub University of Chile

Forest Harvest Scheduling

Maximize profits Protect Environment

Forest Harvest Scheduling

Maximize profits
 Protect Environment

Schedule "stands" for harvest

Protect Environment: Connectivity

Forbid large clear-cut areas:

Area Restriction Model (ARM)

- Good IP models (6000 stands)
- Goycoolea, Murray, V. and Weintraub, 2009.

Protect some contiguous areas:

Harder problems (400 stands)

Old-growth, reserve selection, wildlife corridors

Outline

Introduction Connectivity Constraints ARM Area Protection Computational Example Conclusions and Future Work

IP Models for Harvest Scheduling

 $y_{v,t} = \begin{cases} 1 & \text{if stand } v \text{ is harvested} \\ & \text{in period } t. \\ 0 & \text{otherwise} \end{cases}$

Linear Constraints/Objective:
Profits, timber flow, ending age of forest, etc.
Combinatorial Constraints:
Protect Environment

Connectivity: Single Patch

Rooted

Unrooted

Connectivity: Multiple Patches

Rooted

Unrooted

Graph Representation of Forest

Area Restriction Model (ARM)

Limit area of contiguous clear-cut region
 Unrooted multi-patch model:
 Limit *maximum area* of patches

Assumptions and Notation

 $\begin{cases} y_{v,t} = \begin{cases} 1 & \text{if stand } v \text{ is harvested} \\ & \text{in period } t. \\ 0 & \text{otherwise} \end{cases}$

Harvested stands are clear-cut and replanted
 Stand harvested in t is clear-cut only in t
 ARM constraints span only one period
 Stands can only be harvested once

ARM Constraints: Forbid Sets

• Connected set of stands C:

 Area is strictly greater than maximum area

 Minimal with respect to inclusion

ARM Constraints: Forbid Sets

• Connected set of stands C:

 Area is strictly greater than maximum area

 Minimal with respect to inclusion

 $\sum y_{v,t} \le |C| - 1$ $v \in \overline{C}$

ARM Constraints: Forbid Sets

• Connected set of stands C:

 Area is strictly greater than maximum area

 Minimal with respect to inclusion

$$\sum_{v \in C} y_{v,t} \le |C| - 1$$

Usually few of these sets exist

ARM solution = Fragmentation

Need Min Area Connected Patch

1+ connected regions:

• minimum (average) area

 is old-growth, contains animal population, contain water source, etc.

• Other: shape, edge, etc.

 Force connectivity and add other constraints

Unrooted (Lack of) Connectivity

Select red nodes for old-growth/reserve
Red nodes are disconnected because:

Unrooted (Lack of) Connectivity

Select red nodes for old-growth/reserve
Red nodes are disconnected because:
There is a node-cut separating 1 and 11 with no selected nodes

0

Selected Set Is Connected if ...

• Set is connected \Leftrightarrow pairs of nodes are connected

Selected Set Is Connected if ...

• Set is connected \Leftrightarrow pairs of nodes are connected

Selected pair of nodes

Other selected nodes

Separating cut

Separating cut intersects selected nodes

Force Connectivity Constraints

$z_v = \begin{cases} 1 & \text{if stand } v \text{ is selected to be old-growth/reserve} \\ 0 & \text{otherwise} \end{cases}$

Force Connectivity Constraints

$z_v = \begin{cases} 1 & \text{if stand } v \text{ is selected to be old-growth/reserve} \\ 0 & \text{otherwise} \end{cases}$

 $\sum z_w \ge z_u + z_v - 1$ $\forall u, v$ $w \in S$

For every cut Sseparating u and v

Force Connectivity Constraints

 $z_v = \begin{cases} 1 & \text{if stand } v \text{ is selected to be old-growth/reserve} \\ 0 & \text{otherwise} \end{cases}$

$$\sum_{w \in S} z_w \ge z_u + z_v - 1 \qquad \forall u, v$$

For every cut Sseparating u and v

Rooted: All selected stands connected to root r

 $\sum z_w \ge z_v$ $w \in S$

For every cut Sseparating r and v

17/2

Advantages and Disadvantages

Can easily add extra requirements

e.g. minimum area

v

$$\sum a_v z_v \ge A_{\rm Min}$$

 $a_v =$ area of stand v

Advantages and Disadvantages

Can easily add extra requirements

e.g. minimum area

$$\sum_{v} a_v z_v \ge A_{\mathrm{Min}}$$

 $a_v =$ area of stand v

Too many separating-cut constraints

 Image: Constraint separating the constraints

 Image: Constraint separating the constraint seasy

Cutting Plane Procedure

$$\sum_{w \in S} z_w \ge z_u + z_v - 1$$

$$z^* = \text{current solution}$$

Find cut S^* that separates u, v and minimizes $\sum_{w \in S^*} z_w^*$

Use max-flow solver

For every pair u, vcheck if $z_{u}^{*} + z_{v}^{*} - 1 > 0$ If $\sum z_w^* < z_u^* + z_v^* - 1$ $w \in S^*$ add cut 19/27

Problem Specification

1.Maximize NPV of harvest schedule s.t.:

ARM Constraints: maximum clear-cut

Volume flow constraints

Bound on average ending age of forest

2.Additionally:

 Reserve 10% of forest area as a contiguous old-growth path (unrooted model)

Instances and Solvers

• 5-period instances from FMOS repository:

Instance	Stands	Total	Max CC
		area	Area
El Dorado	1363	52,255.5	120
Shulkell	1039	11,116.65	40
NBCL5A	5581	149,235	80
FLG9A	850	24,708.1	80

CPLEX 11 on a Quad-core Xeon with 32Gb RAM

Results: Time limit of 4 hours

1.ARM:

Directly solved by CPLEX

3 optimal in <400s, 1 reaches 0.03% GAP

2.ARM+old-growth

 CPLEX based branch-and-cut: need heuristics, use of rooted formulations, "ring" cuts, etc.

• 3 with <1% GAP, 1 with 2.2% GAP

Economic Effect

ARM: 2-5% loss in NPV

ARM+old-growth: additional loss of:

Solutions Sometime Look Good

24/27

Solutions Sometime Don't Look Good

FLG9A

25/27

Conclusions and Future Work

Conclusions and Future Work

Done:

Connectivity for environmental protection
Can obtain good solutions for old-growth
Optimization: Cost is moderate

To do:

Optimization too "clever": snake like patches
Some challenges in branch-and-cut