Mixed-Integer Convex Representability

Juan Pablo Vielma

Massachusetts Institute of Technology

Joint work with Miles Lubin and Ilias Zadik

23rd International Symposium on Mathematical Programming (ISMP 2018)

Bordeaux, France. July, 2018.

Supported by NSF grant CMMI-1351619

Mixed Integer Convex Optimization (MICP)

$$\min_{\substack{s.t.\\ (x,z)\in C}} f(x,z) & \cdot & \cdot & \cdot \\ (x,z)\in C & \cdot & \cdot & \cdot \\ z\in \mathbb{Z}^d & \text{Pure-integer} & \text{Mixed-integer} \end{cases}$$

$$f$$
 and $C = closed$ and convex

- Subclasses: MIQCQP, MISOCP, MISDP, ...
- Solvers: CPLEX, Gurobi, Xpress, Bonmin, Pajarito,
 FilMINT, Knitro, Mosek, ...

MICP Formulations and Representability

- A set $S \subseteq \mathbb{R}^n$ is MICP representable (MICPR) if it has an MICP formulation:
 - A closed convex set $M \subset \mathbb{R}^{n+p+d}$
 - lacktriangle auxiliary continuous variables $y \in \mathbb{R}^p$
 - lacktriangle auxiliary integer variables $z \in \mathbb{Z}^d$

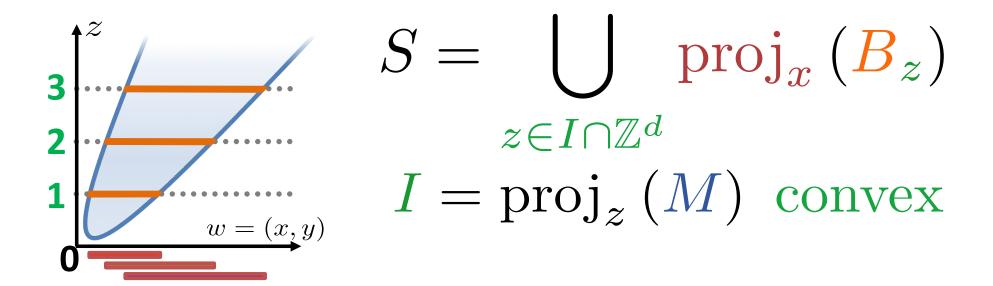
$$x \in S \quad \Leftrightarrow \quad \frac{\exists (y, z) \in \mathbb{R}^p \times \mathbb{Z}^d \text{ s.t.}}{(x, y, z) \in M}$$

or equivalently

$$S = \operatorname{proj}_x \left(M \cap \left(\mathbb{R}^{n+p} \times \mathbb{Z}^d \right) \right)$$

MICPR = Convex Sets Indexed by Integers in Convex

$$S = \operatorname{proj}_x \left(M \cap \left(\mathbb{R}^{n+p} \times \mathbb{Z}^d \right) \right)$$

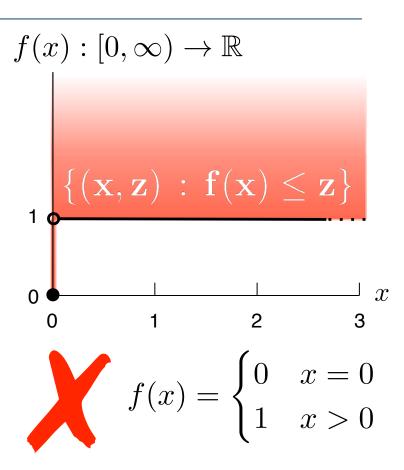


Structured Countably Infinite Union of Convex Sets

Known Results for 0-1 Integer Variables

$$S = \bigcup_{i=1}^{k} P_i$$

- $M = \text{Rational Polyhedron} (\Leftrightarrow) :$
 - P_i = rational polyhedra with same recession cone (Jeroslow and Lowe '84)



- $M = \text{Closed Convex} (\Leftarrow) :$
 - P_i = closed convex sets with same recession cone (e.g. Ceria & Soares '99)

