Mixed Integer Programming Approaches for Experimental Design

Juan Pablo Vielma

Massachusetts Institute of Technology

Joint work with Denis Saure

DRO brown bag lunch seminars, Columbia Business School New York, NY, October, 2016.

Motivation: (Custom) Product Recommendations

Feature	SX530	RX100
Zoom	50 x	3.6 x
Prize	$\$ 249.99$	$\$ 399.99$
Weight	15.68 ounces	7.5 ounces
Prefer	\boxed{C}	\square

Feature	TG-4	Galaxy 2
Waterproof	Yes	No
Prize	$\$ 249.99$	$\$ 399.99$
Viewfinder	Electronic	Optical
Prefer		\square

We recommend:

Motivation: (Custom) Product Recommendations

"Towards" Optimal Product Recommendation

- Find enough information about preferences to recommend

- How do I pick the next ($\left.1^{\text {st }}\right)$ question to obtain the largest reduction of uncertainty or "variance" on preferences
- Compensatory model estimation (part-worths), not just assortment

Next Question To Reduce "Variance": Bayesian

- Black-box objective: Question Selection = Enumeration
- Question selection by Mixed Integer Programming (MIP)

Traveling Salesman Problem (TSP): Visit Cities Fast

MIP = Avoid Enumeration

- Number of tours for 49 cities $=48$!/ $2 \approx 10^{60}$
- Fastest supercomputer $\approx 10^{17}$ flops
- Assuming one floating point operation per tour:
$>10^{35}$ years $\approx 10^{25}$ times the age of the universe!
- How long does it take on an iphone?
- Less than a second!
- 4 iterations of cutting plane method!
- Dantzig, Fulkerson and Johnson 1954 did it by hand!
- For more info see tutorial in ConcordeTSP app
- Cutting planes are the key for effectively solving (even NPhard) MIP problems in practice.

50+ Years of MIP = Significant Solver Speedups

- Algorithmic Improvements (Machine Independent):
- CPLEX v1.2 (1991) - v11 (2007): 29,000x speedup
- Gurobi v1 (2009) - v6.5 (2015): 48.7x speedup
- Commercial, but free for academic use
- (Reasonably) effective free / open source solvers:
- GLPK, COIN-OR (CBC) and SCIP (only for non-commercial)
- Easy to use, fast and versatile modeling languages
- Julia based JuMP modelling language
- Linear MIP solvers very mature and effective:
- Convex nonlinear MIP getting there (even MI-SDP!), quadratic nearly there

Choice-based Conjoint Analysis (CBCA)

MNL Preference Model

- Utilities for 2 products, n features (e.g. $\mathrm{n}=12$)

- Utility maximizing customer: $x^{1} \succeq x^{2} \Leftrightarrow U_{1}{ }^{"} \geq$ " U_{2}
- Noise can result in response error:

$$
L\left(\beta \mid x^{1} \succeq x^{2}\right)=\mathbb{P}\left(x^{1} \succeq x^{2} \mid \beta\right)=\frac{e^{\beta \cdot x^{1}}}{e^{\beta \cdot x^{1}}+e^{\beta \cdot x^{2}}}
$$

Next Question To Reduce "Variance": Bayesian

MNL Preference Model \longleftrightarrow Logistic Regression

$$
\beta \cdot x^{1} \geq \beta \cdot x^{2}
$$

$$
\underset{\text { MIP }}{\beta} \cdot z \geq 0 \quad z=x^{1}-x_{10 / 27}^{2}
$$

"Linear" Experimental Design

Feature	TG-4	Galaxy 2
Waterproof	Yes	No
Prize	\$249.99	\$399.99
Viewfinder	Electron	Optical
Prefer		\square

Questions:
Answers:

$$
Z=\left[z^{1}|\ldots| z^{q}\right]^{T} \in \mathbb{R}^{q \times n} \quad Y=\left[y_{1}|\ldots| y_{q}\right]^{T}
$$

Model: $\mathbb{P}(Y \mid \beta, Z)=L(Y \mid \beta, Z)=\prod_{i=1}^{q} h\left(y^{i}, \beta \cdot z^{i}\right)$
Objective: Choose Z to learn β "fast"

