Mixed-integer Convex Representability

Juan Pablo Vielma

Massachusetts Institute of Technology

Joint work with Miles Lubin and Ilias Zadik

INFORMS Annual Meeting, Phoenix, AZ, November, 2018.

Mixed-Integer Convex Optimization (MICONV)

convex f and C.

What Can MICONV Model?

Two sheet hyperbola?

$$\left\{ x \in \mathbb{R}^2 : 1 + x_1^2 \le x_2^2 \right\}$$

Spherical shell?

$$\left\{ x \in \mathbb{R}^2 \, : \, 1 \le \|x\| \le 2 \right\}$$

- Integer points in parabola $\{(x, x^2) : x \in \mathbb{Z}\}$?
- The set of $n \times n$ matrices with rank $\leq k$?
- Set of prime numbers?

MICONV Can Model Any Finite Union of (Closed) Convex Sets

• Let $T_1, ..., T_k$ be closed convex set. A MICONV formulation of $x \in \bigcup_{i=1}^k T_i$:

$$(x^{i}, z_{i}) \in \overline{\text{cone}}(T_{i} \times \{1\}) \qquad \forall i \in \{1, \dots, k\}$$

$$||x^{i}||_{2}^{2} \leq z_{i} t_{i}. \qquad \forall i \in \{1, \dots, k\}$$

$$\sum_{i=1}^{k} x^{i} = x,$$

$$\sum_{i=1}^{k} z_{i} = 1,$$

$$z \in \{0,1\}^{k},$$

$$t \in \mathbb{R}_{+}^{k},$$

$$x^{i} \in \mathbb{R}^{n} \qquad \forall i \in \{1, \dots, k\}$$

What Can MICONV Model?

Two sheet hyperbola?

Simple MICONV Formulation

$$\left\{ x \in \mathbb{R}^2 : 1 + x_1^2 \le x_2^2 \right\}$$

Spherical shell?

$$\left\{ x \in \mathbb{R}^2 \, : \, 1 \le \|x\| \le 2 \right\}$$

- Integer points in parabola $\{(x, x^2) : x \in \mathbb{Z}\}$?
- The set of $n \times n$ matrices with rank $\leq k$?
- Set of prime numbers?

A Simple Obstruction for MICONV Formulations

- S cannot have a MICONV formulation if there exists:
 - There exist infinite $R \subseteq S$ s.t.

$$\frac{u+v}{2} \notin S \quad \forall u, v \in \mathbb{R}, \ u \neq v$$

X Spherical shell $\left\{x \in \mathbb{R}^2 : 1 \leq \|x\| \leq 2\right\}$

What Can MICONV Model?

Two sheet hyperbola?

$$\left\{ x \in \mathbb{R}^2 : 1 + x_1^2 \le x_2^2 \right\}$$

Spherical shell?

$$\left\{ x \in \mathbb{R}^2 \, : \, 1 \le \|x\| \le 2 \right\}$$

- X Integer points in parabola $\{(x, x^2) : x \in \mathbb{Z}\}$?
- X The set of $n \times n$ matrices with rank $\leq k$?
- X Set of prime numbers?

Does have non-convex polynomial MIP formulation

MICONV = <u>Structured</u> *Countably Infinite* Unions of Convex Sets

- Can be "strange" unions, e.g.:
 - Infinite number of shapes

- Can be REALLY strange:
 - Dense discrete set

$$\left\{\sqrt{2}x - \left\lfloor\sqrt{2}x\right\rfloor : x \in \mathbb{N}\right\} \subseteq [0, 1]$$

 $\sqrt{(x_1 - 2z)^2 + x_2^2} \le 1 - 1/z,$

 $z \ge 1, \quad z \in \mathbb{Z}$

$$\|(z_1, z_1)\|_2 \le z_2 + 1, \quad \|(z_2, z_2)\|_2 \le 2z_1, \quad x_1 = y_1 - z_2,$$

 $\|(z_1, z_1)\|_2 \le y_1, \quad \|(y_1, y_1)\|_2 \le 2z_1, \quad z \in \mathbb{Z}^2$

Questions?

A Simple Lemma for non-MICP Representability

• Obstruction for MICP representability of S:

infinite
$$R \subseteq S$$
 s.t. $\frac{u+v}{2} \notin S \quad \forall u, v \in R, u \neq v$

Proof: Assume for contradiction there exists M such that:

$$S = \operatorname{proj}_x \left(M \cap \left(\mathbb{R}^{n+p} \times \mathbb{Z}^d \right) \right)$$

$$z_u \equiv z_v \pmod{2}$$
 component-wise $\Rightarrow \frac{z_u + z_v}{2} \in \mathbb{Z}^d$

component-wise parity classes
$$= 2^d < |R| = \infty$$
 $\Rightarrow \Leftarrow$

MICONV = **Structured** *Countably Infinite* Unions of Convex Sets

$$\sqrt{(x_1 - 2z)^2 + x_2^2} \le 1 - 1/z,$$

 $z > 1, \quad z \in \mathbb{Z}$

- Can be "strange" unions, e.g.:
 - Infinite number of shapes

- There exist an increasing function h such that:

 - $-P_z \subseteq \mathbb{R}^2 \text{ regular } h(z)\text{-gon}$ $-S = \bigcup_{z=1}^{\infty} P_z \text{ has MICONV formulation}$
- Equal volume ⇒ Finite # of Shapes

Sets with MICONV Formulations can be REALLY "Strange"

• Dense discrete set $\left\{\sqrt{2}x - \left\lfloor\sqrt{2}x\right\rfloor \,:\, x\in\mathbb{N}\right\}\subseteq [0,1]$

$$\|(z_1, z_1)\|_2 \le z_2 + 1, \quad \|(z_2, z_2)\|_2 \le 2z_1, \quad x_1 = y_1 - z_2,$$

 $\|(z_1, z_1)\|_2 \le y_1, \quad \|(y_1, y_1)\|_2 \le 2z_1, \quad z \in \mathbb{Z}^2$

• Non-Periodic Set of naturals $\left\{x \in \mathbb{N} \,:\, \sqrt{2}x - \left\lfloor\sqrt{2}x\right\rfloor \notin \left(\varepsilon, 1 - \sqrt{2}\varepsilon\right)\right\}$

$$\|(x_1, x_1)\|_2 \le x_2 + \varepsilon,$$

 $\|(x_2, x_2)\|_2 \le 2x_1 + 2\varepsilon, \quad x \in \mathbb{Z}_+^2$

"God made the integers, all else is the work of man"

- Leopold Kronecker

