Mixed-Integer Convex (MICP) Representability

Juan Pablo Vielma

Massachusetts Institute of Technology

Joint work with Miles Lubin and Ilias Zadik

Seminar 18081 – Designing and Implementing Algorithms for Mixed-Integer Nonlinear Optimization
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Wadern, Germany. February, 2018.

Supported by NSF grant CMMI-1351619

MICP Formulations and Representability

- A set $S \subseteq \mathbb{R}^n$ is MICP representable (MICPR) if it has an MICP formulation:
 - A closed convex set $M \subseteq \mathbb{R}^{n+p+d}$
 - auxiliary continuous variables $y \in \mathbb{R}^p$
 - auxiliary integer variables $z \in \mathbb{Z}^d$

$$x \in S \quad \Leftrightarrow \quad \frac{\exists (y, z) \in \mathbb{R}^p \times \mathbb{Z}^d \text{ s.t.}}{(x, y, z) \in M}$$

or equivalently

$$S = \operatorname{proj}_x \left(M \cap \left(\mathbb{R}^{n+p} \times \mathbb{Z}^d \right) \right)$$

What Sets are MICP Representable (MICPR)?

Two sheet hyperbola?

$$\left\{ x \in \mathbb{R}^2 : 1 + x_1^2 \le x_2^2 \right\}$$

Spherical shell?

$$\left\{ x \in \mathbb{R}^2 \, : \, 1 \le \|x\| \le 2 \right\}$$

- Discrete subsets of the real line or natural numbers:
 - **–** Dense discrete set? $\left\{\sqrt{2}x \left\lfloor\sqrt{2}x\right\rfloor : x \in \mathbb{N}\right\} \subseteq [0,1]$
 - Set of prime numbers?

"God made the integers, all else is the work of man"

- Leopold Kronecker

A Simple Lemma for non-MICP Representability

• Obstruction for MICP representability of S:

infinite
$$R \subseteq S$$
 s.t. $\frac{u+v}{2} \notin S \quad \forall u, v \in R, u \neq v$

- **X** Spherical shell $\left\{x \in \mathbb{R}^2 : 1 \leq \|x\| \leq 2\right\}$
- **X** Set of prime numbers
 - Does have non-convex polynomial MIP
- X Set of Matrices of rank at most k
- X Piecewise linear interpolation of x^2 at all integers

MICPR = Convex Sets Indexed by Integers in Convex

• For rational polyhedral M (Jeroslow and Lowe '84):

$$-S = \bigcup_{i=1}^{k} P_i + \left\{ \sum_{i=1}^{t} \lambda_i r^i : \lambda \in \mathbb{Z}_+^t \right\}$$

- 1: Rational <u>polyhedra</u> with the same recession cone
- 2: <u>Finite</u> # of <u>shapes</u>+ periodic translations

MICPR = Convex Sets Indexed by Integers in Convex

$$S = \bigcup_{\substack{z \in I \cap \mathbb{Z}^d \\ \mathbf{1} \ \mathbf{0}}} \operatorname{proj}_x(B_z)$$

- Extensions $S = \bigcup_{i=1}^k P_i + \left\{\sum_{i=1}^t \lambda_i r^i : \lambda \in \mathbb{Z}_+^t\right\}$
 - $-M = \{x \in \mathbb{Z}^2 : x_1 \cdot x_2 \ge \alpha\} \implies P_i = \text{points (Dey & Moran '13)}$
 - -M= Rational Polyhedron \cap "Rational" Ellipsoidal Cylinder \Longrightarrow $P_i=$ Rational Ellipsoid \cap Polytope (Del Pia & Poskin '16)
 - -M = Compact Convex + Rational Polyhedron Cone ⇒ P_i = Compact Convex (Lubin, Zadik & V. 17')

MICPR = Convex Sets Indexed by Integers in Convex

• For rational polyhedral M (Jeroslow and Lowe '84):

$$-S = \bigcup_{i=1}^{k} P_i + \left\{ \sum_{i=1}^{t} \lambda_i r^i : \lambda \in \mathbb{Z}_+^t \right\}$$

- 1: Rational <u>polyhedra</u> with the same recession cone
- 2: <u>Finite</u> # of <u>shapes</u>+ periodic translations

Extra from MICP 1: Non-Polyhedral Unions

$$S = \bigcup_{z \in I \cap \mathbb{Z}^d} \operatorname{proj}_x(B_z)$$

Unions of Non-Polyhedral sets

Plus Projection:

- 2. Unions of non-closed sets
- Unions of convex sets with different recession cones

$$\left\{\left\{(x,t): x \in S_i, \quad \|x\|_2^2 \le t\right\}\right\}_{i=1}^k$$
 have the same recession cone

