Modeling Disjunctive Constraints with a Logarithmic Number of Binary Variables and Constraints

Juan Pablo Vielma

IBM Watson Research Center

Shabbir Ahmed and George L. Nemhauser

H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

International Symposium for Mathematical Programming August, 2009 – Chicago, IL

Outline

Introduction: MIP models for disjunctive constraints.

 Smaller MIPs for SOS1, SOS2, piecewise linear functions

Computational Results.

Introduction

MIPs for Disjunctive Constraints/Set

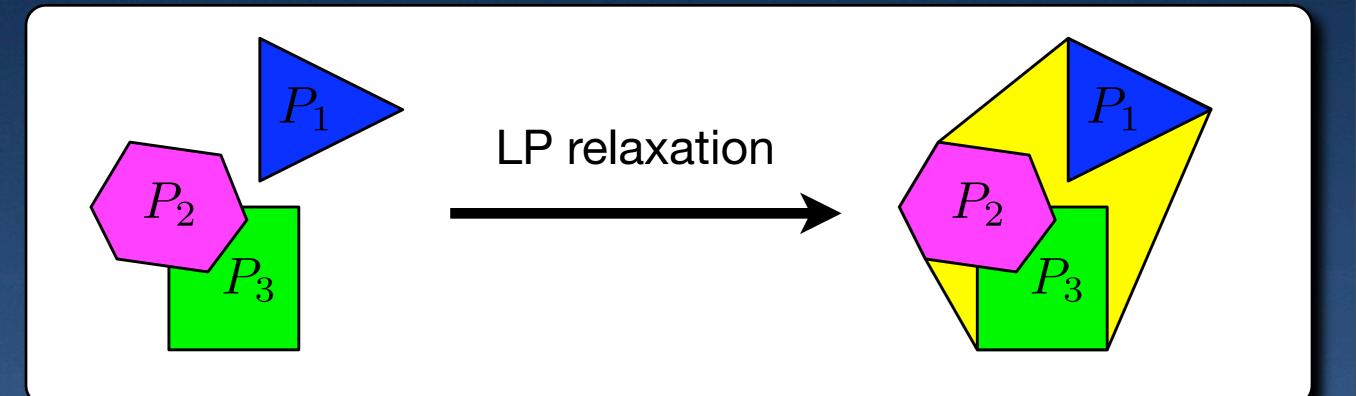
 P_2

$$x \in \bigcup_{i=1}^{m} P_i \subset \mathbb{R}^n$$
$$P_i := \text{polytope}$$

0-1 Mixed Integer Programming (MIP) formulation.
Can use auxiliary variables besides 0-1 variables.
Want strong but small formulations.

Strong MIPs : Two Levels

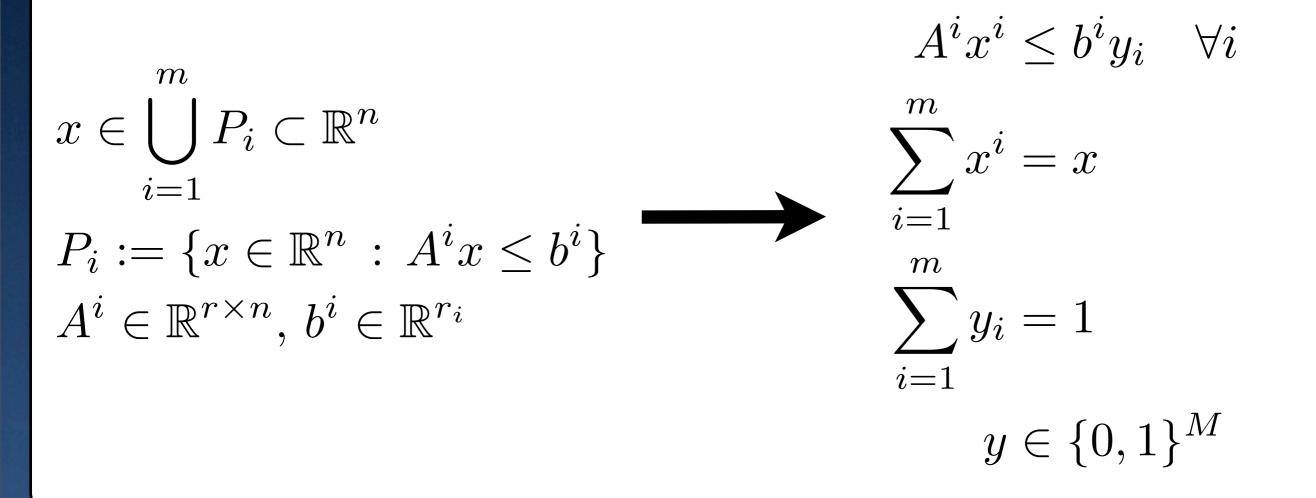
• **Sharpness**: Projection of LP relaxation onto original variables equals $\operatorname{conv}(\bigcup_{i=1}^{m} P_i)$.