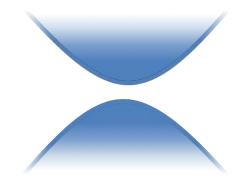
Known Results for General Integer Variables (⇔)

$$S = \bigcup_{i=1}^{k} P_i + \left\{ \sum_{i=1}^{t} \lambda_i r^i : \lambda \in \mathbb{Z}_+^t \right\}$$

- M = Rational Polyhedron :
 - P_i = rational polytopes (Jeroslow & Lowe '84)
- $M = \{x \in \mathbb{Z}^2 : x_1 \cdot x_2 \ge \alpha\} :$
 - P_i = points (Dey & Moran '13)
- M = Rational Polyhedron \cap "Rational" Ellipsoidal Cylinder:
 - P_i = Rational Ellipsoid \cap Polytope (Del Pia & Poskin '16)
- M = Compact Convex + Rational Polyhedron Cone :
 - P_i = Compact Convex (Lubin, Zadik & V. '17)

What Sets are MICP Representable (MICPR)?

Two sheet hyperbola?



$${x \in \mathbb{R}^2 : 1 + x_1^2 \le x_2^2} \quad {x \in \mathbb{R}^2 : 1 \le |x| \le 2}$$

- Integer points in parabola $\{(x, x^2) : x \in \mathbb{Z}\}$?
- The set of $n \times n$ matrices with rank $\leq k$?
- Set of prime numbers?

0-1 (Binary) MICPR Characterization

- $S \subseteq \mathbb{R}^n$ is 0-1 MICPR $\iff \exists$ closed convex sets $T_1, \dots, T_k \subseteq \mathbb{R}^{n+p}$ such that
 - $S = \bigcup_{i=1}^k \operatorname{proj}_{\mathcal{X}}(T_i)$
- An (ideal) formulation of $x \in S \subseteq \mathbb{R}^n$:

A Simple Lemma for non-MICP Representability

• Obstruction for MICP representability of S: infinite $R \subseteq S$ s.t.

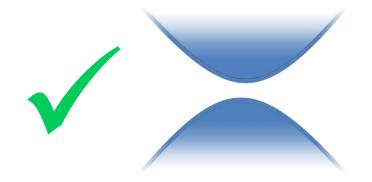
$$\frac{u+v}{2} \notin S \quad \forall u, v \in \mathbf{R}, \ u \neq v$$

X Spherical shell $\{x \in \mathbb{R}^2 : 1 \le ||x|| \le 2\}$

What Sets are MICP Representable (MICPR)?

Two sheet hyperbola?

Spherical shell?



$$\left\{ x \in \mathbb{R}^2 : 1 + x_1^2 \le x_2^2 \right\}$$

$$\left\{ x \in \mathbb{R}^2 : 1 + x_1^2 \le x_2^2 \right\} \quad \left\{ x \in \mathbb{R}^2 : 1 \le ||x|| \le 2 \right\}$$

X Integer points in parabola $\{(x, x^2) : x \in \mathbb{Z}\}$?

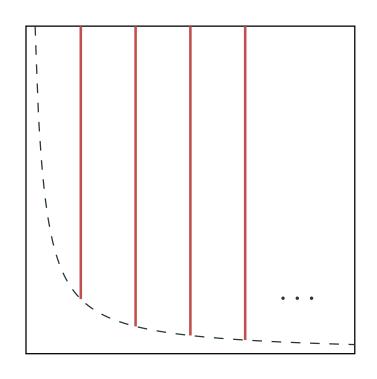
X The set of $n \times n$ matrices with rank < k?

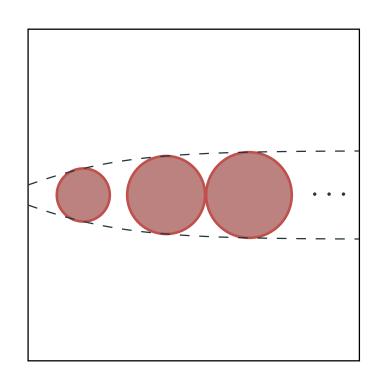
X Set of prime numbers?

