The Geometry of Nonlinear Mixed Integer Programming Formulations

Juan Pablo Vielma

Massachusetts Institute of Technology

Joint work with Miles Lubin and Ilias Zadik

ORIE Colloquium, Cornell University
Ithaca, NY. November, 2017.

Supported by NSF grant CMMI-1351619

Mixed Integer Convex Optimization (MICP)

$\min \quad f(x)$
s.t.
$x \in C$

$$
x_{i} \in \mathbb{Z} \quad i \in I
$$

Convex f and C.

- Examples:
- MI-Second Order Cone Programming (MISOCP)
- MI-Semidefinite Programming (MISDP)

Standing On The Shoulders of Gigants

CMS Books in Mathematics
Jonathan M. Borwein • Adrian S. Lewis
Convex Analysis and Nonlinear Optimization
Theory and Examples

Second Edition

Canadian Mathematical Society Société mathématique du Canada

INTEGER PROGRAMMING
Robert S,Garfinkel and George L.Nemhauser
A Volume in the Wiley Series on Decision and Control, edited by Ronald
A. Howard A. Howard

MI-SOCP Solvers and Applications

- Effective and improving solvers:

GUROBI
 OPTIMIZATION

- Gurobi v6.0 (2014) - v6.5 (2015) MISOCP: 4.43 x (V., Dunning, Huchette, Lubin, 2017)
- Applications:
- Portfolio optimization, pricing, regression, experimental design, etc.

http://www.gurobi.com/company/example-customers

MI-SDP (\& other cones) Solvers and Applications

- Emerging Solvers:

SCIP 1

- Applications:
- Collision avoidance with mixed integer sum-of-squares for optimal control of polynomial trajectories

Outline

- General Mixed Integer Convex Representability
- What can be modeled with MICP ?
- Joint work with Miles Lubin and Ilias Zadik
- 0-1 Mixed Integer Convex Representability
- Unions of Convex Sets
- Small and Strong Formulations

MICP Formulations and Representability

- A set $S \subseteq \mathbb{R}^{n}$ is MICP representable (MICPR) if it has an MICP formulation:
- A closed convex set $M \subseteq \mathbb{R}^{n+p+d}$
- auxiliary continuous variables $y \in \mathbb{R}^{p}$
- auxiliary integer variables $z \in \mathbb{Z}^{d}$

$$
\begin{aligned}
x \in S \quad \Leftrightarrow \quad \exists(y, z) & \in \mathbb{R}^{p} \times \mathbb{Z}^{d} \text { s.t. } \\
(x, y, z) & \in M
\end{aligned}
$$

or equivalently

$$
S=\operatorname{proj}_{x}\left(M \cap\left(\mathbb{R}^{n+p} \times \mathbb{Z}^{d}\right)\right)
$$

What Sets are MICP Representable (MICPR) ?

Two sheet hyperbola?

$\left\{x \in \mathbb{R}^{2}: 1+x_{1}^{2} \leq x_{2}^{2}\right\}$

Spherical shell?

$$
\left\{x \in \mathbb{R}^{2}: 1 \leq\|x\| \leq 2\right\}
$$

- Discrete subsets of the real line or natural numbers:
- Dense discrete set? $\{\sqrt{2} x-\lfloor\sqrt{2} x \mid: x \in \mathbb{N}\} \subseteq[0,1]$
- Set of prime numbers?

A Simple Lemma for non-MICP Representability

- Obstruction for MICP representability of S :
infinite $R \subseteq S \quad$ s.t. $\quad \frac{u+v}{2} \notin S \quad \forall u, v \in R, u \neq v$
Proof: Assume for contradiction there exists M such that:

$$
\begin{gathered}
S=\operatorname{proj}_{x}\left(M \cap\left(\mathbb{R}^{n+p} \times \mathbb{Z}^{d}\right)\right) \\
\left(u, y_{u}, z_{u}\right) \in M \Rightarrow \frac{z_{u}+z_{v}}{2} \notin \mathbb{Z}^{d} \\
\left(v, y_{v}, z_{v}\right) \in M \\
z_{u} \equiv z_{v}(\bmod 2) \text { component-wise } \Rightarrow \frac{z_{u}+z_{v}}{2} \in \mathbb{Z}^{d}
\end{gathered}
$$

component-wise parity classes $=2^{d}<|R|=\infty$

Examples of non-MICPR Sets From Lemma

\boldsymbol{X} Spherical shell $\left\{x \in \mathbb{R}^{2}: 1 \leq\|x\| \leq 2\right\}$
X Set of prime numbers

- However prime numbers has a non-convex polynomial integer programming formulation
X Set of Matrices of rank at most k
X Piecewise linear interpolation of x^{2} at all integers

MICPR = Convex Sets Indexed by Integers in Convex

I convex and $B_{z}: \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{n+p}$ closed and convex:

- $\left(w_{m} \in B_{z_{m}}, \quad\left(w_{m}, z_{m}\right) \underset{m}{\longrightarrow}(w, z)\right) \Rightarrow w \in B_{z}$
- $\lambda B_{z}+(1-\lambda) B_{z^{\prime}} \subseteq B_{\lambda z+(1-\lambda) z^{\prime}}$

