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Feature SX530 RX100

Zoom 50x 3.6x

Prize $249.99 $399.99

Weight 15.68	lb 7.5	lb

Prefer � �

Feature SX530 RX100

Zoom 50x 3.6x

Prize $249.99 $399.99

Weight 15.68	ounces 7.5	ounces

Prefer � �

Feature TG-4	 G9

Waterproof Yes No

Prize $249.99 $399.99

Weight 7.36	lb 7.5	lb

Prefer � �

Feature TG-4	 Galaxy	2

Waterproof Yes No

Prize $249.99 $399.99

Viewfinder Electronic Optical

Prefer � �

We	recommend:	

Feature SX530 RX100

Zoom 50x 3.6x

Prize $249.99 $399.99

Weight 15.68	lb 7.5	lb

Prefer � �

Motivation:	(Custom)	Product	Recommendations
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• Toubia,	Hauser	and	Dahan (2003)

• Toubia,	Hauser,	and	Simester (2004)	



“Towards”	Optimal	Product	Recommendation

• How	do	I	pick	the	next	(1st)	question	to	obtain	the	largest	
reduction	of	uncertainty	or	“variance”	on	preferences

• Compensatory	model	estimation	(part-worths),	not	just	
assortment
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• Find	enough	information	about	preferences	to	recommend

�
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Next	Question	To	Reduce	“Variance”:	Bayesian	
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• Black-box	objective:	Question	Selection	=	Enumeration	☹	
• Question	selection	by	Mixed	Integer	Programming	(MIP)
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Traveling	Salesman	Problem	(TSP):	Visit	Cities	Fast
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Science and technology have 
always amazed us with their 
powers and ability to trans-
form our world and our lives. 

However, many results, particularly 
over the past century or so, have dem-
onstrated that there are limits to the 
abilities of science. Some of the most 
celebrated ideas in all of science, such 
as aspects of quantum mechanics and 
chaos theory, have implications for 
informing scientists about what can-
not be done. Researchers have discov-
ered boundaries beyond which science 
cannot go and, in a sense, science has 
found its limitations. Although these 
results are found in many different 
fields and areas of science, mathemat-
ics, and logic, they can be grouped and 
classified into four types of limitations. 
By closely examining these classifica-
tions and the way that these limita-
tions are found, we can learn much 
about the very structure of science. 

Discovering Limitations 
The various ways that some of these 
limitations are discovered is in itself 
informative. One of the more interest-
ing means of discovering a scientific 
limitation is through paradoxes. The 
word paradox is used in various ways 
and has several meanings. For our 
purposes, a paradox is present when 
an assumption is made and then, with 
valid reasoning, a contradiction or fal-

sity is derived. We can write this as:
AssumptionàContradiction. 
Because contradictions and falsehoods 
need to be avoided, and because only 
valid reasoning was employed, it must 
be that the assumption was incorrect. 
In a sense, a paradox is a proof that 
the assumption is not a valid part of 
reason. If it were, in fact, a valid part of 
reason, then no contradiction or false-
hood could have been derived. 

A classic example of a paradox is 
a cute little puzzle called the barber 
paradox. It concerns a small, isolated 
village with a single barber. The vil-
lage has the following strict rule: If you 
cut your own hair, you cannot go to 
the barber, and if you go to the barber, 
you cannot cut your own hair. It is one 
or the other, but not both. Now, pose 
the simple question: Who cuts the bar-
ber’s hair? If the barber cuts his own 
hair, then he is not permitted to go to 
the barber. But he is the barber! If, on 
the other hand, he goes to the barber, 
then he is cutting his own hair. This 
outcome is a contradiction. We might 
express this paradox as:
Village with ruleàContradiction. 