Bayesian Framework

Prior distribution

$\beta \sim N(\mu, \Sigma)$

Answer likelihood

$L(Y \mid \beta, Z)$

$$
g(\beta \mid Y, Z)=\frac{\phi(\beta ; \mu, \Sigma) L(Y \mid \beta, Z)}{\int_{\mathbb{R}} \phi(\beta ; \mu, \Sigma) L(Y \mid \beta, Z) d \beta}
$$

"fast" $=$ minimize posterior "variance"

Goal $=$ Minimize Expected Posterior Variance $f(Z)$

$$
f(Z)=\mathbb{E}_{Y}\left\{(\operatorname{det} \operatorname{cov}(\beta \mid Y, Z))^{1 / m}\right\}
$$

Possible solution approaches:

$$
\begin{gathered}
g(\beta \mid Y, Z) \propto \phi(\beta ; \mu, \Sigma) L(Y \mid \beta, Z) \\
I(\beta \mid Y, Z):=-\frac{\partial^{2}}{\partial \beta \partial \beta} \ln g(\beta \mid Y, Z) \propto \Sigma^{-1}-\frac{\partial^{2}}{\partial \beta \partial \beta} \ln L(Y \mid \beta, Z) \\
\operatorname{cov}(\beta \mid Y, Z) \approx I(\hat{\beta} \mid Y, Z)^{-1}, \quad \mathbb{E}_{\beta \sim N(\mu, \sigma)}\left\{I(\beta \mid Y, Z)^{-1}\right\} \\
\max _{Z} \mathbb{E}_{Y}\left\{(\operatorname{det} I(\hat{\beta} \mid Y, Z))^{1 / m}\right\} ?
\end{gathered}
$$

A Really Good Case = Linear Regression

$$
\begin{aligned}
& f(Z)=\mathbb{E}_{Y}\left\{(\operatorname{det} \operatorname{cov}(\beta \mid Y, Z))^{1 / m}\right\} \\
& y^{i}=\beta \cdot z^{i}+\epsilon_{i}, \quad \epsilon_{i} \sim N(0,1) \\
& g(\beta \mid Y, Z)=\phi\left(\beta ; \mu^{\prime}, \Sigma^{\prime}\right) \\
& \Sigma^{\prime}=\operatorname{var}(\beta \mid Y, Z)=\left(Z^{T} Z+\Sigma^{-1}\right)^{-1}
\end{aligned}
$$

$$
\min _{Z} f(Z)=\max _{Z}\left(\operatorname{det}\left(Z^{T} Z+\Sigma^{-1}\right)\right)^{1 / m}
$$

Z discrete \longrightarrow MISDP or MISOCP for $m=n$

A Relatively Good Case = Few Questions

$$
\begin{aligned}
& f(Z)=\mathbb{E}_{Y}\left\{(\operatorname{det} \operatorname{cov}(\beta \mid Y, Z))^{1 / m}\right\} \\
& Z=\left\{z^{i}\right\}_{i=1}^{q} \subseteq \mathbb{R}^{n}, \quad q \ll n \\
& \mathbb{E}(\beta \mid Y, Z)=m\left(Y,\left\{\mu \cdot z^{i}\right\}_{i=1}^{q},\left\{z^{\left.i^{T} \sum_{z^{j}}\right\}_{i, j=1}^{q}}\right)\right. \\
& \operatorname{cov}(\beta \mid Y, Z)=M\left(Y,\left\{\mu \cdot z^{i}\right\}_{i=1}^{q},\left\{z^{i^{T}} \sum_{z^{j}}\right\}_{i, j=1}^{q}\right) \\
& \quad f(Z)=f\left(\left\{\mu \cdot z^{i}\right\}_{i=1}^{q},\left\{z^{\left.i^{T} \sum^{j}\right\}_{i, j=1}^{q}}\right)\right.
\end{aligned}
$$

A Relatively Good Case = Few Questions

$$
f(Z)=\mathbb{E}_{Y}\left\{(\operatorname{det} \operatorname{cov}(\beta \mid Y, Z))^{1 / m}\right\}
$$

Question Selection for CBCA

D-efficiency Simplification for CBCA

- D-efficiency $=$ Non-convex function $f(d, v)$ of distance: $d:=\mu \cdot\left(x^{1}-x^{2}\right)$
variance: $\quad v:=\left(x^{1}-x^{2}\right)^{\prime} \cdot \sum \cdot\left(x^{1}-x^{2}\right)$