MI-Linear Programming: Rational Polyhedral M

$$
S=\bigcup_{z \in I \cap \mathbb{Z}^{d}} \operatorname{proj}_{x}\left(B_{z}\right)=\bigcup_{z \in I \cap \mathbb{Z}^{d}} P_{z}
$$

- $P_{z}=$ rational polyhedra with the same recession cone
- Representation simplifies to (Jeroslow and Lowe '84): $-S=\bigcup_{i=1}^{k} P_{i}+\left\{\sum_{i=1}^{t} \lambda_{i} r^{i}: \lambda \in \mathbb{Z}_{+}^{t}\right\}$
$-P_{i}=$ rational polytopes
- Very regular infinite union
- Bounded or 0-1 MILPR / MICPR = Bounded $I=$ Finite union - MILPR: of polyhedra with the same recession cone
- MICPR: of non-polyhedral convex sets ...

Extra from MICP 1: Non-Polyhedral Unions

$$
S=\bigcup_{z \in I \cap \mathbb{Z}^{d}} \operatorname{proj}_{x}\left(B_{z}\right)
$$

1.Unions of Non-Polyhedral sets

Plus Projection:
2.Unions of non-closed sets
3.Unions of convex sets with

Two sheet hyperbola?

 different recession cones

$$
B_{z}=\left\{(x, y) \in \mathbb{R}^{n+1}: x \in C_{z}, \quad\|x\|_{2}^{2} \leq y\right\}
$$

Extra from MICP 2: Non-Polyhedral Index Set

$S=\bigcup \operatorname{proj}_{x}\left(B_{z}\right)$
 $z \in I \cap \mathbb{Z}^{d}$

 "God made the integers, all else is the work of man"
 - Leopold Kronecker

- Integers + non-rational unbounded ray = Trouble !
$\sqrt{ }$ Dense discrete set $\{\sqrt{2} x-\lfloor\sqrt{2} x\rfloor: x \in \mathbb{N}\} \subseteq[0,1]$

$$
\begin{array}{ll}
\left\|\left(z_{1}, z_{1}\right)\right\|_{2} \leq z_{2}+1, & \left\|\left(z_{2}, z_{2}\right)\right\|_{2} \leq 2 z_{1}, \\
\left\|\left(z_{1}, z_{1}\right)\right\|_{2} \leq z_{2}, \\
y_{1}, & \left\|\left(y_{1}, y_{1}\right)\right\|_{2} \leq 2 z_{1}, \\
z \in \mathbb{Z}^{2}
\end{array}
$$

One (Somewhat Extreme) Way to Add Regularity

$$
S=\operatorname{proj}_{x}\left(M \cap\left(\mathbb{R}^{n+p} \times \mathbb{Z}^{d}\right)\right), \quad I=\operatorname{proj}_{z}(M)
$$

- $M=B+K$:
- B compact convex set
- K rational polyhedral cone
- Then
$-S=\bigcup_{i=1}^{k} C_{i}+\left\{\sum_{i=1}^{t} \lambda_{i} r^{i}: \lambda \in \mathbb{Z}_{+}^{t}\right\}$
$-C_{i}=$ compact convex sets
- Less extreme, but still well behaved "Rational MICPR":
- Any rational affine mapping of index set I Is bounded, or has a rational recession direction

Bounded or 0-1 MICP Formulations for Unions of Convex Sets

A Classical Strong Formulation for

$$
C_{i}=\left\{x \in \mathbb{R}^{n}: A^{i} x \preceq_{i} b^{i}\right\}, \quad C_{i}^{\infty}=C_{j}^{\infty}
$$

$$
A^{i} x^{i} \preceq_{i} b^{i} z_{i}, \quad \forall i \in[k] \text { • Auxiliary continuous variables }
$$ are copies of original variables

$$
\sum_{i=1}^{k} x^{i}=x
$$

$$
-y=\left(x^{i}\right)_{i=1}^{k}
$$

- "Ideal" Formulation Strength:
- Extreme points of continuous relaxation satisfy integrality constraints on z
- Variable copies crucial here, but slow down computations (usually worse than Big-M)
- Balas, Jeroslow and Lowe (Polyhedral), Ben-tal, Nemirovski, Helton, Nie (Conic)

Generic Geometric Formulation = Gauge Functions

- For C such that $\mathbf{0} \in \operatorname{int}(C)$ let:

$$
\begin{aligned}
\gamma_{C}(x) & :=\inf \{\lambda>0: x \in \lambda C\} \\
\operatorname{epi}\left(\gamma_{C}\right) & =\operatorname{cone}(C \times\{1\})
\end{aligned}
$$

- If $b^{i} \in C_{i}$ then ideal formulation:

$$
\begin{array}{rlrl}
\gamma_{C^{i}-\left\{b^{i}\right\}}\left(x^{i}-z_{i} b^{i}\right) & \leq z_{i} \quad \forall i \in[k] \\
\sum_{i=1}^{k} x^{i} & =x & \\
\sum_{i=1}^{k} z_{i} & =1 & \\
z & \in\{0,1\}^{k} & \\
x, x^{i} & \in \mathbb{R}^{n} \quad \forall i \in[k]
\end{array}
$$