The resolution to the barber paradox 
is rather simple: The village with this 
strict rule does not exist. It cannot exist 
because it would cause a contradic-
tion. There are a lot of ways of getting 
around the rule: The barber could be 
bald, or an itinerant barber could come 
to the village every few months, or the 
wife of the barber could cut the bar-
ber’s hair. But all these are violations 
of the rule. The main point is that the 
physical universe cannot have such a 
village with such a rule. Such playful 
paradox games may seem superficial, 
but they are transparent ways of ex-
ploring logical contradictions that can 

exist in the physical world, where dis-
obeying the rules is not an option.

A special type of paradox is called 
a self-referential paradox, which results 
from something referring to itself. The 
classic example of a self-referential 
paradox is the liar paradox. Consider 
the sentence, “This sentence is false.” 
If it is true, then it is false, and if it is 
false, then because it says it is false, it 
is true—a clear contradiction. This par-
adox arises because the sentence refers 
to itself. Whenever there is a system 
in which some of its parts can refer 
to themselves, there will be self-refer-
ence. These parts might be able to ne-
gate some aspect of themselves, result-
ing in a contradiction. Mathematics, 
sets, computers, quantum mechanics,  
and several other systems possess 
such self-reference, and hence have as-
sociated limitations. 

Some of the stranger aspects of 
quantum mechanics can be seen as 
coming from self-reference. For ex-
ample, take the dual nature of light. 
One can perform experiments in which 
light acts like a wave, and others in 
which it acts like a particle. So which 
is it? The answer is that the nature of 
light depends upon which experiment 
is performed. Was a wave experiment 
performed, or was a particle experi-
ment performed? This duality ushers 
a whole new dimension into science. 
In classical science, the subject of an 
experiment is a closed system that re-
searchers poke and prod in order to de-
termine its properties. Now, with quan-
tum mechanics, the experiment—and 
more important, the experimenter— 
become part of the system being mea-
sured. By the act of measuring the 
system, we affect it. If we measure for 
waves, we affect the system so that we 

Noson S. Yanofsky is a professor of computer and 
information sciences at Brooklyn College of the 
City University of New York. He is a coauthor of 
Quantum Computing for Computer Scientists 
(Cambridge University Press, 2008) and the author 
of The Outer Limits of Reason: What Science, 
Mathematics, and Logic Cannot Tell Us (MIT 
Press, 2013). Email: noson@sci.brooklyn.cuny.edu

Paradoxes, Contradictions, 
and the Limits of Science 
Many research results define boundaries of what cannot be known, predicted, or 
described. Classifying these limitations shows us the structure of science and reason. 

Noson S. Yanofsky

“A computer would have to 
check all these possible routes 
to find the shortest one.” 
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MIP	=	Avoid	Enumeration

• Number	of	tours	for	49	cities	
• Fastest	supercomputer
• Assuming	one	floating	point	operation	per	tour:

• How	long	does	it	take	on	an	iphone?
– Less	than	a	second!
– 4	iterations	of	cutting	plane	method!
– Dantzig,	Fulkerson	and	Johnson	1954	did	it	by	hand!
– For	more	info	see	tutorial	in	ConcordeTSP app
– Cutting	planes	are	the	key	for	effectively	solving	(even	NP-
hard)	MIP	problems	in	practice.

= 48!/2 ⇡ 1060

⇡ 10

17
flops

> 10

35
years ⇡ 10

25
times the age of the universe!
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50+	Years	of	MIP	=	Significant	Solver	Speedups	

• Algorithmic	Improvements	(Machine	Independent):
– CPLEX v1.2	(1991)	– v11	(2007):	29,000x	speedup
– Gurobi v1	(2009)	– v6.5	(2015):	48.7x	speedup	
– Commercial,	but	free	for	academic	use

• (Reasonably)	effective	free	/	open	source	solvers:
– GLPK,	COIN-OR	(CBC)	and	SCIP	(only	for	non-commercial)	

• Easy	to	use,	fast	and	versatile	modeling	languages
– Julia	based	JuMP modelling	language

