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Mixed	Integer	Convex Optimization	(MICP)

min f(x)

s.t.

x 2 C

xi 2 Z i 2 I

Convex f and C.

• Examples:
–MI-Second	Order	Cone	Programming	(MISOCP)
–MI-Semidefinite	Programming	(MISDP)
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Standing	On	The	Shoulders	of	Gigants
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MI-SOCP	Solvers	and	Applications

• Effective	and	improving	solvers:

– Gurobi v6.0	(2014)	– v6.5	(2015)	MISOCP:	4.43	x																					
(V.,	Dunning,	Huchette,	Lubin,	2017)

• Applications:

– Portfolio	optimization,	
pricing,	regression,	
experimental	design,	etc.	

CPLEX
Gurobi 7.0 Performance Benchmarks

CPLEX

http://www.gurobi.com/company/example-customers
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MI-SDP	(&	other	cones)	Solvers	and	Applications

• Emerging	Solvers:

• Applications:
– Collision	avoidance	with	mixed	integer	sum-of-squares	for	
optimal	control	of	polynomial	trajectories

SCIP
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Outline

• General	Mixed	Integer	Convex	Representability
–What	can	be	modeled	with	MICP	?
– Joint	work	with	Miles	Lubin and	Ilias Zadik

• 0-1	Mixed	Integer	Convex	Representability
– Unions	of	Convex	Sets
– Small	and	Strong	Formulations	
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MICP	Formulations	and	Representability

• A	set																is	MICP	representable	(MICPR)	if	it	has	
an	 :
– A	closed	convex	set
– auxiliary	continuous	variables
– auxiliary	integer	variables	

S ✓ Rn

M ✓ Rn+p+d

z 2 Zd

or	equivalently

S = proj

x

�
M \

�
Rn+p ⇥ Zd

��

y 2 Rp

x 2 S ,
9(y, z) 2 Rp ⇥ Zd s.t.

(x, y, z) 2 M
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What	Sets	are	MICP	Representable	(MICPR)	?

�
x 2 R2 : 1  kxk  2

 �
x 2 R2 : 1 + x

2
1  x

2
2

 

Spherical	shell?Two	sheet	hyperbola?

np
2x�

jp
2x

k

: x 2 N
o

✓ [0, 1]

• Discrete	subsets	of	the	real	line	or	natural	numbers:

– Dense	discrete	set?

– Set	of	prime	numbers?
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A	Simple	Lemma	for	non-MICP	Representability

• Obstruction	for	MICP	representability	of	S :	

(u, yu, zu) 2 M

(v, yv, zv) 2 M

zu + zv
2

/2 Zd)

zu ⌘ zv (mod 2) component-wise ) zu + zv
2

2 Zd

infinite R ✓ S s.t.
u+ v

2
/2 S 8u, v 2 R, u 6= v

component-wise parity classes = 2

d < |R| = 1 )|(

S = proj

x

�
M \

�
Rn+p ⇥ Zd

��
Proof:	Assume	for	contradiction	there	exists	M such	that:
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Examples	of	non-MICPR	Sets	From	Lemma

✗ Spherical	shell

✗ Set	of	prime	numbers

• However	prime	numbers	has	a	
non-convex	polynomial	integer
programming	formulation

✗ Set	of	Matrices	of	rank	at	most	k

✗ Piecewise	linear	interpolation	of	x2

at	all	integers	

�
x 2 R2 : 1  kxk  2

 
R

6 Lubin, Zadik, and Vielma

· ·
·· · ·

· · ·

· · ·

Fig. 1. From left to right, the annulus and the piece-wise linear function connecting
the integer points on the parabola are not mixed-integer convex representable. The
mixed-integer hyperbola and the collection of balls with increasing and concave radius
are mixed-integer convex representable.

have the same parity if ↵
i

and �
i

are both even or odd for each component
i = 1, . . . , d. Trivially, if ↵ and � have the same parity, then ↵+�

2 2 Zd. Given
that we can categorize any integer vector according to the 2d possible choices for
whether its components are even or odd, and we notice that from any infinite
collection of integer vectors we must have at least one pair that has the same
parity. Therefore since |R| = 1 we can find a pair x, x0 2 R such that their
associated integer points z

x

, z
x

0 have the same parity and thus satisfy (5). ut

Proposition 3. Fix n,m 2 N with m,n � 2. The set of matrices of dimension

m ⇥ n with rank at most 1, i.e., C1 := {X 2 Rm⇥n : rank(X)  1} is strongly

nonconvex and therefore not MICP representable.