Simple Ideal Formulation without Variable Copies

- Unions of (nearly) Homothetic Closed Convex Sets (V. 17):

$$
C_{i}=\lambda_{i} C+b^{i}+C^{\infty}
$$

$$
\begin{gathered}
C_{1} \\
\gamma_{C}\left(x-\sum_{i=1}^{n} z_{i} b^{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} z_{i} \\
\sum_{i=1}^{n} z_{i}=1, z \in\{0,1\}^{n}
\end{gathered}
$$

\approx to polyhedral results from Balas ' 85 , Jeroslow ' 88 and Blair ‘ 90

Embedding Formulation Construction

I convex and $B_{z}: \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{n+p}$ closed and convex:
$C_{z}^{\infty}=C_{z^{\prime}}^{\infty} \cdot\left(w_{m} \in B_{z_{m}},\left(w_{m}, z_{m}\right){ }_{m}(\omega, z)\right) \Longrightarrow B_{z}$
$I \cap \mathbb{Z}^{d} \subseteq\{0,1\}^{d} \cdot \lambda B_{z}+(1 \quad \lambda) B_{z^{\prime}} \subseteq B_{\lambda z+(1-\lambda) z^{d}}$

Embedding Formulation = Automatically Ideal

$$
\operatorname{conv}\left(\bigcup_{i=1}^{k} P^{i} \times\left\{h^{i}\right\}\right)
$$

- Originally for Polyhedra (V. '17)
- Small size with careful choice of encoding $\left\{h^{i}\right\}_{i=1}^{k} \subseteq\{0,1\}^{d}$
- Extensions to general integers, practical construction techniques, computations, applications and software tools:
- Huchette and V. '17a,b,c; Huchette, Dey and V. '17

Focus for Non-Polyhedral Embedding Formulations

- Unary encoding: $\left\{h^{i}\right\}_{i=1}^{k}=\left\{e^{i}\right\}_{i=1}^{k} \subseteq\{0,1\}^{k}$
- Related to Cayley Embedding for Minkoski sums
- Homothetic formulation

$$
\begin{aligned}
\gamma_{C}\left(x-\sum_{i=1}^{n} z_{i} b^{i}\right) & \leq \sum_{i=1}^{n} \lambda_{i} z_{i} \\
\sum_{i=1}^{n} z_{i} & =1, z \in\{0,1\}^{n}
\end{aligned}
$$

- How to write convex hull:

Sticking Homothetic Formulations Together

Valid, but not ideal!

Combine 4
homothetic
formulations

Right relaxations yield ideal formulation

Sufficient Conditions For Ideal Formulation

$$
\begin{gathered}
\sigma_{S}(u):=\sup \{u \cdot x: x \in S\} \\
\\
C_{1}^{j} \\
= \\
\forall u \in \mathbb{R}^{n} \quad \exists j \\
\text { s.t. }
\end{gathered}
$$

$$
\sigma_{C_{i}}(u)=\sigma_{C_{i}^{j}}(u)
$$

$$
C_{2}^{j}
$$

$$
\forall i \in\{1,2\}
$$

May Need to "Find" Homothetic Constraints

$$
\begin{array}{ll}
C_{1} & x_{1}^{2} \leq x_{2} \leq 1 \\
C_{2} & {[-1,1] \times 0}
\end{array}
$$

$$
C_{1}+\left(\mathbb{R}_{+} \times\{0\}\right):
$$

$$
\left(\max \left\{x_{1}, 0\right\}\right)^{2} \leq x_{2} \leq 1
$$

$\left(\max \left\{x_{1}, 0\right\}\right)^{2} \leq x_{2} \leq 1$
Similar to Bestuzheva et al.
' 16 who divide sets in two.

$$
C_{i}+\left(\mathbb{R}_{+} \times\{0\}\right)
$$

$$
C_{i}+\left(\mathbb{R}_{-} \times\{0\}\right)
$$

Algebraic Representation Issues

C_{1}	$x_{1}^{2} \leq x_{2} \leq 1$
C_{2}	$[-1,1] \times 0$

$$
C_{i}+\left(\mathbb{R}_{+} \times\{0\}\right)
$$

$C_{1}+\left(\mathbb{R}_{+} \times\{0\}\right):\left(\max \left\{x_{1}, 0\right\}\right)^{2} \leq x_{2} \leq 1$

- Non-basic semi-algebraic set contained in formulation.
- Finite polynomial inequalities requires max or auxiliary vars.

Summary

- General mixed integer convex representability (MICPR): - Infinite union of convex sets with specialc structure - More results/questions on regularity (arXiv:1706.05135)
- Bounded MICPR = Finite unions of Convex Sets
- Variable copies = strong (ideal), but slow computation
- Copies can be removed, but possibly at a prize
- More on the paper (arXiv:1704.03954):
- MIP-solver compatible formulations = gauge calculus.
- More examples: generalizations and size reductions
- Conditions for piecewise formulations to be ideal