• Locally Ideal (stronger): LP has integral extreme points.

Introduction

A Standard MIP Formulation



Sharp and Locally Ideal.

• $\Theta(nm)$ extra vars and $\Theta(n+rm)$ constraints.

Special Disjunctive Constraint

$$x \in \bigcup_{i=1}^{m} P(F_i) \qquad P(F_i) := \{ x \in \Delta^n : x_j \le 0 \quad \forall j \in F_i \} \\ \Delta^n := \{ x \in [0, 1]^n : \sum_{i=1}^n x_i = 1 \}$$

SOS1: m = n, F_i = {1,...,n} \ {i}.
SOS2: m = n − 1, F_i = {1,...,n} \ {i, i + 1}.
Continuous Piecewise Linear Functions.
Standard formulation has Θ(nm) extra vars and constraints Θ (n + m).

Eliminate copies of x and stay Sharp?

$$\begin{split} \sum_{i=1}^{m} x^{i} &= x, \quad Ax^{i} \leq b^{i} y_{i} \quad \forall i & \qquad Ax \leq \sum_{i=1}^{m} b^{i} y_{i} \\ \sum_{i=1}^{m} y_{i} &= 1, \quad y \in \{0,1\}^{m} & \qquad \sum_{i=1}^{m} y_{i} &= 1, \quad y \in \{0,1\}^{m} \end{split}$$

Works for special case (Balas, Blair and Jeroslow).

• $\Theta(m)$ extra vars and $\Theta(n)$ constraints.

$$\sum_{j=1}^{n} x_j = 1, \ x \ge 0, \ x_j \le \sum_{i:j \notin F_i} y_i, \ \sum_{i=1}^{m} y_j = 1, \ y \in \{0,1\}^m$$

Rewrite disjunction = reduce binaries.

$$\lambda \in \bigcup_{i=1}^{m} P(F_i) = \bigcap_{k=1}^{\lceil \log_2 m \rceil} \left(P(F_1^k) \cup P(F_2^k) \right) \qquad F_1^k \cap F_2^k = \emptyset$$

Rewrite disjunction = reduce binaries.

$$\lambda \in \bigcup_{i=1}^{m} P(F_i) = \bigcap_{k=1}^{\lceil \log_2 m \rceil} \left(P(F_1^k) \cup P(F_2^k) \right) \qquad F_1^k \cap F_2^k = \emptyset$$

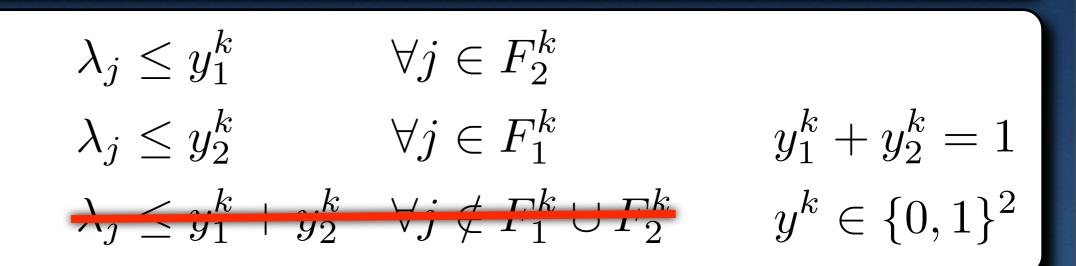
 $\lambda \in \Delta^n$

$$\lambda_{j} \leq y_{1}^{k} \qquad \forall j \in F_{2}^{k}$$
$$\lambda_{j} \leq y_{2}^{k} \qquad \forall j \in F_{1}^{k} \qquad y_{1}^{k} + y_{2}^{k} = 1$$
$$\lambda_{j} \leq y_{1}^{k} + y_{2}^{k} \quad \forall j \notin F_{1}^{k} \cup F_{2}^{k} \qquad y^{k} \in \{0, 1\}^{2}$$