• Linear	MIP	solvers	very	mature	and	effective:
– Convex	nonlinear	MIP	getting	there	(even	MI-SDP!),	
quadratic	nearly	there
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Choice-based	Conjoint	Analysis	(CBCA)

Feature Chewbacca BB-8

Wookiee Yes No

Droid No Yes

Blaster Yes No

I	would buy	toy ☐ ☐

x

2
x

1
Product Profile

0

@
0
1
0

1

A = x

2
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MNL	Preference	Model

• Utilities	for	2	products,	n	features	(e.g.	n	=	12)

part-worths

product profile noise (gumbel)

• Noise	can	result	in	response	error:

P
�
x

1 ⌫ x

2 | �
�
=

e

�·x1

e

�·x1 + e

�·x2

• Utility	maximizing	customer:
x

1 ⌫ x

2 , U1“�”U2

L

�
� |x1 ⌫ x

2
�
=

U1 = � · x1 + ✏1 =
Xn

i=1
�ix

1
i + ✏1

U2 = � · x2 + ✏2 =
Xn

i=1
�ix

2
i + ✏2
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Next	Question	To	Reduce	“Variance”:	Bayesian	
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“Linear”	Experimental	Design

Feature TG-4	 Galaxy	2

Waterproof Yes No

Prize $249.99 $399.99

Viewfinder Electronic Optical

Prefer � �

Questions:

Feature TG-4	 Galaxy	2

Waterproof Yes No

Prize $249.99 $399.99

Viewfinder Electronic Optical

Prefer � �

Y =
⇥
y1| . . . |yq

⇤T
Answers:

Z =
⇥
z1| . . . |zq

⇤T 2 Rq⇥n

Objective:
Choose Z to learn � “fast”

Model: P (Y | �, Z ) = L (Y | �, Z ) =
Yq

i=1
h
�
yi,� · zi

�

Unknown � 2 Rn

�
� · zi

 q

i=1
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Bayesian	Framework

Prior distribution

� ⇠ N(µ,⌃)

Answer likelihood

L (Y | �, Z)

Posterior distribution

g (� | Y, Z )

g (� | Y, Z ) =
� (� ; µ,⌃)L (Y | �, Z)R

R � (� ; µ,⌃)L (Y | �, Z) d�

“fast” = minimize posterior “variance”
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Goal	=	Minimize	Expected Posterior	Variance f (Z)

maxZ EY

⇢⇣
det I

⇣
ˆ� |Y, Z

⌘⌘1/m
�

?

I (� |Y, Z) := � @2

@�@�
ln g (� | Y, Z ) /⌃

�1 � @2

@�@�
lnL (Y | �, Z)

g (� | Y, Z ) / � (� ; µ,⌃)L (Y | �, Z)

f (Z) = EY

n

(det cov (� |Y, Z))

1/m
o

Possible	solution	approaches:

cov (� |Y, Z) ⇡ I
⇣

ˆ� |Y, Z
⌘�1

, E�⇠N(µ,�)

n

I (� |Y, Z)

�1
o
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A	Really	Good	Case	=	Linear	Regression

yi = � · zi + ✏i, ✏i ⇠ N(0, 1)

min

Z
f (Z) = max

Z

�
det

�
ZTZ + ⌃

�1
��1/m

g (� | Y, Z ) = � (� ; µ0,⌃0)

⌃0 = var (� |Y, Z) =
�
ZTZ + ⌃�1

��1

Z discrete MISDP	or	MISOCP	for	m	=	n

f (Z) = EY

n

(det cov (� |Y, Z))

1/m
o
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A	Relatively	Good	Case	=	Few	Questions

Z =
�
zi
 q

i=1
✓ Rn, q ⌧ n

f (Z) = EY

n

(det cov (� |Y, Z))

