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“Towards” Optimal Product Recommendation

* Find enough information about preferences to recommend

* How do | pick the next (1t) question to obtain the largest
reduction of uncertainty or “variance” on preferences

 Compensatory model estimation (part-worths), not just
assortment
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Next Question To Reduce “Variance”: Bayesian
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* Black-box objective: Question Selection = Enumeration &
e Question selection by Mixed Integer Programming (MIP)
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Traveling Salesman Problem (TSP): Visit Cities Fast
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MIP = Avoid Enumeration

» Number of tours for 49 cities = 48!/2 = 10°°
* Fastest supercomputer ~ 10" flops

* Assuming one floating point operation per tour:
> 10°%° years =~ 10° times the age of the universe!

* How long does it take on an iphone?
— Less than a second!
— 4 iterations of cutting plane method!
— Dantzig, Fulkerson and Johnson 1954 did it by hand!
— For more info see tutorial in ConcordeTSP app

— Cutting planes are the key for effectively solving (even NP-
hard) MIP problems in practice.
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50+ Years of MIP = Significant Solver Speedups

e Algorithmic Improvements (Machine Independent):
— CPLEX v1.2 (1991) —v11 (2007): 29,000x speedup
— Gurobi vl (2009) —v6.5 (2015): 48.7x speedup
— Commercial, but free for academic use

* (Reasonably) effective free / open source solvers:

— GLPK, COIN-OR (CBC) and SCIP (only for non-commercial)
e Easy to use, fast and versatile modeling languages

— Julia based JuMP modelling language

* Linear MIP solvers very mature and effective:

— Convex nonlinear MIP getting there (even MI-SDP!),
qguadratic nearly there
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Choice-based Conjoint Analysis (CBCA)
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MNL Preference Model

e Utilities for 2 products, n features (e.g. n = 12)
_ 3. gt R N
Uy=05-2+¢€ Zz’:1 Biz; + €1
_ 3.2 A N T
Uy =027+ € Zz’:1 Bixi + €2

11
part-worths T

noise (gumbel)

product profile

» Utility maximizing customer: ! = z° < Uy “>"U,
* Noise can result in response error:
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Next Question To Reduce “Variance”: Bayesian

Posterior
. Distribution
‘ &) Bayesian
Prior Distribution T ——T——T— Update
Zo'om 50x 3.6x
Prize $249.99 $399.99 I
Of /B Weight 15.68 ounces 7.5 ounces

peer | & | o |

MCMC Posterior

Distribution

N & = Bayesian

[resre | 104 | camy2 | Updat
Waterproo f Yes No p a e

Prize $249.99 $399.99 '
Viewfinder Electronic Optical

poe || o]

MNL Preference Model <> [ogistic Regression
Bzt > 8. 2? & B-2>0 z=a' —
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“Linear” Experimental Design
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Bayesian Framework

Prior distribution Answer likelihood Posterior distribution

B~Npx) LY |B,2) gB|Y,Z2)

¢ (55w, ) Y | 8,2)
(B w,X)L(Y |B,Z)dp

“fast” = minimize posterior “variance”

g(B1Y,Z)= T o

Experimental Design with MIP 12 /27



Goal = Minimize Expected Posterior Variance f (Z)

f(2) = Ey {(detcov (8]Y,2))"/™ |
Possible solution approaches:
gB|Y,Z)oxo(B; u,X)L(Y |B,2)

1 0>
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A Really Good Case = Linear Regression

f(Z) =

Ty {(det cov (B Y, Z))l/m}

yizﬁ'zi_l_eia GZNN(Ovl)
g(B1Y,Z)=0¢(B; 1,X)
Y —var (8|Y,2) = (Z2TZ+%71) "

Z

min f (Z) = max (det (2" Z + 2_1))1/m

Z

7 discrete =—— MISDP or MISOCP form=n
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A Relatively Good Case = Few Questions
f(2) = By {(detov (8]Y, 2))"/™ |
7 = {z } CR" g¢g¢g<n
E(B|Y,Z)=m Y{,u-zi}q {ziTsz}q
9 9 i—1" i =1
cov (B|Y,Z) = M (Y, (-2} {78 1)
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Experimental Design with MIP 15 /27




A Relatively Good Case = Few Questions
f(2) = By {(detov (8]Y, 2))"/™ |
Z :/Only requirements: \

o m\ q
@(ﬁ 6 N(:uv E) ij:1>
LV 8,2 =]]_ h(.B-2) |4
cov (B - o )
v/ Logistic regression with small q 6=l
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Question Selection for CBCA

* “Variance” = D-Efficiency:
e f (:Ul, £L‘2) = Eﬂ’wl </~ x2 (det(Zi)l/p)
* Non-convex function

* Without previous slide,
even evaluation requires
dim (8) - dimensional
Integration

cov(B) = X
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D-efficiency Simplification for CBCA

* D-efficiency = Non-convex function f(d,v) of

distance: d:= u - (:131 — :1:2)

. /
variance: v = (a:l — 332) : Z : (:zzl — azQ)

Can evaluate f(d, v)
with 1-dim integral ©@
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Simplification = Trade-off for known criteria

(B—p) -2 (B—p) <r

e Choice balance: o
— Minimize distance to center ®
1 2 2!
o (2t~ ?) :
v X

e Postchoice symmetry:

— Maximize variance of question

(xl - xz)’ _ Z . (le - $2)
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Optimization Model

min f(d, ) X
S.1.

ko vt £zt X

€T -
vt x® € {0,1}"
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Technique 2: Piecewise Linear Functions

 D-efficiency = Non-convex function f(d, v0f

distance: d:= u - (a:l — xQ)

o /
variance: v = (xl — x2) : Z : (:z:l — :1:2)

Can evaluate f(d,v)
with 1-dim integral ©@

Piecewise Linear
Interpolation

MIP formulation
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MIP-based Adaptive Questionnaires
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* Optimal one-step look-ahead moment-matching
approximate Bayesian approach.
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Optimal One-Step Look-Ahead

min f (1131, 1132)

) ) ) ) 1 2
Prior distribution L= ,I

e Solve with MIP formulation
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Moment-Matching Approximate Bayesian Update

Answer likelihood

Prior distribution Posterior distribution

3 approT. Ny (Iu7;+17 Zz‘+1)

o T =E(B|y,a' z?)
COV (5\y,x1,x2)
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Computational Experiments

16 questions, 2 options, 12 and 24 features
Simulate MNL responses with known 3*

Question Selection
— MIP-based using CPLEX and open source COIN-OR solver
— Knapsack-based geometric Heuristic by Toubia et al.

Time limits of 1 sand 10 s

Metrics:

— Estimator variance = (det cov (3]Y, X", XZ))M2
— Estimator distance = ||E (8]Y, X', X?) — 5|,

— Computed for true posterior with MCMC
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Results for 12 Features, 1 s time limit

Estimator Variance Estimator Distance
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Does it Scale? Results for 24 features

Estimator Variance
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Some improvements for 24 features

Estimator Variance
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Summary and Main Messages

* Always choose Chewbacca!

* MIP can now “solve” challenging problems in practice
— Even in near-real time
— Appropriate domain expertise can be crucial for MIP’ing
— Commercial solvers best, but free solvers reasonable
— Integration into complex systems easy with JuMP
— Some scalability : get the most out of “small” data

* Adaptive Choice-based Conjoint Analysis

— Improves on existing geometric methods
— http://ssrn.com/abstract=2798984
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