Rewrite disjunction = reduce binaries.

$$\lambda \in \bigcup_{i=1}^{m} P(F_i) = \bigcap_{k=1}^{\lceil \log_2 m \rceil} \left(P(F_1^k) \cup P(F_2^k) \right) \qquad F_1^k \cap F_2^k = \emptyset$$

 $\lambda \in \Delta^n$



Rewrite disjunction = reduce binaries.

$$\lambda \in \bigcup_{i=1}^{m} P(F_i) = \bigcap_{k=1}^{\lceil \log_2 m \rceil} \left(P(F_1^k) \cup P(F_2^k) \right) \qquad F_1^k \cap F_2^k = \emptyset$$

 $\lambda \in \Delta^n$

$$\sum_{j \in F_2^k} \lambda_j \le y_1^k$$
$$\sum_{j \in F_1^k} \lambda_j \le y_2^k$$

$$y_1^k + y_2^k = 1$$
$$y^k \in \{0, 1\}^2$$

 $\lambda \in \Delta^n$

 $\forall k \in \{1, \dots, \lceil \log_2 m \rceil\}$

 $y_1^k + y_2^k = 1$

 $y^k \in \{0, 1\}^2$

8/13

Rewrite disjunction = reduce binaries.

$$\lambda \in \bigcup_{i=1}^{m} P(F_i) = \bigcap_{k=1}^{\lceil \log_2 m \rceil} \left(P(F_1^k) \cup P(F_2^k) \right) \qquad F_1^k \cap F_2^k = \emptyset$$

 $\sum_{j \in F_2^k} \lambda_j \le y_1^k$

 $\sum_{j \in F_1^k} \lambda_j \le y_2^k$

Rewrite disjunction = reduce binaries.

$$\lambda \in \bigcup_{i=1}^{m} P(F_i) = \bigcap_{k=1}^{\lceil \log_2 m \rceil} \left(P(F_1^k) \cup P(F_2^k) \right) \qquad F_1^k \cap F_2^k = \emptyset$$

$$\begin{array}{ll} \lambda \in \Delta^n & \sum_{j \in F_2^k} \lambda_j \leq y_1^k & \forall k \in \{1, \dots, \lceil \log_2 m \rceil\} \\ & \sum_{j \in F_1^k} \lambda_j \leq y_2^k & y^k \in \{0, 1\}^2 \end{array}$$

• $O(\log_2 m)$ extra vars/constraints and locally ideal! • Vielma and Nemhauser 08/09, Vielma et al. 09.

Rewrite = Independent Branching

- Special Branching Scheme (e.g. SOS2 branch):
 - Both sides implemented by fixing vars to zero.
 - Levels are independent.
- Formulation: 1 binary for each dichotomy.

 For SOS1/SOS2 and Univariate/Multivariate Continuous/Discontinuous Piecewise Linear Functions.

 $\circ \circ \circ \circ \circ \circ$

SOS2: Non-zero = two adjacent vars.

• Standard Branching: $\bigvee \checkmark x_j = 0 \forall j < k$ $x_j = 0 \forall j > k$