1/m
o

E (� |Y, Z) = m

✓

Y,
�

µ · zi
 q

i=1
,
n

zi
T⌃zj

oq

i,j=1

◆

cov (� |Y, Z) = M

✓

Y,
�

µ · zi
 q

i=1
,
n

zi
T⌃zj

oq

i,j=1

◆

f (Z) = f

✓

�

µ · zi
 q

i=1
,
n

zi
T⌃zj

oq

i,j=1

◆

Experimental	Design	with	MIP 15 /	27



A	Relatively	Good	Case	=	Few	Questions

Z =
�
zi
 q

i=1
✓ Rn, q ⌧ n

f (Z) = EY

n

(det cov (� |Y, Z))

1/m
o

E (� |Y, Z) = m

✓

Y,
�

µ · zi
 q

i=1
,
n

zi
T⌃zj

oq

i,j=1

◆

cov (� |Y, Z) = M

✓

Y,
�

µ · zi
 q

i=1
,
n

zi
T⌃zj

oq

i,j=1

◆

f (Z) = f

✓

�

µ · zi
 q

i=1
,
n

zi
T⌃zj

oq

i,j=1

◆

L (Y | �, Z) =
Yq

i=1
h
�
yi,� · zi

�
� ⇠ N(µ,⌃)

Only	requirements:

•

•

✓ Logistic	regression	with	small	q
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• “Variance”	=	D-Efficiency:
•
• Non-convex	function
• Without	previous	slide,	
even	evaluation	requires					
d		 - dimensional	
integration

•

Question	Selection	for	CBCA

� ⇠ N(µ,⌃)

f

�
x

1
, x

2
�
:= E

�,x

1 �
/⌫ x

2

⇣
det(⌃

i

)1/p
⌘

x

1 ⌫ x

2

cov(�) = ⌃1

x

1 � x

2

cov(�) = ⌃2

dim (�)
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D-efficiency	Simplification	for	CBCA

• D-efficiency		=	Non-convex	function				 of
distance: d := µ ·

�
x

1 � x

2
�

variance: v :=
�
x

1 � x

2
�0 ·⌃ ·

�
x

1 � x

2
�

f(d, v)

Can	evaluate							
with	1-dim	integral	🙂

f(d, v)
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Simplification	=	Trade-off	for	known	criteria

• Choice	balance:
–Minimize	distance to	center	

• Postchoice symmetry:
–Maximize	variance of	question

� �

µ

�

�

(� � µ)0 · ⌃�1 · (� � µ)  r

µ ·
�
x

1 � x

2
�

�
x

1 � x

2
�0 ·⌃ ·

�
x

1 � x

2
�
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min f(d, v)

s.t.

µ ·
�
x

1 � x

2
�
= d

�
x

1 � x

2
�0 ·⌃ ·

�
x

1 � x

2
�
= v

A

1
x

1 +A

2
x

2  b

x

1 6= x

2

x

1
, x

2 2 {0, 1}n

Optimization	Model

✓

✓

✗

✗

✗

✓

✓linearize x

k
i · xl

j
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Technique	2:	Piecewise	Linear	Functions

• D-efficiency		=	Non-convex	function	 of
distance: d := µ ·

�
x

1 � x

2
�

variance: v :=
�
x

1 � x

2
�0 ·⌃ ·

�
x

1 � x

2
�

f(d, v)

Can	evaluate							
with	1-dim	integral	🙂

f(d, v)

MIP		formulation

Piecewise	Linear	
Interpolation	
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MIP-based	Adaptive	Questionnaires

Feature SX530 RX100

Zoom 50x 3.6x

Prize $249.99 $399.99

Weight 15.68	ounces 7.5	ounces

Prefer � �

Feature TG-4	 G9

Waterproof Yes No

Prize $249.99 $399.99

Weight 7.36	lb 7.5	lb

Prefer � �

Feature TG-4	 Galaxy	2

Waterproof Yes No

Prize $249.99 $399.99

Viewfinder Electronic Optical

Prefer � �

We	recommend:	

Feature SX530 RX100

Zoom 50x 3.6x

Prize $249.99 $399.99

Weight 15.68	lb 7.5	lb

Prefer � �

• Optimal	one-step	look-ahead	moment-matching	
approximate	Bayesian	approach.