Can evaluate $f(d, v)$ with 1-dim integral :

Simplification = Trade-off for known criteria

$$
(\beta-\mu)^{\prime} \cdot \Sigma^{-1} \cdot(\beta-\mu) \leq r
$$

- Choice balance:
- Minimize distance to center

$$
\mu \cdot\left(x^{1}-x^{2}\right)
$$

- Postchoice symmetry:
- Maximize variance of question

$$
\left(x^{1}-x^{2}\right)^{\prime} \cdot \sum \cdot\left(x^{1}-x^{2}\right)
$$

Optimization Model

min

$$
f(d, v)
$$

s.t.

$$
\mu \cdot\left(x^{1}-x^{2}\right)=d
$$

$$
\left(x^{1}-x^{2}\right)^{\prime} \cdot \sum \cdot\left(x^{1}-x^{2}\right)=v
$$

$$
x
$$

$$
A^{1} x^{1}+A^{2} x^{2} \leq b
$$

linearize $x_{i}^{k} \cdot x_{j}^{l}$

$$
x^{1} \neq x^{2}
$$

$$
\begin{aligned}
& x \\
& x
\end{aligned}
$$

$$
x^{1}, x^{2} \in\{0,1\}^{n}
$$

Technique 2: Piecewise Linear Functions

- D-efficiency $=$ Non-convex function $f(d, \imath \not \subset f$
distance: $d:=\mu \cdot\left(x^{1}-x^{2}\right)$
variance: $\quad v:=\left(x^{1}-x^{2}\right)^{\prime} \cdot \sum \cdot\left(x^{1}-x^{2}\right)$

Can evaluate $f(d, v)$ with 1-dim integral :

Piecewise Linear Interpolation

MIP formulation

MIP-based Adaptive Questionnaires

	Galaxy 2	
Feature	TG-4	No
Waterproof	\$249.99	\$399.99
Prize	Electronic	Optical
Viewfinder	Cl	
Prefer		

$$
\begin{array}{r}
\mathbb{E}\left(\beta \mid Y, X^{1}, X^{2}\right) \\
\operatorname{cov}\left(\beta \mid Y, X^{1}, X^{2}\right)
\end{array}
$$

- Optimal one-step look-ahead moment-matching approximate Bayesian approach.

Optimal One-Step Look-Ahead

- Solve with MIP formulation

Moment-Matching Approximate Bayesian Update

Answer likelihood

Prior distribution

$\beta \sim N\left(\mu^{i}, \Sigma^{i}\right)$

Posterior distribution

$\beta \stackrel{\text { approx. }}{\sim} N\left(\mu^{i+1}, \Sigma^{i+1}\right)$

- $\mu^{i+1}=\mathbb{E}\left(\beta \mid y, x^{1}, x^{2}\right)$
- $\Sigma^{i+1}=\operatorname{cov}\left(\beta \mid y, x^{1}, x^{2}\right)$

1-dim integral

Computational Experiments

- 16 questions, 2 options, 12 and 24 features
- Simulate MNL responses with known β^{*}
- Question Selection
- MIP-based using CPLEX and open source COIN-OR solver
- Knapsack-based geometric Heuristic by Toubia et al.
- Time limits of 1 s and 10 s
- Metrics:
- Estimator variance $=\left(\operatorname{det} \operatorname{cov}\left(\beta \mid Y, X^{1}, X^{2}\right)\right)^{1 / 2}$
- Estimator distance $=\left\|\mathbb{E}\left(\beta \mid Y, X^{1}, X^{2}\right)-\beta^{*}\right\|_{2}$
- Computed for true posterior with MCMC

Results for 12 Features, 1 s time limit

Does it Scale? Results for 24 features

Some improvements for 24 features

Summary and Main Messages

- Always choose Chewbacca!
- MIP can now "solve" challenging problems in practice
- Even in near-real time
- Appropriate domain expertise can be crucial for MIP'ing
- Commercial solvers best, but free solvers reasonable
- Integration into complex systems easy with JuMP
- Some scalability : get the most out of "small" data
- Adaptive Choice-based Conjoint Analysis
- Improves on existing geometric methods
- http://ssrn.com/abstract=2798984