non-zero

zero

$x_1 x_2 $	x_3	x_4	x_5
---------------	-------	-------	-------

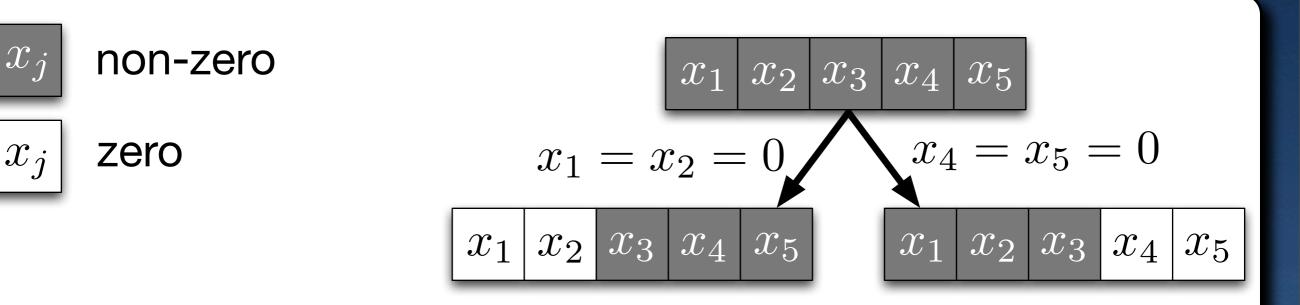
 x_j

 x_j

 $\circ \circ \circ \circ \circ \circ$

SOS2: Non-zero = two adjacent vars.

• Standard Branching: $\bigvee < x_j = 0 \forall j < k$ $x_j = 0 \forall j > k$



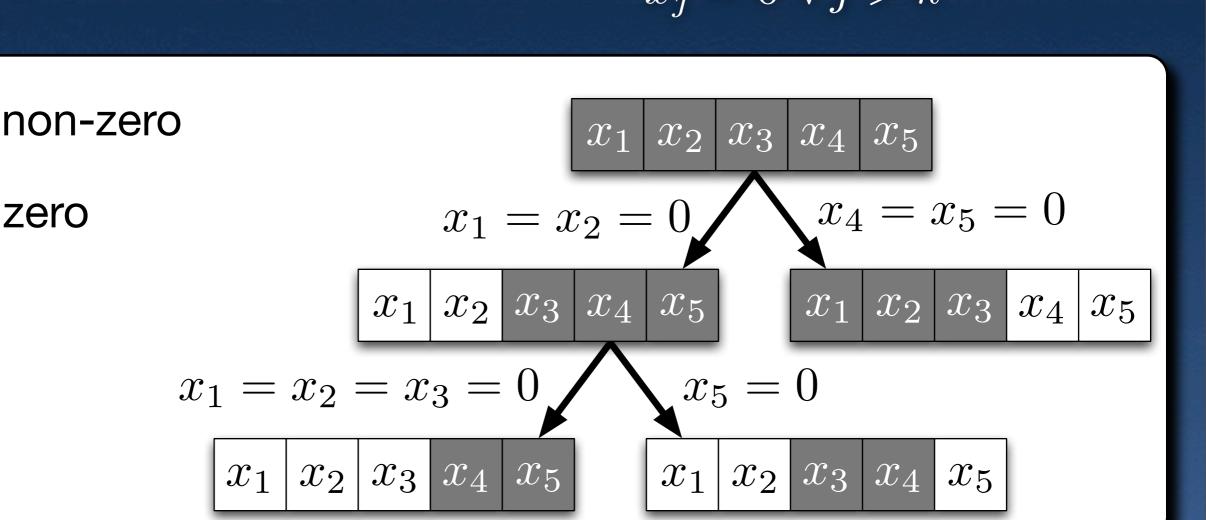
 x_{j}

 x_j

zero

SOS2: Non-zero = two adjacent vars.

