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Mixed Integer Convex Optimization (MICP)

min f(x)
S.t.
x e’
x, €4 1€l
Convex f and C.

* Examples:
— MI-Second Order Cone Programming (MISOCP)
— MI-Semidefinite Programming (MISDP)
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MI-SOCP Solvers and Applications

* Effective and improving solvers:

GUROBI

OPTIMIZATION

— Gurobi v6.0 (2014) — v6.5 (2015) MISOCP: 4.43 x
(V., Dunning, Huchette, Lubin, 2017)

oAp

olications:

Portfolio optimization,
oricing, regression,
experimental design, etc.

f SCHNEIDER
Mx F——— "\ T54/STiCS ] P
" ORACLE g"' atat
W TransUnion ISO

= U'S AIRWAYS Corianty

P
2 Google fl o7 @
: ADE o Narriott  Ferrari
:.';::-:-:[LEANLOGBTICS Mi it SIEMENS
niclsen @y prudential @-":‘i—«""‘ﬂ’fwi’i‘!/

NETELIX DL 01 AIBB bhpbil.:it‘o‘n/
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MI-SDP (& other cones) Solvers and Applications

* Emerging Solvers:

>

| PalcikiTe O PN tulis
SCIP A e O JuMP <> julia
G

Cbey, Bent, Lubin, V. and Yamangil ‘16
* Applications:

— Collision avoidance with mixed integer sum-of-squares for
optimal control of polynomial trajectories
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Outline

* General Mixed Integer Convex Representability
— What can be modeled with MICP ?
— Joint work with Miles Lubin and llias Zadik

* 0-1 Mixed Integer Convex Representability
— Unions of Convex Sets
— Small and Strong Formulations
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MICP Formulations and Representability

e Aset S CR"is MICP representable (MICPR) if it has
an MICP formulation:

— A closed convex set M C R™tpt+d
— auxiliary continuous variables y € RP
— auxiliary integer variables z € Z¢

(1, 2) € R” x 7% s.t.

resS <
(z,y,2) € M

or equivalently

S = proj, (M N (R"" x Zd))
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What Sets are MICP Representable (MICPR) ?

Two sheet hyperbola? Spherical shell?
[z eR? : 1+a7 <ux3} [reR? : 1< ||z) <2}

e Discrete subsets of the real line or natural numbers:
— Dense discrete set? {\/ia; — {ﬂxJ LT E N} C [0,1]

— Set of prime numbers?
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A Simple Lemma for non-MICP Representability

* Obstruction for MICP representability of S :

u—2|—fu¢s Yu,v € R, u # v

Proof: Assume for contradiction there exists M such that:

S = proj, (M N (R"P x Zd))

infinite £ C S  s.t.

(U,yu,Zu) cM = 2y, T 2y g Zd
(v, Yo, 20) € M 2

, Zy T2
7, = 7, (mod 2) component-wise = — 5 L ezl

component-wise parity classes = 2¢ < |R| = oo =k=
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Examples of non-MICPR Sets From Lemma

X Spherical shell {z R : 1< [|z|| < 2}

X Set of prime numbers

* However prime numbers has a
non-convex polynomial integer
programming formulation

X Set of Matrices of rank at most &

X Piecewise linear interpolation of x?
at all integers
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MICPR = Convex Sets Indexed by Integers in Convex

-
closed convex M

I convex and B. : RY = R™P closed and convex:
. (wm ceB, ., (Wn,z2m) — (w,z)) = w € B,
* AB, + (1 o )\)le C B>\Z—|—(1—>\)Z’
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MI-Linear Programming: Rational Polyhedral M

S = Uzemzd proj, (B:) = UzEIﬂZd PZ

* P_=rational polyhedra with the same recession cone

* Representation simplifies to (Jeroslow and Lowe '84):

- 5 = Uf:1 P, + {Z:Zl )\7;7“7; : )\ E Zfl—}

— P, = rational polytopes
— Very regular infinite union
* Bounded or 0-1 MILPR / MICPR = Bounded / = Finite union
— MILPR: of polyhedra with the same recession cone
— MICPR: of non-polyhedral convex sets ...
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Extra from MICP 1: Non-Polyhedral Unions

1.Unions of Non-Polyhedral sets

Plus Projection:

2.Unions of non-closed sets

3.Unions of convex sets with
different recession cones

B.o={@)eR™ ivel, |ai<y)

Two sheet hyperbola?

.
A

{xERZ ; 1—|—x%§x§}
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Extra from MICP 2: Non-Polyhedral Index Set

* |ntegers + non-rational unbounc

\/ Dense discrete set {\/ix — {\/ix

[(z1,21)|lg S 22+ 1, |[(22,22)

(21, 20) [l < 91, (1, 1)

g~ "God made the
the work of man”

- Leopold Kronecker

ed ray = Trouble !

