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GIVEN THAT, SOONER OR
LATER, WERE ALl JUST
GOWNG TO DIE, WHAT'S
THE POINT OF LEARNING

ARONT INTEGERS?
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MICP Formulations and Representability

e Aset S CR"is MICP representable (MICPR) if it has
an MICP formulation:

— A closed convex set M C R™tr+d
— auxiliary continuous variables y € RP
— auxiliary integer variables z € Z¢

(1, 2) € R” x 7% s.t.

resS <
(z,y,2) € M

or equivalently

S = proj, (M N (R"" x Zd))
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What Sets are MICP Representable (MICPR) ?

Two sheet hyperbola? Spherical shell?

{r eR*: 1427 < a3} [reR? : 1< ||zf| <2}

 Discrete subsets of the real line or natural numbers:

— Dense discrete set? {\/5:13 — {ﬁxJ . X € N} C 10, 1]

— Set of prime numbers? B~ "God made the integers,
‘ all else is the work of man”
\

- Leopold Kronecker 2/12



A Simple Lemma for non-MICP Representability

* Obstruction for MICP representability of S :

u—2|—v¢s Yu,v € R, u # v

X Spherical shell {z € R® : 1 < ||z|| < 2}

infinite £ C S  s.t.

X Set of prime numbers

* Does have non-convex
polynomial MIP

X Set of Matrices of rank at most &

X Piecewise linear interpolation of x?
at all integers o



MICPR = Convex Sets Indexed by Integers in Convex

* For rational polyhedral M (Jeroslow and Lowe '84):

e Ule P, + {Z:Zl )\7;7"7; : )\ E Zfl—}

1: Rational polyhedra with 2: Finite # of shapes
the same recession cone + periodic translations
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MICPR = Convex Sets Indexed by Integers in Convex

E— k t .
* Extensions S = Ui_l P + {Zi_l ATt i N E Zi}

— M={x€Z*: x;-x, =a} = P, =points (Dey & Moran ’13)
— M = Rational Polyhedron n “Rational” Ellipsoidal Cylinder =
P, =Rational Ellipsoid N Polytope (Del Pia & Poskin ‘16)

— M = Compact Convex + Rational Polyhedron Cone =
P, = Compact Convex (Lubin, Zadik & V. 17’)
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MICPR = Convex Sets Indexed by Integers in Convex

* For rational polyhedral M (Jeroslow and Lowe '84):

e Ule P, + {Z:Zl )\7;7"7; : )\ E Zfl—}

1: Rational polyhedra with 2: Finite # of shapes
the same recession cone + periodic translations
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Extra from MICP 1: Non-Polyhedral Unions

Two sheet hyperbola?

N 4
A

{xGRQ : 1—|—513%§:1:§}

1. Unions of Non-Polyhedral

sets \/

Plus Projection:

2. Unions of non-closed sets

3. Unions of convex sets with

different recession cones

k

{{(x,t) . x €5;, ||£C||§ < t}} have the same recession cone
i=1
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Extra from MICP 2: Non-Polyhedral 1

* Aninfinite set S is periodic if and only if:
reR" VAe€eZ,,xelS xz+AIres
* Non-periodic MICPR sets

— Dense discrete set {\/551: — {\/ixJ X € N} C [0, 1]

(Zlv Zl)

(217 Zl) 2

2 S <9 + 17 ||(Z2722) 2 S 2217 L1 = Y1 — =2,

<1, [y, y1)ll, <221, =€ 7°

— Set of naturals {:c eN : 2z — L\@azJ ¢ (5, 1 — \/55)}

(71, 1)

(72, T2)

2§$2+€7
, <211 +2, xeZl
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A Definition Rational MICPR (R-MICPR)

g — U proj.. (B,) S =proj, (M N (R"P x Zd))
2cINzZd I = proj, (M)
* Any rational affine mapping of index set I :
— |s bounded, or
— Has an integer (rational) recession direction
* Irrational directions can hide!
— R-MICPR ¢ span(rec(/)) and/or aff (I) = rational space

(51+v22) <5 span(rec(1)) = span({es}
(22 V2z) <1 Teclorobs (D) = span{(1, V)
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Properties of Rational MICPR (R-MICPR)

* For compact S :
— Finite unions of compact convex sets

* For S infinite unions of “uniformly bounded” closed
convex sets :

— Finite union of periodic
— Dense discrete and non-periodic naturals NOT R-MICPR
e Rational MICP Representability:

— Closed under: Finite Union, Cartesian Product and
Minkowski sum

— NOT Closed under intersection.
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R-MICPR does Not Imply Finite Shapes

1200, h(z)
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* There exists increasing functions A such that:
— P. C R? regular h(2)-gon centered at (z,0)
- P.NP, =0, z2+#2
- S = Uj_l P. is R-MICPR and periodic

oo

“710 20 30 40 50 60 2

 Equal volume = Finite # of Shapes
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Summary

* General mixed integer convex representability
(MICPR):

—Infinite union of convex w. different recession cones
— With special structure (e.g. Primes are not MICPR)
— Infinite structure can be irregular (irrational rays)
« Can be caused by hided rays for non- “thin” sets
e Rational MICPR
— Regularity recovered forcing rational unboundedness

e Equal volume = Finite # of Shapes
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R-MICPR: Periodicity for Natural #s

* An infinite set of naturals S is periodic if and only if:
k
- S = U7;=1 {s;} + intcone ({r})

— It is rational MILP representable

* A subset S of the naturals is R-MICPR if and only if:
— |t is the union of a finite and an infinite periodic set
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A Simple Lemma for non-MICP Representability

* Obstruction for MICP representability of S :

u—2|—fu¢s Yu,v € R, u # v

Proof: Assume for contradiction there exists M such that:

S = proj, (M N (R"P x Zd))

infinite £ C S  s.t.

(U,yu,Zu) cM = 2y, T 2y g Zd
(v, Yo, 20) € M 2

, Zy T2
7, = 7, (mod 2) component-wise = — 5 L ezl

component-wise parity classes = 2¢ < |R| = oo =k=
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