E
�
� |Y,X1, X2

�

cov

�
� |Y,X1, X2

�
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Optimal	One-Step	Look-Ahead

Prior distribution

Feature SX530 RX100

Zoom 50x 3.6x

Prize $249.99 $399.99

Weight 15.68	ounces 7.5	ounces

Prefer � �

Feature TG-4	 Galaxy	2

Waterproof Yes No

Prize $249.99 $399.99

Viewfinder Electronic Optical

Prefer � �

Feature TG-4	 Galaxy	2

Waterproof Yes No

Prize $249.99 $399.99

Viewfinder Electronic Optical

Prefer � �

Feature TG-4	 G9

Waterproof Yes No

Prize $249.99 $399.99

Weight 7.36	lb 7.5	lb

Prefer � �

min
x

1
,x

2
f

�
x

1
, x

2
�

• Solve	with	MIP	formulation

� ⇠ N
�
µi,⌃i

�
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Moment-Matching	Approximate	Bayesian	Update

Prior distribution

Feature TG-4	 Galaxy	2

Waterproof Yes No

Prize $249.99 $399.99

Viewfinder Electronic Optical

Prefer � �

Answer likelihood

Posterior distribution

� ⇠ N
�
µi,⌃i

�
�

approx.⇠ N
�
µi+1,⌃i+1

�

1-dim	integral	
• µ

i+1
= E

�
� | y, x1

, x

2
�

• ⌃

i+1
= cov

�
� | y, x1

, x

2
�
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Computational	Experiments

• 16	questions,	2	options,	12	and	24	features	
• Simulate	MNL	responses	with	known	
• Question	Selection
– MIP-based	using	CPLEX and	open	source	COIN-OR	solver
– Knapsack-based	geometric	Heuristic by	Toubia	et	al.

• Time	limits	of	1	s	and	10	s
• Metrics:
– Estimator	variance	=	
– Estimator	distance	=
– Computed	for	true	posterior	with	MCMC

�⇤

�
det cov

�
� |Y,X1, X2

��1/2
��E

�
� |Y,X1, X2

�
� �⇤��

2
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Results	for	12	Features,	1	s	time	limit

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
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■
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▲

▲

▲

▲
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.0

0.2

0.4

0.6

0.8

Estimator Variance

● Heuristic (Avg. = 0.04 s, Max = 0.61s) ■ COIN-OR (Avg. = 0.93 s, Max = 1s)

▲ CPLEX (Avg. = 0.21 s, Max = 0.48s)
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Does	it	Scale?	Results	for	24	features

● Heuristic (Avg. = 0.19 s, Max = 3s) ■ CPLEX 1s (Avg. = 1 s, Max = 1s)

▲ CPLEX 10s (Avg. = 7.7 s, Max = 10s)
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● ●
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● ●
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● ●
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Some	improvements	for	24	features

● Heuristic (Avg. = 0.19 s, Max = 3s) ■ CPLEX 1s (Avg. = 1 s, Max = 1s)

▲ CPLEX 10s (Avg. = 7.7 s, Max = 10s)
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Summary	and	Main	Messages

• Always	choose	Chewbacca!

• MIP	can	now	“solve”	challenging	problems	in	practice
– Even	in	near-real	time
– Appropriate	domain	expertise	can	be	crucial	for	MIP’ing
– Commercial	solvers	best,	but	free	solvers		reasonable
– Integration	into	complex	systems	easy	with	JuMP
– Some	scalability	:	get	the	most	out	of	“small”	data	

• Adaptive	Choice-based	Conjoint	Analysis
– Improves	on	existing	geometricmethods
– http://ssrn.com/abstract=2798984

Experimental	Design	with	MIP 29 /	27