:JJEN}Q[O,I]
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One (Somewhat Extreme) Way to Add Regularity

S = proj,, (M N (R”+p X Zd)) , [ =proj, (M)

e =B+ K:
— B compact convex set
— K rational polyhedral cone

e Then
N — le C; + {2;1 )\Z'fl“i : A E Zz_}

— C; = compact convex sets
e Less extreme, but still well behaved “Rational MICPR”:

— Any rational affine mapping of index set I Is bounded,
or has a rational recession direction
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Bounded or 0-1 MICP Formulations
for Unions of Convex Sets



k
A Classical Strong Formulation for Uz’:1 &

Ci={zeR": Alw b’} CF=Cf

Aty =, bZZZ‘, Vi € [/{7] . Auxmary contmyqus varlgbles
are copies of original variables

k N
E CBZ — Qj, ( )7,_1
P  “ldeal” Formulation Strength:

— Extreme points of continuous
relaxation satisfy integrality
constraints on z

— Variable copies crucial here,

X, A= R"™, Vic [k] but slow down compytations
(usually worse than Big-M)

1, ze{0,1}"

]~
5
||

* Balas, Jeroslow and Lowe (Polyhedral), Ben-tal, Nemirovski, Helton, Nie (Conic) 16 / 26



Generic Geometric Formulation = Gauge Functions

* For C such that 0 € int (C) let: o
vo(z) :=inf{A >0 : z e XC} [

epi (v¢) = cone (C'x {1}) |
e If b € C; thenideal formulation:

YCi—{bi} (xz — Zzb?’) < z; Vi € [k]

z, ' € R" Vi € (K] -



Simple Ideal Formulation without Variable Copies

e Unions of (nearly) Homothetic Closed Convex Sets (V. 17):

C; = \C + b+ C%

(o= 3 ) 3 e
Z;l 2z =1, € {0,1}"

= to polyhedral results from Balas ‘85, Jeroslow ‘88 and Blair ‘90 /2



Embedding Formulation Construction

M =eeme| | ) Brx{z}

z€INZ4
I convex and B. : RY = R™P closed and convex:
<X> — (X) WK Y AWK A~/ \ WK A~/ - WK N
CZ — CZ/ 1 (Wm - Zom ) (Wm7~m> m/ (W,A/)) v o - B_Z

d d |
INZ* CH{0,1}" o« ABrt—FrC BT TN
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Embedding Formulation = Automatically Ideal

X2

X2 '

2 Xl . .
.P conv (UL, 7 x 1))
=1

* Originally for Polyhedra (V. ’17)
— Small size with careful choice of encoding {hi}f:1 C {0, 1}d

e Extensions to general integers, practical
construction techniques, computations,
applications and software tools:

— Huchette and V. “173,b,c; Huchette, Dey and V. ‘17




Focus for Non-Polyhedral Embedding Formulations

e Unary encoding: {hi}f:]L = {ei}le C {0,1}"

— Related to Cayley Embedding for Minkoski sums

— Homothetic formulation

(X ) <X
Z:;l zi =1, z € {0,1}"

e How to write convex hull:




Sticking Homothetic Formulations Together

Valid, but not ideal!

Combine 4
> homothetic
formulations

Right relaxations yield
ideal formulation
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Sufficient Conditions For Ideal Formulation

os(u) :=sup{u-z : x € S}
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May Need to “Find” Homothetic Constraints

Ci + (Ry x{0})

o ‘_.
&

—1,1] x 0

Ci + (Ry x {0}) : Ci + (R- x {0})

2
(max{zy,01)? < 25 < 1 ,
Similar to Bestuzheva et al.

‘16 who divide sets in two.
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Algebraic Representation Issues

Ci + (R4 x {0})
17 < a9 <1

&

—1,1] x 0

Cy + (Ry x {0}) : (max{z1,0})* <2y <1

 Non-basic semi-algebraic set V /
contained in formulation.

* Finite polynomial inequalities
requires max or auxiliary vars.

25/26



Summary

* General mixed integer convex representability (MICPR):
— Infinite union of convex sets with specialc structure
— More results/questions on regularity (arXiv:1706.05135)
* Bounded MICPR = Finite unions of Convex Sets
—Variable copies = strong (ideal), but slow computation
— Copies can be removed, but possibly at a prize
—More on the paper (arXiv:1704.03954):
* MIP-solver compatible formulations = gauge calculus.
* More examples: generalizations and size reductions
e Conditions for piecewise formulations to be ideal
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