Extra from MICP 2: Non-Polyhedral $\it I$

An infinite set S is periodic if and only if:

$$\exists r \in \mathbb{R}^n \quad \forall \lambda \in \mathbb{Z}_+, \ x \in S \quad x + \lambda r \in S$$

- Non-periodic MICPR sets
 - Dense discrete set $\left\{\sqrt{2}x \left|\sqrt{2}x\right| : x \in \mathbb{N}\right\} \subseteq [0,1]$

$$\|(z_1, z_1)\|_2 \le z_2 + 1, \quad \|(z_2, z_2)\|_2 \le 2z_1, \quad x_1 = y_1 - z_2,$$

 $\|(z_1, z_1)\|_2 \le y_1, \quad \|(y_1, y_1)\|_2 \le 2z_1, \quad z \in \mathbb{Z}^2$

$$- \text{ Set of naturals } \left\{ x \in \mathbb{N} \, : \, \sqrt{2}x - \left\lfloor \sqrt{2}x \right\rfloor \notin \left(\varepsilon, 1 - \sqrt{2}\varepsilon\right) \right\}$$

$$\|(x_1, x_1)\|_2 \le x_2 + \varepsilon,$$

$$||(x_2, x_2)||_2 \le 2x_1 + 2\varepsilon, \quad x \in \mathbb{Z}_+^2$$

A Definition Rational MICPR (R-MICPR)

$$S = \bigcup_{z \in I \cap \mathbb{Z}^d} \operatorname{proj}_x (B_z) \qquad S = \operatorname{proj}_x (M \cap (\mathbb{R}^{n+p} \times \mathbb{Z}^d))$$
$$I = \operatorname{proj}_z (M)$$

- Any rational affine mapping of index set I:
 - Is bounded, or
 - Has an integer (rational) recession direction
- Irrational directions can hide!
 - R-MICPR \Leftrightarrow span(rec(I)) and/or aff(I) = rational space

$$(z_1 + \sqrt{2}z_2)^2 \le z_3$$
 span(rec(I)) = span({e₃})
 $(z_2 - \sqrt{2}z_1)^2 \le 1$ rec(proj_{z₁,z₂}(I)) = span({(1, $\sqrt{2}$)})

Properties of Rational MICPR (R-MICPR)

- For compact S:
 - Finite unions of compact convex sets
- For S infinite unions of "uniformly bounded" closed convex sets:
 - Finite union of periodic
 - Dense discrete and non-periodic naturals NOT R-MICPR
- Rational MICP Representability:
 - Closed under: Finite Union, Cartesian Product and Minkowski sum
 - NOT Closed under intersection.

R-MICPR does Not Imply Finite Shapes

- There exists increasing functions h such that:
 - $-P_z \subseteq \mathbb{R}^2$ regular h(z)-gon centered at (z,0)

 - $-P_z \cap P_{z'} = \emptyset, \quad z \neq z'$ $-S = \bigcup_{z=1}^{\infty} P_z \text{ is R-MICPR and periodic}$
- Equal volume ⇒ Finite # of Shapes

Summary

- General mixed integer convex representability (MICPR):
 - Infinite union of convex w. different recession cones
 - With special structure (e.g. Primes are not MICPR)
 - Infinite structure can be irregular (irrational rays)
 - Can be caused by hided rays for non- "thin" sets
- Rational MICPR
 - Regularity recovered forcing rational unboundedness
- Equal volume ⇒ Finite # of Shapes

R-MICPR: Periodicity for Natural #s

An infinite set of naturals S is periodic if and only if:

$$-S = \bigcup_{i=1}^{k} \{s_i\} + \operatorname{intcone}(\{r\})$$

- It is rational MILP representable
- A subset S of the naturals is R-MICPR if and only if:
 - It is the union of a finite and an infinite periodic set

A Simple Lemma for non-MICP Representability

• Obstruction for MICP representability of S:

infinite
$$R \subseteq S$$
 s.t. $\frac{u+v}{2} \notin S \quad \forall u, v \in R, u \neq v$

Proof: Assume for contradiction there exists M such that:

$$S = \operatorname{proj}_x \left(M \cap \left(\mathbb{R}^{n+p} \times \mathbb{Z}^d \right) \right)$$

$$\begin{array}{c} (u, y_u, z_u) \in M \\ (v, y_v, z_v) \in M \end{array} \implies \frac{z_u + z_v}{2} \notin \mathbb{Z}^d$$

$$z_u \equiv z_v \pmod{2}$$
 component-wise $\Rightarrow \frac{z_u + z_v}{2} \in \mathbb{Z}^d$

component-wise parity classes
$$= 2^d < |R| = \infty$$
 \Rightarrow