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Nonlinear	Mixed	0-1 Integer	Formulations

• Modeling	Finite	Alternatives	=	Unions	of	Convex	Sets
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Extended and	Non-Extended	Formulations	for									
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Strong,	but	large

Extended Non-Extended	

Small,	but	weak?



Outline

• Extended	Formulations
– Conic	formulations,	stability	and	outer-approximation

• Non-Extended	Formulations
– Embedding	formulations	=	Strong	non-extended	

Embedding	Formulations



Extended	Formulations:

Birdmen:	Or	(The	Unexpected	Virtue	of	Discipline)



Extended	Formulations:	Perspective	“v/s”	Cones	
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• e.g.	Ceria	and	Soares ‘99

• Both	formulations	are	ideal (extreme	points	of	continuous	
relaxation	satisfy	integrality	constraints)

• e.g.	Ben-tal and	Nemirovski ’01,	Helton	and	Nie
‘09



Cones	Can	Mitigate	Unintended	Numerical	Issues
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• Let																																																																																		

where

• Conic	(SOCP)	representation



Conic	=	Really	Extended
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• Conic	representation	=	additional	auxiliary	variables

• Bad	for	NLP	solvers,	but	good	for	polyhedral	
approximations	in	MINLP	solvers:	
– Separable	=	(Tawarmalani and	Sahinidis ’05,	Hijazi et	al.	’12)
– SOCP		=	(V.	et	al.	‘15)	=	If	SOCP	representable	use	MI-SOCP	solver!
– General	MINLP?	=	Disciplined Convex	Programming	(DCP)	(Grant	
et	al.	06):	Implemented	in	CVX		
• Systematic	way	to	prove	convexity	
• Yields	extended	conic	representation	(MINLPLib2	-1)



Solving	Mixed	Integer	Disciplined Convex	Programs	

Embedding	Formulations 8 /	24

• Pajarito solver!
– Lubin,	Yamangil,	 Bent	and	V.	’15
– SLay10M	(	it /	time ):	

• Bonmim =	69 it	/	1,379	s							
• Hijazi et	al.	=	23 it	/	14	s
• Pajarito =	5 it	/	12	s
(automatic	separability)

– Solved	gams01	from	
MINLPLIB2	(prev 91%	GAP)

– Solved	tls5-6	(prev 25%-29%	
GAP)	=	Just	SOCP	+	Gurobi!

– ~200	lines	of	Julia	code
Miles	 Lubin and	Emre Yamangil



Strong	Non-Extended	Formulations:

Minkowski Sums,	Good	or	Evil



Constructing	Non-extended	Ideal	Formulations
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• Pure	Integer	: • Mixed Integer:



Embedding	Formulation	=	Ideal	non-Extended
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(Cayley)	Embedding



Alternative	Encodings
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• “Only”	use	0-1	encodings

• Options	for	0-1	encodings:
– Traditional	or	Unary	encoding

– Binary encodings:
– Others	(e.g.	incrementalencoding							unary)
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Unary	Encoding,	Minkowski Sum	and	Cayley Trick
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For	traditional	or	unary	encoding:



Encoding	Selection	Matters:	Evil	Minkowski Sum
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• Size	of	unary	formulation	is:						
(Lee	and	Wilson	’01) f(x,y)

y

x
Variable	
Bounds

General	
Inequalities

• Size	of	one	binary	formulation:		
(V.	and	Nemhauser ’08)

• Right	embedding	=	significant	computational	
advantage	over	alternatives	(Extended,	Big-M,	etc.)
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Complexity	of	Family	of	Polyhedra
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• Embedding	complexity	=	
smallest	ideal formulation

• Relaxation	complexity	=	
smallest	formulation
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• Lower	and	Upper	bounds	for	special	structures:
– e.g.	for	Special	Order	Sets	of	Type	2	(SOS2)	on	n variables

• Embedding	complexity	(ideal)

• Relaxation	complexity	(non-ideal)

• Relation	to	other	complexity	measures

• Still	open	questions	(see	V.	2015)

Complexity	Results
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General	Inequalities
Total

General	Inequalities
Total
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Faces	for	Unary	Encoding:	Good	Minkowski Sum	
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• Two	types	of	facets	(or	faces):
–

–

– Not	all	combinations	of	faces

– Which	ones	are	valid?
• Minkowski to	the	rescue!
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Valid	Combinations	=	Common	Normals
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x2

x1

• Description	of	boundary	of												
is	easy	if	“normals condition”	
yields	convex	hull	of	1 nonlinear	
constraint	and	point(s)

Unary	Embedding	for	Unions	of	Convex	Sets
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Easy	to	Recover	and	Generalize	Existing	Results
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• Isotone	function	results	from	Hijazi et	al.	‘12	and	
Bonami et	al.	’15	(n=1,	2):	
–

• Can	generalize	to	n	≥	3	and	two functions	per	set:

• Other	special	cases	(previous	slide)
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Also	“Non-isotone”	Results:	Pizza	Slices
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x1=	4	conic	+	4	linear	inequalities



Bad	Example:	Representability Issues
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can	fail	to	be	basic	semi-algebraic

Description	with	finite	number	of	
(quadratic)	polynomial	inequalities?

Zariski closure	
of	boundary?



Final	Positive	Results
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• Unions	of	Homothetic	Convex	Bodies																																							
(all	extreme	points	exposed)

• Generalizes	polyhedral	results	from		Balas ‘85,	
Jeroslow ’88	and	Blair	‘90



Summary
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• Extended	formulations
– Really	extended	formulations	through	SOCP	or	DCP
– Pajarito =	MIDCP	/	MINLP	extended	polyhedral	solver

• Embedding	formulations	=	systematic	procedure	for	
ideal	non-extended	formulations
– Polyhedral	case	=	Formulations	and	complexity	
– Non-Polyhedral	1	=	Simplified	proofs,	extensions	and	
new	formulations

– Non-Polyhedral	2	=	Representability issues


