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Mixed Integer Convex Optimization (MICONV)
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Overview

e What can we model with MICONV
e How can we solve MICONVs

— How can we access solvers
julia 7% JUMP

— How solvers work >



What can we model with MICONV?

Joint work with Miles Lubin and llias Zadik



What Can MICONV Model?

Optimal discrete experimental design

Obstacle avoidance and trajectory planning in optimal control

Portfolio optimization with nonlinear risk measures and combinatorial
constraints



No, Really. What Can MICONV Model?

Two sheet hyperbola? Spherical shell?

{reR*: 1427 <ux3} [z eR?: 1< |z] <2}

* Integer points in parabola {(x, x?) : x € Z}?
* The set of n X n matrices with rank < k?
e Set of prime numbers?



MICONV Can Model Any Finite Union of (Closed) Convex Sets

e LetTy, ..., Ty be closed convex set. A MICONV formulation of x € U, T;:

(x%,z;) € cone(T;x{1}) Vi€ {1,..,k}
%< 2t vie(l,.., k)

xt € R" vie{1,..,k}



No, Really. What Can MICONV Model?

Two sheet hyperbola? Spherical shell?
{reR*: 1427 <ux3} [z eR?: 1< |z] <2}

* Integer points in parabola {(x, x?) : x € Z}?
* The set of n X n matrices with rank < k?
e Set of prime numbers?



A Simple Obstruction for MICONV Formulations

e § cannot have a MICONYV formulation if there exists:
* There exist infinite R C S s.t.

U_ZHJ%S Yu,v € R, u # v

X Spherical shell {z e R® : 1 < |jz| < 2}




No, Really. What Can MICONV Model?

Two sheet hyperbola? Spherical shell?

v xO

{reR*: 1427 <a3} {zeR?: 1< ||z) <2}

X Integer points in parabola {(x, x?) : x € Z}?
X The set of n X n matrices with rank < k?
X Set of prime numbers?

Does have non-convex polynomial MIP formulation



MICONYV = Structured Countably Infinite Unions of Convex Sets

e Can be “strange” unions, e.g. :

— Infinite number of shapes

* There exist an increasing function A such that:
— P. C R? regular h(2)-gon
- 5= Uz:l P, has MICONV formulation

\/(x1—2z)2—|—x§§1—1/z,
z>1, zel

e Equal volume = Finite # of Shapes



Sets with MICONV Formulations can be REALLY “Strange”

e Dense discrete set {\/593 - {\/ﬁxJ L€ N} C [0,1]

H(Zth)HQ < 22 + 17 H(ZQ,ZQ)H2 < 2217 L1 = Y1 — =2,

121, 210) [l < 91, Iy, y0)lly < 221, 2z€Z°

 Non-Periodic Set of naturals {a: eN : Vox — L\/ia;J ¢ (5, 1 — \/55)}

[(z1,21) |y < @2 + €,

H(ZEQ,ZBQ)HQ < 2x1 + 2¢, 33623_

"God made the integers, all else is the work of man”

- Leopold Kronecker



MIP



50+ Years of MIP = Significant Solver Speedups

e Algorithmic Improvements (Machine Independent):

— CPLEX — —
*v1.2 (1991) —v11 (2007): 29,000 x speedup
— \z 1.9 x / year
A

*v1 (2009) — v6.5 (2015): 48.7 x speedup

e Also convex nonlinear:

*v6.0 (2014) — v6.5 (2015) quadratic: 4.43 x
(V., Dunning, Huchette, Lubin, 2015) 14/37



State of MIP Solvers

 Mature: Linear and Quadratic (Conic Quadratic/SOCP)
—Commercial:

CPLEX

—“Open Source”

SCIPIR CBC GLPK

 Emerging: Convex Nonlinear (e.g. SDP)
—Open-Source + Commercial linear MIP Solver > Commercial

15/37



Accessing MIP Solvers = Modelling Languages

* User-friendly algebraic modelling languages (AML):

(= cams) [ - A
)
- J J

Standalone and Fast Based on General Language and Versatile

e Fast and Versatile, but complicated (and possibly proprietary)
— Low-level C/C++ solver or Coin-OR interphases & frameworks

e 21st Century AMLs: S
[%: JUMP <« jul'é]

16 /37




21st Century Programming/Modelling Languages

e o0
julia
Open-source and free!

Developed at MIT

“Floats like python/matlab, stings like
C/Fortran”

Easy to use and wide library
ecosystem (specialized and frontend)

Only language besides C/C++/Fortran
to scale to 1 Petaflop!

78 JUMP

Open-source and free!

Modelling language, interface
and software ecosystem for
optimization

Easy to use and advanced
Integrated into Julia
Created at MIT and beyond...