• Standard Branching: $\bigvee < x_j = 0 \forall j < k$ $x_j = 0 \forall j > k$



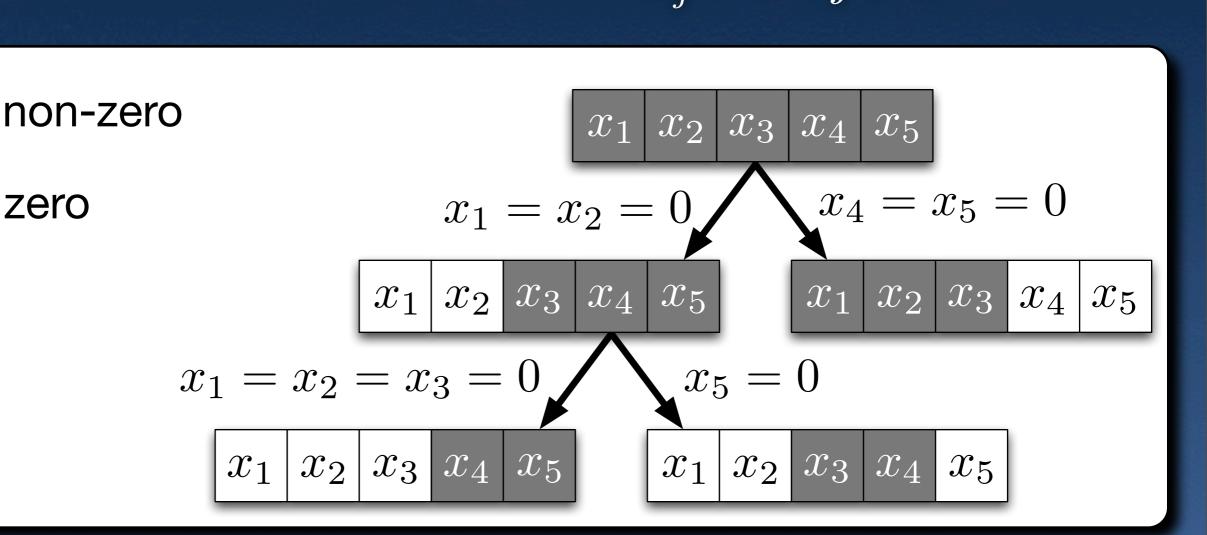
 x_{j}

 x_j

 $\circ \circ \circ \circ \circ \circ$

SOS2: Non-zero = two adjacent vars.

• Standard Branching: $\bigvee < x_j = 0 \forall j < k$ $x_j = 0 \forall j > k$



Total independent dichotomies = m := # vars.

000000

Independent Branching for SOS2

x _j non-zero	$egin{array}{c c c c c c c c c c c c c c c c c c c $
x_j zero	$x_1 = x_2 = 0$ $x_4 = x_5 = 0$
	$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}$

0 0 0 0 0 0

Independent Branching for SOS2

x _j non-zero	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
x_j zero	$x_1 = x_2 = 0$ $x_4 = x_5 = 0$
	$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}$
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
	$x_3 = 0$ $x_1 = x_5 = 0$
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