Proof. We can assumem = 2. We set for all k 2 N the matrixA
k

=



1 k O1⇥n�2

k k2 O1⇥n�2

�

2

C1. We then set R = {A
k

|k 2 N}. Clearly |R| = 1. It is easy to verify that
rank( 12 (Ak

+A
k

0)) = 2 for k 6= k0. Therefore for any pair of distinct points in R,
their midpoint is not in C1. Therefore C1 is strongly nonconvex and in particular
not MICP representable.

One may use the midpoint lemma to verify that the epigraph of a twice di↵er-
entiable function is MICP representable if and only if the function is convex and
that the graph of a twice di↵erentiable function is MICP representable if and only
if f is linear. In Figure 1, we illustrate two more sets whose nonrepresentability
follows directly from the midpoint lemma: the annulus and the piecewise linear
function connecting the points {(x, y) 2 Z2 : y = x2}.

5 MICP representability of subsets of natural numbers

Recall that we define N = {0, 1, 2, . . .} to be the set of natural numbers. In this
section we investigate the limitations of MICP for representing subsets of the
natural numbers. We remind the reader that in the MILP case, it is known that a
subset of the natural numbers is rational-MILP (the coe�cients of the continuous
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MICPR	=	Convex	Sets	Indexed by	Integers	in	Convex

1

2

3

0

z

•

•

,

w = (x, y)

closed convex M
S = proj

x

�
M \

�
Rn+p ⇥ Zd

��

S =

[

z2I\Zd

proj

x

(B
z

)

I convex and Bz : Rd ◆ Rn+p
closed and convex:

�Bz + (1� �)Bz0 ✓ B�z+(1��)z0

⇣
wm 2 Bzm , (wm, zm) �!

m
(w, z)

⌘
) w 2 Bz
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MI-Linear	Programming:	Rational	Polyhedral	M 

• Pz =	rational	polyhedra with	the	same	recession	cone
• Representation	simplifies	to	(Jeroslow and	Lowe	’84):

–

– Pi =	rational	polytopes	
– Very	regular	infinite	union	

• Bounded	or	0-1	MILPR	/	MICPR =	Bounded	I =	Finite	union
–MILPR:	of	polyhedra with	the	same	recession	cone
–MICPR:	of	non-polyhedral	convex	sets	…

S =

[
z2I\Zd

proj

x

(B
z

) =

[
z2I\Zd

P
z

S =
[k

i=1
Pi +

n

Xt

i=1
�ir

i : � 2 Zt
+

o
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Extra	from	MICP	1:	Non-Polyhedral	Unions

1.Unions	of	Non-Polyhedral	sets

Plus	Projection:

2.Unions	of	non-closed	sets
3.Unions	of	convex	sets	with	
different	recession	cones

�
x 2 R2 : 1 + x

2
1  x

2
2

 

Two	sheet	hyperbola?

✓

S =

[

z2I\Zd

proj

x

(B
z

)

Bz =
n

(x, y) 2 Rn+1 : x 2 Cz, kxk22  y

o
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Extra	from	MICP	2:	Non-Polyhedral	Index	Set

• Integers	+	non-rational	unbounded	ray =	Trouble	!
Dense	discrete	set	

np
2x�

jp
2x

k

: x 2 N
o

✓ [0, 1]

"God	made	the	
integers,	all	else	is	
the	work	of	man”	
- Leopold	Kronecker

S =

[

z2I\Zd

proj

x

(B
z

)

k(z1, z1)k2  z2 + 1, k(z2, z2)k2  2z1, x1 = y2 � z2,

k(z1, z1)k2  y1, k(y1, y1)k2  2z1, z 2 Z2

✓
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One	(Somewhat	Extreme)	Way	to	Add	Regularity