Does have non-convex polynomial MIP formulation

Structured *Countably Infinite* Unions of Convex

How strange can they be?

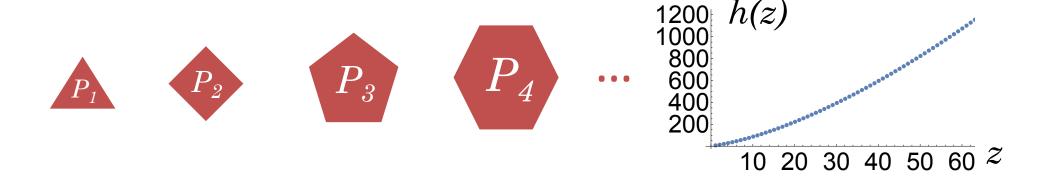




$$x_2 \ge 1/x_1 \ge 0,$$
$$x_1 \in \mathbb{Z}$$

$$\sqrt{(x_1 - 2z)^2 + x_2^2} \le 1 - 1/z,$$
 $z \ge 1, \quad z \in \mathbb{Z}$

Strange MICPR Set: Infinite Shapes



- There exist an increasing function h such that:
 - $-P_z \subseteq \mathbb{R}^2$ regular h(z)-gon centered at (z,0)
 - $-P_z \cap P_{\underline{z}'} = \emptyset, \quad z \neq z'$
 - $-S = \bigcup_{z=1}^{\infty} P_z$ is MICPR

Equal volume ⇒ Finite # of Shapes

Even Stranger MICPR Set s: Non-Periodic

An infinite set S is periodic if and only if:

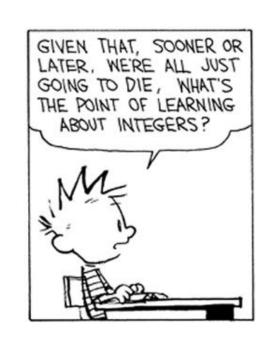
$$\exists r \in \mathbb{R}^n \quad \forall \lambda \in \mathbb{Z}_+, \ x \in S \quad x + \lambda r \in S$$

- Non-periodic MICPR sets
 - Dense discrete set

$$\left\{ \sqrt{2}x - \left\lfloor \sqrt{2}x \right\rfloor : x \in \mathbb{N} \right\} \subseteq [0, 1]$$

Set of naturals

$$\left\{ x \in \mathbb{N} : \sqrt{2}x - \left\lfloor \sqrt{2}x \right\rfloor \notin \left(\varepsilon, 1 - \sqrt{2}\varepsilon\right) \right\}$$



"God made the integers, all else is the work of man"

- Leopold Kronecker

A Definition Rational MICPR (R-MICPR)

• Formulation for $\left\{\sqrt{2}x - \left\lfloor\sqrt{2}x\right\rfloor : x \in \mathbb{N}\right\} \subseteq [0,1]$:

$$\|(z_1, z_1)\|_2 \le z_2 + 1, \quad \|(z_2, z_2)\|_2 \le 2z_1, \quad x_1 = y_1 - z_2,$$

 $\|(z_1, z_1)\|_2 \le y_1, \quad \|(y_1, y_1)\|_2 \le 2z_1, \quad z \in \mathbb{Z}^2$

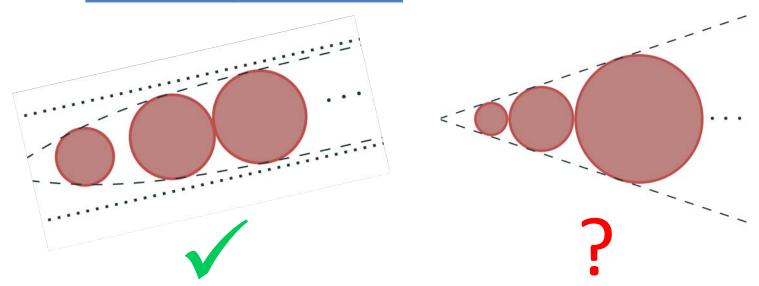
Rational MICP Formulation :

$$S = \bigcup_{z \in I \cap \mathbb{Z}^d} \operatorname{proj}_x (B_z) \qquad S = \operatorname{proj}_x (M \cap (\mathbb{R}^{n+p} \times \mathbb{Z}^d))$$
$$I = \operatorname{proj}_z (M)$$

