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Mixed Integer Convex Optimization (MICP)

min f(z, 2)
s.t. |
(x,2) € C ‘

zc 7

Pure-integer Mixed-integer

f and C = closed and convex

e Subclasses: MIQCQP, MISOCP, MISDP, ...

e Solvers: CPLEX, Gurobi, Xpress, Bonmin, Pajarito,
FIIMINT, Knitro, Mosek, ...



MICP Formulations and Representability

e Aset S CR"is MICP representable (MICPR) if it has
an MICP formulation:

» A closed convex set M C R»TP+d
= auxiliary continuous variables y € RP
= guxiliary integer variables z € 7

(1, 2) € R” x 7% s.t.

resS <
(z,y,2) € M

or equivalently

S = proj, (M N (R"" x Zd))



MICPR = Convex Sets Indexed by Integers in Convex

Structured Countably Infinite Union of Convex Sets




Known Results for 0-1 Integer Variables

k
S = Uizl P,

« M = Rational Polyhedron (&) :

= P. =rational polyhedra with
same recession cone
(Jeroslow and Lowe ‘84)

f(x):]0,00) = R

M = Closed Convex (&) :

= P. =closed convex sets with same recession cone
(e.g. Ceria & Soares ‘99)




Known Results for General Integer Variables (&)

S = Ule P, + {Z:Zl VTSNS W= Zi}

» M = Rational Polyhedron :
= P. =rational polytopes (Jeroslow & Lowe ‘84)
cM={x €Z*: x; x5 =>a}:
= P. =points (Dey & Moran "13)
» M = Rational Polyhedron n “Rational” Ellipsoidal Cylinder :
= P. = Rational Ellipsoid n Polytope (Del Pia & Poskin ‘16)
* M = Compact Convex + Rational Polyhedron Cone :
= P. = Compact Convex (Lubin, Zadik & V. “17)




What Sets are MICP Representable (MICPR) ?

Two sheet hyperbola? Spherical shell?

N 4
A

lzeR? : 1427 <az3} {zeR”:1< |z <2}

* Integer points in parabola {(x,x?%) : x € Z}?
* The set of n X n matrices with rank < k?
e Set of prime numbers?



0-1 (Binary) MICPR Characterization

e §C R"jis0-1 MICPR < 3 closed convex sets
Ty, ..., T;, € R™P such that

" § = UiZq projx(Ty)
* An (ideal) formulation of x € S € R":
= (x',y',2;) € cone(T;x{1}) Vie€({l,..,k}
|%|: < 2t Vi€ (1., k}
Y xt=x,
“.z;=1, z€{01}*
teRf x'eR", y' e RP  Vi€e({l,.., k}



A Simple Lemma for non-MICP Representability

* Obstruction for MICP representability of .S :
infinite R € S  s.t.

U_QI_U¢S Yu,v € R, u # v

X Spherical shell {z € R* : 1 < ||z| < 2}




What Sets are MICP Representable (MICPR) ?

Two sheet hyperbola? Spherical shell?

= x0

[ eR?: 1+a7<a3} {zeR*: 1<z <2

X Integer points in parabola {(x,x%) : x € Z}?
X The set of n X n matrices with rank < k?

X Set of prime numbers?

Does have non-convex polynomial MIP formulation



Structured Countably Infinite Unions of Convex

 How strange can they be?
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Strange MICPR Set: Infinite Shapes

1200, h(z)

1000

800

A
400

200

* There exist an increasing function A such that:
— P. C R? regular h(z)-gon centered at (z,0)
- P.NP, =0, z2+#27
~s=|1 P, is MICPR

z=1
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* Equal volume = Finite # of Shapes



Even Stranger MICPR Set s: Non-Periodic

* An infinite set S is periodic if and only if:

dreR" VAe€eZ,, xS z+XIreSs
* Non-periodic MICPR sets

Dense di T e
—_ ER, WE
ense discrete set GOING TO DE, WHAT'S

THE PQINT OF LEARNING
{Var— |Var| sz eN}clon 0
— Set of naturals S\M/{L‘

"

foen:var Vol ¢ (e va)) | BBmag

' "God made the integers, all else is the work of man”

- Leopold Kronecker 12/12



A Definition Rational MICPR (R-MICPR)

* Formulation for {\/ia;— {\/5:1: L x € N} C [0,1] :

(21,21)]l9g S22+ 1, |[(22,22)|l, £ 221, =1 =y1 — 22,

(21, 21) [y < w1, (Y1, 91)]lg <221, 2z € A

e Rational MICP Formulation :

g U proj. (B,) S =proj, (M N (R x 7))
zeINZa I = pI‘OjZ (M)

* Any rational affine mapping of index set I :
— |s bounded, or
— Has an integer (rational) recession direction



(Some) Rational MICPR Sets are Periodic

* Jeroslow & Lowe '84 : rational MILP = periodic

e Theorem: A rational MICPR set S is a finite union of
periodic sets if:

— S is closed and the maximal convex subsets of S
are uniformly bounded

— S is union of points (S not necessarily closed)



Corollaries and Other Properties

* Both strange discrete sets are not R-MICPR.
{\/ix— L\/irJ X € N} C [0,1]

(een: var— |Var| ¢ (21~ v2:))

* If S is R-MICPR and compact, then S is a finite union
of compact sets (and hence 0-1 MICPR).

e |fS € N is R-MICPR, then S is a finite union of
points and a MILP representable set.

 MICPR is closed under finite union, cartesian
product and sum, but NOT closed under intersection




Summary on General MICPR

e General MICPR:
— Infinite union of convex w. #* recession cones
— Can’t be too non-convex (e.g. Primes not MICPR)

— Non-polyhedrality crucial for # recessions and
closure under union (e.g. MI-SOCP formulation for
unbounded SOS2 constraints on Chris’ talk yesterday)

* MICPR sets can be very strange:
— Infinite # of Shapes: controlled by equal volume

— Non-periodic sets: controlled by rational
unboundedness (R-MICPR)

e OBS: R-MICPR can fail by hidden rays (cf. affine map)



A Definition Rational MICPR (R-MICPR)

S = U proj.. (B.) S = proj, (M N (R”+p X Zd))
2cINzZd I = proj, (M)
* Any rational affine mapping of index set I :
— |s bounded, or
— Has an integer (rational) recession direction
* Irrational directions can hide!
— R-MICPR ¢ span(rec(/))and/or aff (I) = rational space

(51+v22) <5 span(rec(1)) = span({es}
(22 V2z) <1 Teclorohs (D) = span{(1, V)



A Simple Lemma for non-MICP Representability

e Obstruction for MICP representability of S :

u—2|—fu¢s Yu,v € R, u # v

Proof: Assume for contradiction there exists M such that:

S = proj, (M N (R"P x Zd))

infinite £ C S  s.t.

(v, Yo, 20) € M 2

, Zy T2
7, = 7, (mod 2) component-wise = — 5 L ezl

component-wise parity classes = 2¢ < |R| = oo =k=