• M = B + K :
– B compact	convex	set
– K rational	polyhedral	cone

• Then
–

– Ci =	compact	convex	sets
• Less	extreme,	but	still	well	behaved	“RationalMICPR”:	
– Any	rational affine	mapping	of	index	set	I Is	bounded,	
or	has	a	rational recession	direction

S =
[k

i=1
Ci +

n

Xt

i=1
�ir

i : � 2 Zt
+

o

S = proj

x

�
M \

�
Rn+p ⇥ Zd

��
, I = proj

z

(M)
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Bounded	or	0-1	MICP	Formulations	
for	Unions	of	Convex	Sets



• Auxiliary	continuous	variables	
are	copies	of	original	variables

–

• “Ideal” Formulation	Strength:
– Extreme	points	of	continuous	
relaxation	satisfy	integrality	
constraints	on	z

– Variable	copies	crucial	here,	
but	slow	down	computations	
(usually	worse	than	Big-M)

A	Classical	Strong	Formulation	for
[k

i=1
Ci

Ci =
�
x 2 Rn : Ai

x �i b
i
 
, C

1
i = C

1
j

y =
�
x

i
�k
i=1

• Balas,	Jeroslow and	Lowe	(Polyhedral),	Ben-tal,	Nemirovski,	Helton,	Nie (Conic) 16 /	26

A

i
x

i �i b
i
zi, 8i 2 [k]

kX

i=1

x

i = x,

kX

i=1

zi = 1, z 2 {0, 1}k

x, x

i 2 Rn
, 8i 2 [k]



Generic	Geometric	Formulation	=	Gauge	Functions	

• For						such	that																				let:

• If																				then	ideal	formulation:bi 2 Ci

�Ci�{bi}
�
x

i � zib
i
�
 zi 8i 2 [k]

Xk

i=1
x

i = x

Xk

i=1
zi = 1

z2 {0, 1}k

x, x

i 2 Rn 8i 2 [k] 17 /	26



Simple	Ideal	Formulation	without	Variable	Copies

• Unions	of	(nearly)	Homothetic	Closed	Convex	Sets	(V.	17):																																							

≈	to	polyhedral	results	from		Balas ‘85,	Jeroslow ’88	and	Blair	‘90

C1 C2

�C

⇣
x�

Xn

i=1
zib

i
⌘


Xn

i=1
�izi

Xn

i=1
zi = 1, z 2 {0, 1}n

Ci = �iC + bi + C1
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Embedding	Formulation	Construction	

1

2

3

0

z

•

•

w = (x, y)

S =

[

z2I\Zd

proj

x

(B
z

)

I convex and Bz : Rd ◆ Rn+p
closed and convex:

�Bz + (1� �)Bz0 ✓ B�z+(1��)z0

(wm 2 Bzm , (wm, zm) �!
m

(w, z)) ) w 2 Bz

M = conv

0

@
[

z2I\Zd

Bz ⇥ {z}

1

A

Cz

I \ Zd ✓ {0, 1}d
C1

z = C1
z0

conv

Cz
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Embedding	Formulation	=	Automatically	Ideal

• Originally	for	Polyhedra (V.	’17)
– Small	size	with	careful	choice	of	encoding

• Extensions	to	general	integers,	practical	
construction	techniques,	computations,	
applications	and	software	tools:
– Huchette and	V.	‘17a,b,c;	Huchette,	Dey and	V.	‘17	

��

��

��

��

conv

✓[k

i=1
P i ⇥

�
hi
 ◆

z1
P 1

P 2

�
hi
 k

i=1
✓ {0, 1}d
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Focus	for	Non-Polyhedral	Embedding	Formulations

• Unary	encoding:

– Related	to	Cayley	Embedding	for	Minkoski sums

– Homothetic	formulation

• How	to	write	convex	hull:

�C

⇣
x�

Xn

i=1
zib

i
⌘


Xn

i=1
�izi

Xn

i=1
zi = 1, z 2 {0, 1}n

�
hi
 k

i=1
=
�
ei
 k

i=1
✓ {0, 1}k

C1 C2
z1
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Sticking	Homothetic	Formulations	Together

C1

C2

Combine	4	
homothetic	
formulations

Valid,	but	not	ideal!