[ o0
Large Software Stack and Vibrant Community jUI




Large Software Stack and Vibrant Community %: JUMP

2016

THE SECOND ANNUAL
#JUMP-dev

WORKSHOP

-] Institut de
June 27-29, 2018. Mathémathiques de
Bordeaux

Speakers

Martin Biel, KTH « Oscar Dowson, U. of Auckland + Joaquim
Dias Garcia, PSR & PUC-Rio + Hassan Hijazi, LANL + Jean-
Hubert Hours, Artelys « Oliver Huber, UW-Madison * Joey
Huchette, MIT « Ole Kroger, Uni Heidelberg + Benoit Legat,
UCLouvain + Miles Lubin, Google * Guillaume Marques, U. de
Bordeaux + Harsha Nagarajan, LANL + Frangois Pacaud,
CERMICS, ENPC + Abel Soares Siqueira, Federal University of
Parana « Julie Sliwak, RTE « Mohamed Tarek, UNSW Canberra
Matthew Wilhelm, U. of Connecticut + UIf Worsge, Mosek

lain Dunning, Miles Lubin
and Joey Huchette

SLOAN SCHOOL

st e

Imeetings/bordeaux2018




%3JUMP Not Just a Modeling Language / Interphase

JUMP domain specific language (DSL)

Solve abstraction layers:
— MathProgBase / MathOptinterface

Solver interfaces

Solvers: Pajarito.jl, Pavito.jl

Extensions: SumOfSquares.jl, PolyJuMP.jl
Now a NumFOCUS Sponsored project!

/. NUMFOCUS

‘ [FISCALLY SPONSORED PROJECT]




Other Related leiil Projects

https://julialang.org/community/ https://juliacbserver.com



Who is using lei.il & %:JUMP ?

... outside of



Technological Solutions for Electrical Markets

Peruvian Energy
Ministry

Joaquim Dias Garcia



Advanced Network Science Initiative

* 34 repositories (https://github.com/lanl-ansi)

— PowerModels.jl

— GraphicalModellLearning.jl
— Juniper.jl (MINLP solver)

— GasGridModels.jl

O

A Bit About LANL
ANSI i
LOVES ansi
JuliaOpt Y )

Carleton Coffrin



Milk Output Optimizer, or MOO

* From hydroelectric power to dairy farms:
—rain, price of (milk/electricity) and substitutes (coal/corn)

O

Oscar Dowson



Optimal Control Using Sum-of-Squares Optimization

ntropicCone.jl

witchOnSafety.jl

umOfSquares.jl
Polyhedra.jl
MultivariatePolynomials.jl

Benoit Legat

Sum-of-Squares Programming in Julia with JuMP
Benoit Legat”, Chris Coey', Robin Deits’, Joey Huchette and Amelia Perry’

* UCLouvain, f MIT
—

Sum-of-Squares (SOS)
Programming

Nonnegative quadratic forms into

sum of squares

unique
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When is nonnegativity equivalent to sum of
squares 7

Determining whether a polynomial is nonnegative is
NP-hard.

Hilbert 1555 Nomnegativity of p(z) of n variables
and degree 2d is equivalent to sum of squares in
the following three cases:

Univariate polynomials

2 Quadratic polynom

, 24 = 4 : Bivariate quartics

otzkin 1967 First explicit example:
st +atel+ 1= 30k 20 Vo

but s not a sum of squares.

Manipulating Polynomials
Two implementations: TypedPolynonials. j1 and
One  common  independent  interface:
MultivariatePolynonials. j1

Gpolyvar y # one variable
@polyvar x[1:2] # tuple/vector

Build a vector of monomials:

o (o}, 2122, 23)

X - monomials(x, 2)
o (@, ayw0, 33, 21,32, 1);

X = monomials(x, 0:2)

Polynomial variables

By hand, with an integer decision variable a and real

decision variable b

Gvariable(model, a, Int)

Gvariable(model, b)

P = anx2 + (arb)xy 2ex + bry’3

From a polynomial basis, e the scaled monomial

basis, with integer decision variables as coefficients:

@variable(nodel,
Poly(ScaledMonomialBasis (X)) ,
Int)

Polynomial constraints

Constrain plr,y) > qlz,y) Va.y such that o >

0,y>0,2+y > 1 using the scaled monomial basis:
S = Oset x >= 0 4k y >

0 kkxtyomt
Gconstraint (model, p >= q, domain = S,
basis = ScaledNonomialBasis)

Interpreted s
@constraint (nodel, p - q in S0SCone(),

domain = S,
basis = ScalediononialBasis)

To use DSOS or SDSOS (Ahmadi, Majumdar 2017):

@constraint (model, p - q in DSOSCone())

@constraint(nodel, p - q in SDSOSCone())
SOS on algebraic domain

The domain 5 is defined by equalities forming an
algebraic variety V and inequalities g;. We search

for Sum-of-Squares polynomials s; such that
plz)—q(x) = sylx) +si(@)qr(z) +--- (mod V)
The Grabner basis of V' is computed the equation
s roduced modulo V.