000000

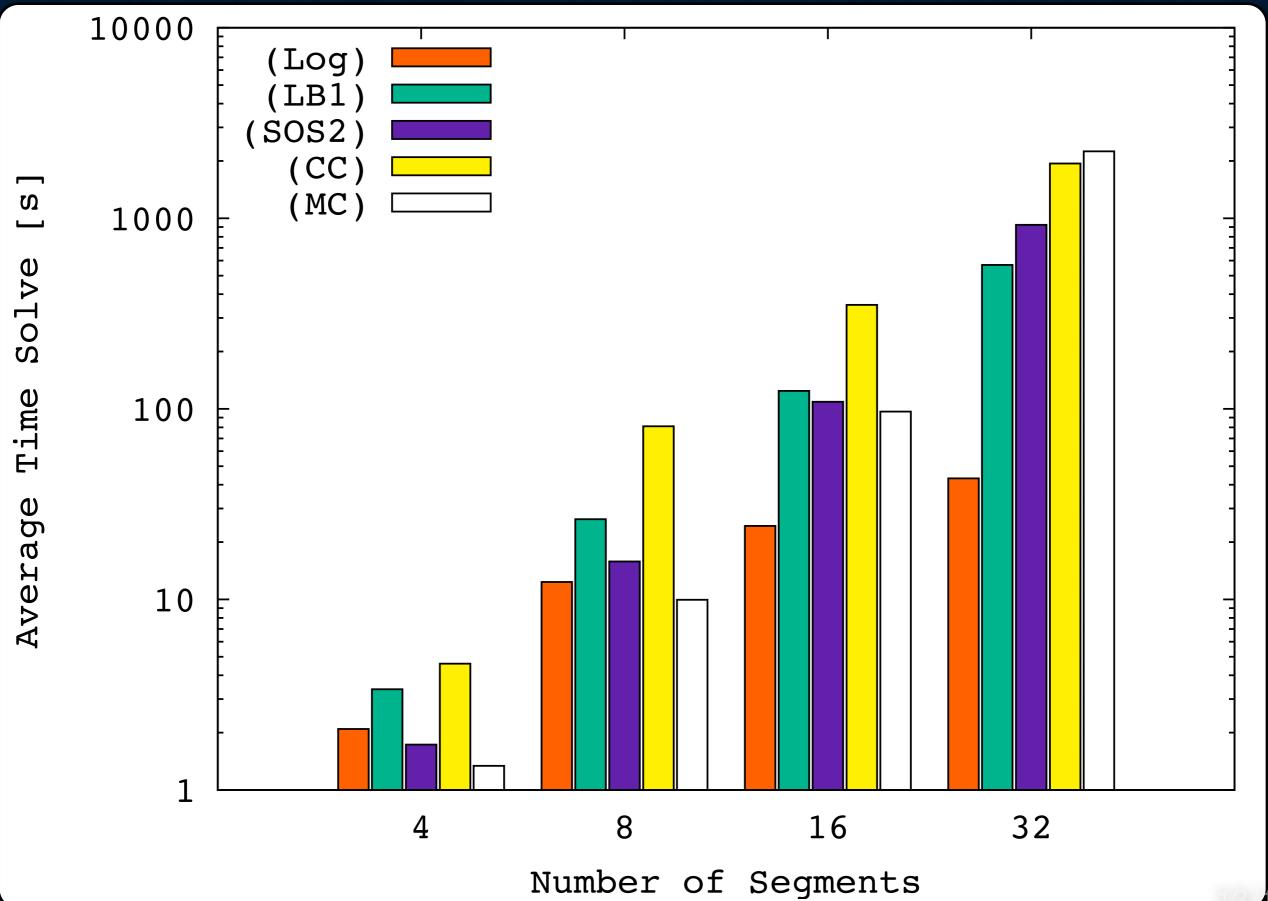
Independent Branching for SOS2

x _j non-zero	$egin{array}{c c c c c c c c c c c c c c c c c c c $
x_j zero	$x_1 = x_2 = 0$ $x_4 = x_5 = 0$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
	$x_3 = 0$ $x_1 = x_5 = 0$
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

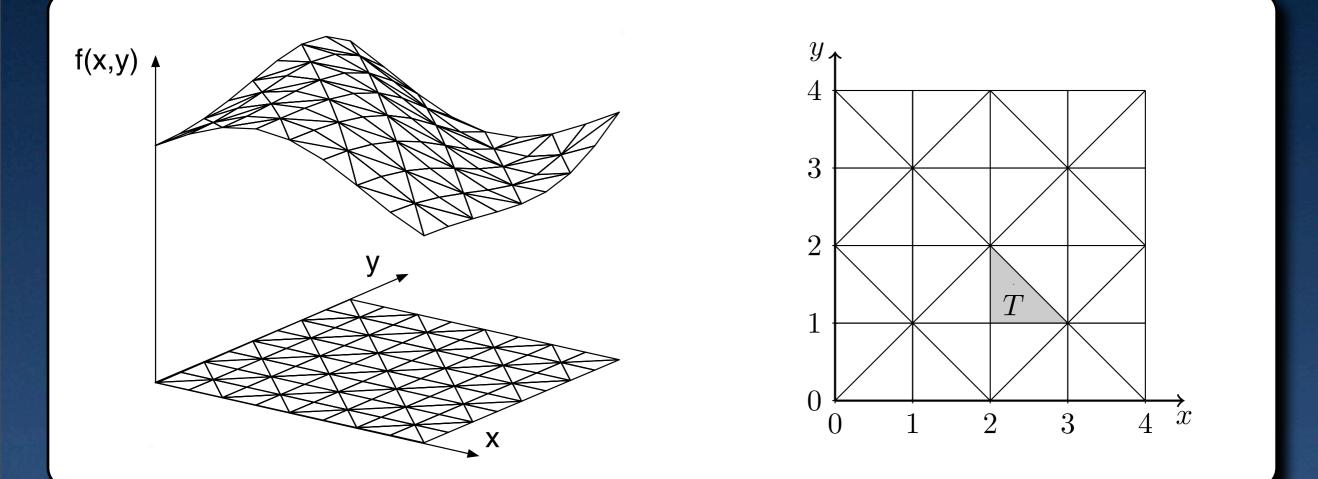
Based on Gray Codes = More than one choice.