- Any rational affine mapping of index set I:
 - Is bounded, or
 - Has an integer (rational) recession direction

(Some) Rational MICPR Sets are Periodic

- Jeroslow & Lowe '84: rational MILP = periodic
- Theorem: A rational MICPR set S is a finite union of periodic sets if:
 - S is closed and the maximal convex subsets of S are uniformly bounded



— S is union of points (S not necessarily closed)

Corollaries and Other Properties

Both strange discrete sets are not R-MICPR.

$$\left\{ \sqrt{2}x - \left\lfloor \sqrt{2}x \right\rfloor : x \in \mathbb{N} \right\} \subseteq [0, 1]$$

$$\left\{ x \in \mathbb{N} : \sqrt{2}x - \left\lfloor \sqrt{2}x \right\rfloor \notin \left(\varepsilon, 1 - \sqrt{2}\varepsilon\right) \right\}$$

- If S is R-MICPR and compact, then S is a finite union of compact sets (and hence 0-1 MICPR).
- If $S \subseteq \mathbb{N}$ is R-MICPR, then S is a finite union of points and a MILP representable set.
- MICPR is closed under <u>finite union</u>, cartesian product and sum, but NOT closed under intersection

Summary on General MICPR

- General MICPR:
 - Infinite union of convex w. \neq recession cones
 - Can't be too non-convex (e.g. Primes not MICPR)
 - Non-polyhedrality crucial for ≠ recessions and closure under union (e.g. MI-SOCP formulation for unbounded SOS2 constraints on Chris' talk yesterday)
- MICPR sets can be very strange:
 - Infinite # of Shapes: controlled by equal volume
 - Non-periodic sets: controlled by rational unboundedness (R-MICPR)
- OBS: R-MICPR can fail by hidden rays (cf. affine map)

A Definition Rational MICPR (R-MICPR)

$$S = \bigcup_{z \in I \cap \mathbb{Z}^d} \operatorname{proj}_x (B_z) \qquad S = \operatorname{proj}_x (M \cap (\mathbb{R}^{n+p} \times \mathbb{Z}^d))$$
$$I = \operatorname{proj}_z (M)$$

- Any rational affine mapping of index set I:
 - Is bounded, or
 - Has an integer (rational) recession direction
- Irrational directions can hide!
 - R-MICPR \Leftrightarrow span(rec(I)) and/or aff(I) = rational space

$$(z_1 + \sqrt{2}z_2)^2 \le z_3$$
 span(rec(I)) = span({e₃})
 $(z_2 - \sqrt{2}z_1)^2 \le 1$ rec(proj_{z₁,z₂}(I)) = span({(1, $\sqrt{2}$)})

A Simple Lemma for non-MICP Representability

• Obstruction for MICP representability of S:

infinite
$$R \subseteq S$$
 s.t. $\frac{u+v}{2} \notin S \quad \forall u, v \in R, u \neq v$

Proof: Assume for contradiction there exists M such that:

$$S = \operatorname{proj}_x \left(M \cap \left(\mathbb{R}^{n+p} \times \mathbb{Z}^d \right) \right)$$

$$\begin{array}{c} (u, y_u, z_u) \in M \\ (v, y_v, z_v) \in M \end{array} \implies \frac{z_u + z_v}{2} \notin \mathbb{Z}^d$$

$$z_u \equiv z_v \pmod{2}$$
 component-wise $\Rightarrow \frac{z_u + z_v}{2} \in \mathbb{Z}^d$

component-wise parity classes
$$= 2^d < |R| = \infty$$
 \Rightarrow