Dual valu

The dual of the constraint s a positive semidefinite
(PSD) matrix of moments . The extractatoms
function attempts o find an atomic measure with
these moments by solving an algebraic system.

Sum-of-Squares extension

MathOptInterface.jl (MOI)

MOI is an abstraction layer for mathematical op-
timization solvers. A constraint is defined by a
“function” € “set” pair.

MOl extension: ~ AbstractVectorFunction €
SOSCK) (1esp. WSOS(X)): SOS constraint without
(resp.  with) domain equipped with o bridge o
AbstractVectorFunction € PSD (resp. SOS(X)).

JUMP is a domain-specific modeling language for
mathematical optimization. It stores the problem
directly (a cache can optionally be used) in the
solver using MOL

JUMP extension: p(x) > gl) and p(z) € S0SO)
are rewritten into MOI SOS or WSOS constraints,
eg. x4y’ > vy is rewritten into [1,-2,1] €
S08(2% zy.y*). plx) € DSOS() (resp. SDSOS()) is
rewritten into linar (resp. second-order cone) con-

MathOptInterface.jl

Bridging Automatic reformulation of a constraint
info an cquivalent form supported by the solver
.. quadratic constraint into second-order cone
constraint. In particular, reformulates
SOS/WSOS constraints into PSD constraints.
An interior-point solver that natively supports
SOS and WSOS without refo llation to SDP'
using the approach of (Papp, Yldiz 2017) is
under development

1 data in case the

Caching Cache of the probl
solver do not support a modification (can be
disabled). For instance, Mosek provides many
modification capabilities in the AP hut CSDP
only support pre-allocating and then loading the
whole problem at ance.




Trajectory Planning with Collision Avoidance in a Week!

* Motivating: Steering a quadcopter through obstacles [Deits/Tedrake:2015]
= ~2 week of work by Joey Huchette for SIOPT ‘17
* Position described by polynomials:

(px (t) , D’ (t))te 0,1]

e Solution approach:
— split domain into “safe” polyhedrons + discretize time into intervals

27 /37



Disjunctive Polynomial Optimization Formulation

Variables = Polynomials : {pi : [TZ-, TZ-+1] — R2};N:1

min Y 0] MIP
p i=1'""

s.t. p1(0) = Xy, p'(0) = X, p"(0) = X[ Initial/Terminal +
p(D) = Xy, piv(1) = X, (1) = Xj  Conditions

Pi(Tiv1) = Pit1(Tig1) Viedl,...,N =1} |nerstitial

pi(Tiv1) =P (Tig1) Vie{l,...,N —1} Smoothing

i (Tiv1) = P41 (Tipa) Vie{l,...,N -1} Conditions

R
\ _ATBi(t) <) for t € [T, Tia] Wie{l,...,N —1)

Avoid Collision = Remain in Safe Regions

28 /37



78 JUMP




Results for 9 Regions and 8 time steps

First Feasible Solution: Optimal Solution:
58 seconds 651 seconds

30/37



Helicopter Game / Flappy Bird

* 60 horizontal segments, obstacle every 5 = 80 sec. to opt.

31/37



How can we solve MICONV?

Joint work with Russell Bent, Chris Coey, lain Dunning,
Joey Huchette, Lea Kapelevich, Miles Lubin, Emre
Yamangil, ...



Polyhedral Outer-Approximation for MICONV

e Linear MIP and Continuous Convex Optimization Solvers > MICONV Solvers

min  f(x)
s.t.
min f(x) " GXP Linear MIP
s.t. , r, €4 1€1
MICONV — X
x e C
€7 icl min  f(z)

Continuous
’ Convex
\ red Optimization
— 77 - I

(' ={xeR":gj(x) <0,V e[} P ={xeR":g(x)+Vg(x)(x—x)<0,vx eX, je[]}




Improving OA Algorithms for MICONV

Problem Solution

1. May need large # of linear inequalities 1. Use extended formulations

https://rjlipton.wordpress.com

2. MIP formulations can break gradient 2. Use Conic Solver
based continuous solvers

3. How to pick “good” linear inequalities 3. Use Conic Duality



Mixed Integer Conic Programming (MICP)

. [ ]
min  (c,x) : Ck closed convex cones

x€RN — Linear, SOCP, rotated SOCP, SDP

b, — Axx € C, Yk € [M] — Exponential cone, power cone, ...