Computational Experiments Instances: Transp. probs. w. piecewise linear cost. CPLEX 11, 2.4GHz Xeon with 2GB of RAM. Log: Log size Ind. Branch. for SOS2. LB1: Linear size Ind. Br. for SOS2 (Shields, 07) SOS2: CPLEX 11 specialized SOS2 branch. CC: Standard formulation for SOS2. MC: Non-SOS2 formulation for piecewise linear.

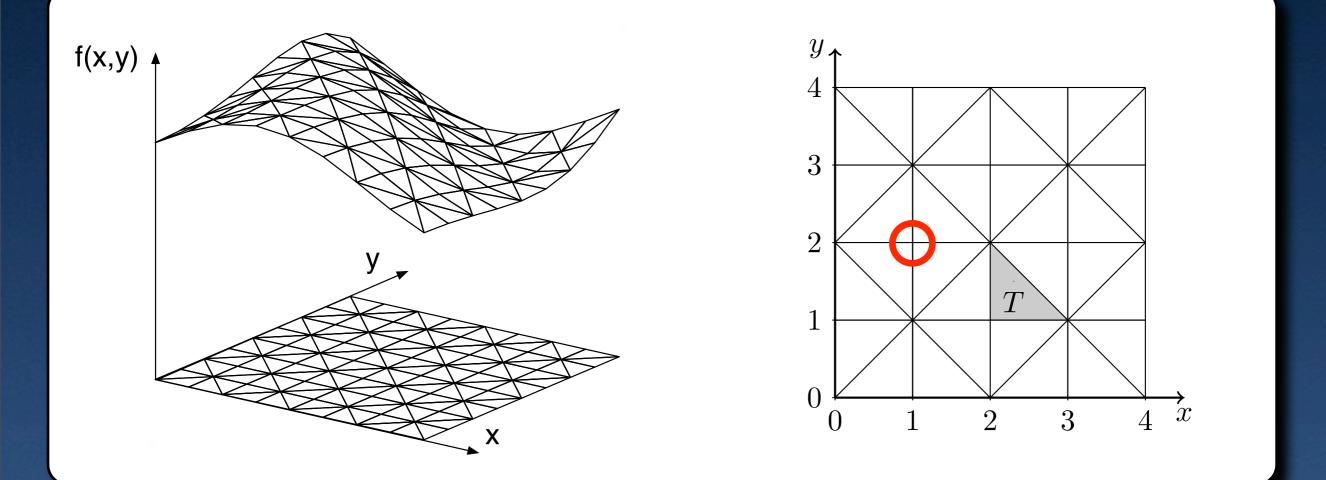
Computational Experiments



Multivariate Piecewise Linear Functions

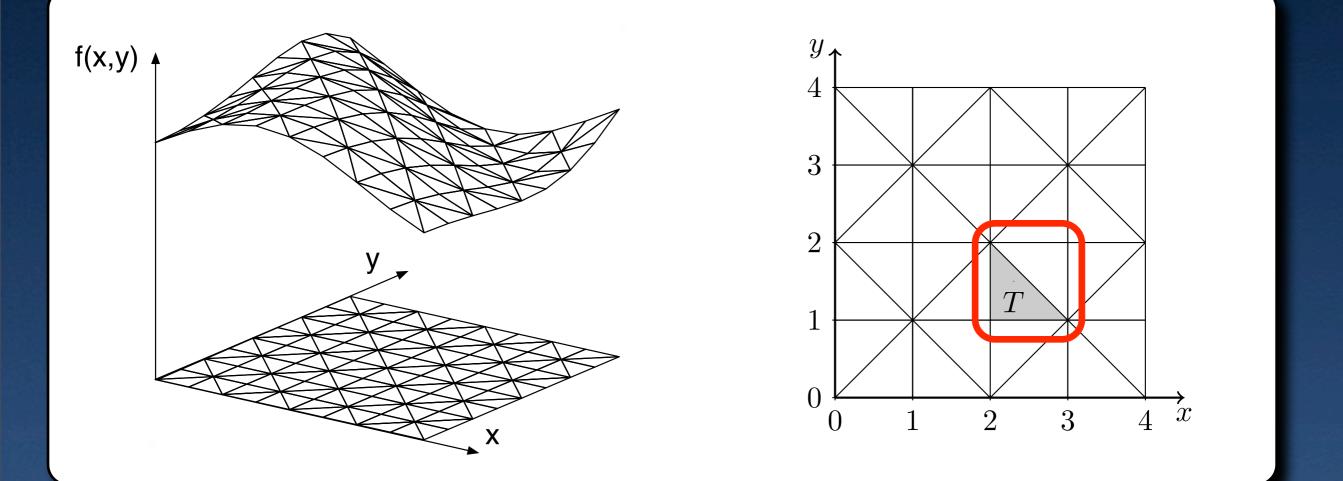


Multivariate Piecewise Linear Functions



Variables = Vertices.