Right	relaxations yield	
ideal	formulation
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Sufficient	Conditions	For	Ideal	Formulation

C1

C2

Cj
1

Cj
2

s.t.

8i 2 {1, 2}

8u 2 Rn 9j

�S(u) := sup{u · x : x 2 S}

�Ci(u) = �Cj
i
(u)
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May	Need	to	“Find”	Homothetic	Constraints

x

2
1  x2  1

[�1, 1]⇥ 0

C1

C2

Ci + (R� ⇥ {0})

Ci + (R+ ⇥ {0})

C1 + (R+ ⇥ {0}) :

(max{x1, 0})2  x2  1

Similar	to	Bestuzheva et	al.	
‘16	who	divide	sets	in	two.
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Algebraic	Representation	Issues

x

2
1  x2  1

[�1, 1]⇥ 0

C1

C2

Ci + (R+ ⇥ {0})

C1 + (R+ ⇥ {0}) :
(max{x1, 0})2  x2  1

20 Juan Pablo Vielma

This set is depicted in Figure 3 in gray where we can confirm that it is semi-
algebraic (it is the convex hull of portions of two parabolas). However, we can
check that the Zariski closure of its boundary (smallest algebraic variety that
contains this boundary) is given by

Z :=

(

x 2 R2 :

✓✓

x
1

� 1

2

◆

2

� x
2

2

◆✓✓

x
1

+
1

2

◆

2

� x
2

2

◆✓

x
2

� 1

2

◆

x
2

= 0

)

and depicted in black in Figure 3. We can also check that Z \ int (M) 6= ;,
which is a known impediment for a set to be basic semi-algebraic [1,6]. ut

-1 0 1

0

1
2

Fig. 3 Set M from Example 9 and its Zariski closure.

Note that for the sets in Examples 1–3 and in Example 5 the description
of the Minkoswki sum from Lemma 4 does not require the operation (·)+
and Q (C) is basic semi-algebraic. In contrast, the operation is required for
Example 6 and Q (C) is not basic semi-algebraic. This shows that operation
(·)+ can a↵ect the properties of Q (C) and that this is strongly tied to the
Minkoswki sum operation. In fact, using Proposition 6 below, Example 9 yields
C1 := [�1, 1]⇥ {0} and C2 :=

�

x 2 [�1, 1]⇥ [0, 1] : x2

1

 x
2

 

as examples of
basic semi-algebraic sets whose Mikowski sum is not basic semi-algebraic.

6 Necessary and Su�cient Conditions for Piecewise Formulations

Example 5 shows how condition (13b) of Proposition 5 may not be necessary
to obtain an ideal formulation. We now give necessary and su�cient strength
conditions through a variant of (13a) that guarantees formulation validity.

Definition 6 Let C :=
�

Ci
 k

i=1

2 Cn and Cj :=
�

Cj,i
 k

i=1

2 Cn for j 2 JmK
be such that Ci =

Tm
j=1

Cj,i for all i 2 JkK so that a valid formulation of

x 2
Sk

i=1

Ci is given by

(x, y) 2 Q
�

Cj
�

8j 2 JmK ,
Xk

i=1

yi, y 2 {0, 1}k . (27)

• Non-basic semi-algebraic	set	
contained	in	formulation.

• Finite	polynomial	inequalities	
requires	max	or	auxiliary	vars.
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Summary

• General	mixed	integer	convex	representability	(MICPR):
– Infinite	union	of	convex	sets	with	specialc structure
–More	results/questions	on	regularity	(arXiv:1706.05135)
• Bounded	MICPR	=	Finite	unions	of	Convex	Sets
–Variable	copies	=	strong	(ideal),	but	slow	computation
–Copies	can	be	removed,	but	possibly	at	a	prize
–More	on	the	paper	(arXiv:1704.03954):
• MIP-solver	compatible	formulations	=	gauge	calculus.
• More	examples:	generalizations	and	size	reductions
• Conditions	for	piecewise	formulations	to	be	ideal
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