Xj € Z Vi e [/] — Spectral norm, relative entropy, sum-of-squares, ...

e Fast and stable interior point algorithms for continuous relaxation
 Geometrically intuitive conic duality guides linear inequality selection
e Conic formulation techniques usually lead to extended formulations
— MINLPLIB2 instances unsolved since 2001 solved by re-write to MISOCP
— SOCP disaggregation techniqgue now standard (v., bunning, Huchette, Lubin, 2015)

n
[ylly < yo e Zizlziéyo y? < zi-yo Vi€ [n]



Pajarito: A Julia-based MICP Solver

MI-convex model:
CBF, Convex.jl, CVXPY, JuMP

T

conic interface

MI-conic solver:
Pajarito

/ N

linear /quadratic interface

conic interface (through JuMP)
Continuous solver: MILP solver:
CSDP, ECOS, CBC, CPLEX, GLPK,
MOSEK, SCS, SDPA Gurobi, MOSEK, SCIP

e Early version solved gamsO01, tls5 and tls6 (MINLPLIB2)




Performance for MISOCP Instances (120 from CBLIB)

statuses
solver ok limit error wrong time (s)

o Bonmin-BB 34 44 11 31 463
= Bonmin-OA 25 53 29 13 726
% Bonmin-OA-D 30 48 29 13 610
S

¢ Pajarito-GLPK-ECOS 5 60 3 1 377
° Pajarito-CBC-ECOS 78] 30 3 9 [163
g SCIP (4.0.0) 74 35 8 3 160
£ CPLEX (12.7.0) 90| 16 5 9 50
¢ Pajarito-CPLEX-MOSEK (9.0.0.29-alpha) | 97| 20 2 1 56




Exponential Cone + LP / SOCP / SDP

r| > 3326””3/9”2, x1, Ty > 0.
or
X3 S i) lOg(ZEl/SEQ), Xr1, Ty > 0.

* Discrete experimental design

n
x — logdet (Z xiuiuiT)
i=1

e Portfolio Optimization with entropic risk constraints
e All 333 MICONVs from MINLPLIB2
e Pajarito with SCS or Mosek (version 7.5.2)

https://themosekblog.blogspot.com/2018/05/new-modeling-cookbook.html




Hypatia: Pure Julia-based IPM Beyond “Standard” Cones

e Extension of methods in CVXOPT and Alfonso

— A customizable homogeneous interior-point solver
for nonsymmetric convex

— Skajaa and Ye ‘15, Papp and Yildiz ‘17, Andersen,
Dahl, and Vandenberghe ‘04-18 Chris Coey

e Cones: LP, dual Sum-of-Squares, SOCP, RSOCP,
3-dim exponential cone, PSD, L., n-dim
power cone (using AD), spectral norm, ...

* Potential:

— flexible number types and linear algebra
— BOB: bring your own barrier (in ~50 lines of code)
— Alternative prediction steps (Runge—Kutta)



Early Comparison with Alfonso for LP and SOS

First Hypatia commit : Jul 15

Linear Optimization

Polynomial Envelope

Polynomial
Minimization

\

test
dense Ip
envelope
butcher
caprasse
lotka-volt
motzkin
reac-diff

robinson

iters
65

30
32/30
31/30
31/30
41/42
29/30

29

Matlab

5.8

0.085

0.63

1.38

0.47

0.35

0.32

0.34

Aug 5
75cba5f
4.1
0.043
0.41
1.87
0.38
0.24
0.23

0.23

Aug 19
c9fleb5
2.03
0.020
0.357
1.80
0.37

X

0.19

0.17

Aug 23
133b422
1.25

X

0.136
0.530
0.104
0.054
0.075

0.034



First Batch of Tests on CBLIB Instances

Time s

* |nstances:
— SDP
— SOCP
— RSOCP

1000
100
10

0.1
0.01
0.001

- hypatia_time

o )
o
) ® L4
I ro !

oa®s , LAY

:o’:‘;%'. ‘.! ol0 15 20 25 30 35® 40

- I8 ' ' ]

"g"}'i‘ V‘t o .‘0". . ’ ° ¢

Size

- mosek_time

* Only 2—-10K times slower than Mosek 8!
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Summary

MICONV can model many problems (but not all)
How to solve MICONVs? Don’t, solve MICPs
e Easy access to optimization modeling and solvers with JuMP

e Advanced solver development with Julia
e Disclaimers:
—Julia just reached version 1 ( Yay! )
— ... JUMP is undergoing a major redesign
* Try in Julia 1.0 through “] add JuMP#v0.19-alpha”