Multivariate Piecewise Linear Functions



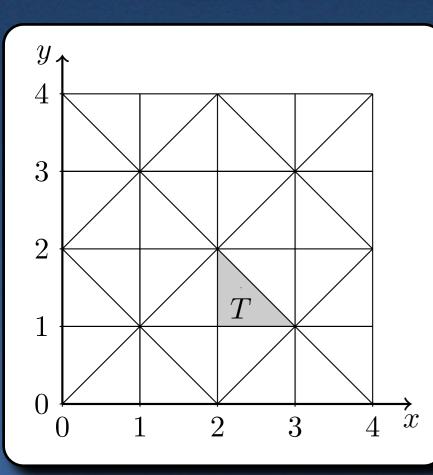
• Variables = Vertices.

Allowed non-zero variables = Vertices of a triangle.

14/13

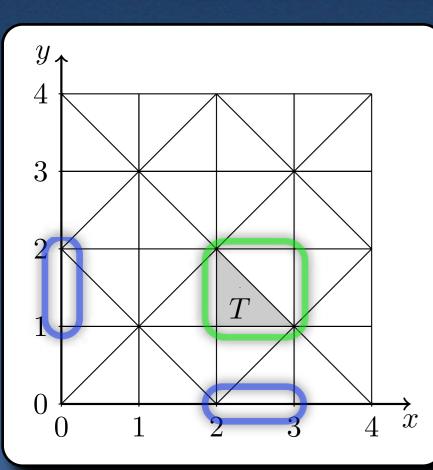
Independent Branching PWL Function

- Select Triangle by forbidding vertices.
- 2 stages:
 - Select Square by SOS2 on each variable.
 Select 1 triangle from each square.



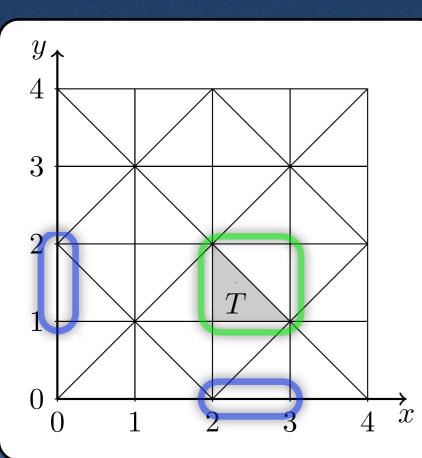
Independent Branching PWL Function

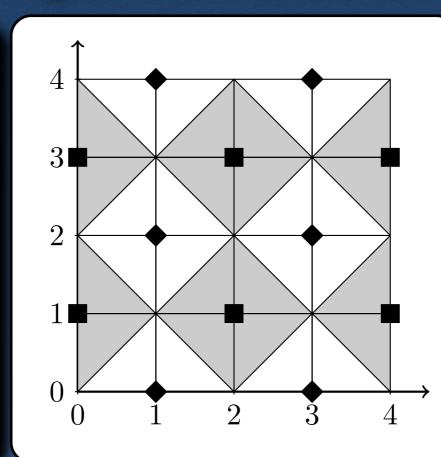
- Select Triangle by forbidding vertices.
- 2 stages:
 - Select Square by SOS2 on each variable.
 Select 1 triangle from each square.



Independent Branching PWL Function

- Select Triangle by forbidding vertices.
- 2 stages:
 Select Square by SOS2 on each variable.
 Select 1 triangle from each square.





$$\bar{L} = \{(r, s) \in J :$$

$$r \text{ even and } s \text{ odd} \}$$

$$= \{\text{square vertices} \}$$

$$\bar{R} = \{(r, s) \in J :$$

$$r \text{ odd and } s \text{ even} \}$$

$$= \{\text{diamond vertices} \}$$

