Modeling Disjunctive Constraints with a Logarithmic Number of Binary Variables and Constraints

Juan Pablo Vielma
IBM Watson Research Center

Shabbir Ahmed and George L. Nemhauser

H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

International Symposium for Mathematical Programming August, 2009 - Chicago, IL

Outline

O Introduction: MIP models for disjunctive constraints.
o Smaller MIPs for SOS1, SOS2, piecewise linear functions

O Computational Results.

Introduction

MIIPs for Disjunctive Constraints/Set

$$
x \in \bigcup_{i=1}^{m} P_{i} \subset \mathbb{R}^{n}
$$

0-1 Mixed Integer Programming (MIP) formulation.
O Can use auxiliary variables besides 0-1 variables.
O Want strong but small formulations.

Introduction

Strong MIPs : Two Levels

- Sharpness: Projection of LP relaxation onto original variables equals conv $\left(\bigcup_{i=1}^{m} P_{i}\right)$.

LP relaxation $\xrightarrow{\text { LP relaxation }}$

o Locally Ideal (stronger): LP has integral extreme points.

Introduction

A Standard MIIP Formulation

$$
\begin{aligned}
& x \in \bigcup_{i=1}^{m} P_{i} \subset \mathbb{R}^{n} \\
& P_{i}:=\left\{x \in \mathbb{R}^{n}: A^{i} x \leq b^{i}\right\} \\
& A^{i} \in \mathbb{R}^{r \times n}, b^{i} \in \mathbb{R}^{r_{i}}
\end{aligned}
$$

$$
A^{i} x^{i} \leq b^{i} y_{i} \quad \forall i
$$

$$
\begin{aligned}
\sum_{i=1}^{m} x^{i} & =x \\
\sum_{i=1}^{m} y_{i} & =1 \\
y & \in\{0,1\}^{M}
\end{aligned}
$$

- Sharp and Locally Ideal.
$\Theta(n m)$ extra vars and $\Theta(n+r m)$ constraints.

Special Disjunctive Constraint

$$
\begin{array}{rlrl}
x \in \bigcup_{i=1}^{m} P\left(F_{i}\right) & P\left(F_{i}\right) & :=\left\{x \in \Delta^{n}: x_{j} \leq 0 \quad \forall j \in F_{i}\right\} \\
\Delta^{n} & :=\left\{x \in[0,1]^{n}: \sum_{i=1}^{n} x_{i}=1\right\}
\end{array}
$$

OSOS1: $m=n, \quad F_{i}=\{1, \ldots, n\} \backslash\{i\}$.
OSOS2: $m=n-1, \quad F_{i}=\{1, \ldots, n\} \backslash\{i, i+1\}$.

- Continuous Piecewise Linear Functions.
- Standard formulation has $\Theta(n m)$ extra vars and constraints $\Theta(n+m)$.

Smaller MIPs

000000

Aiminate copies of x and stay Sharp?

$$
\begin{array}{lll}
\sum_{i=1}^{m} x^{i}=x, & A x^{i} \leq b^{i} y_{i} \quad \forall i \\
\sum_{i=1}^{m} y_{i}=1, & y \in\{0,1\}^{m}
\end{array} \longrightarrow \begin{aligned}
& A x \leq \sum_{i=1}^{m} b^{i} y_{i} \\
& \sum_{i=1}^{m} y_{i}=1, \quad y \in\{0,1\}^{m}
\end{aligned}
$$

- Works for special case (Balas, Blair and Jeroslow).
- $\Theta(m)$ extra vars and $\Theta(n)$ constraints.

$$
\sum_{j=1}^{n} x_{j}=1, x \geq 0, x_{j} \leq \sum_{i: j \notin F_{i}} y_{i}, \sum_{i=1}^{m} y_{j}=1, y \in\{0,1\}^{m}
$$

Smaller MIPs

 000000
Rewrite disjunction = reduce binaries.

$$
\lambda \in \bigcup_{i=1}^{m} P\left(F_{i}\right)=\bigcap_{k=1}^{\left\lceil\log _{2} m\right\rceil}\left(P\left(F_{1}^{k}\right) \cup P\left(F_{2}^{k}\right)\right) \quad F_{1}^{k} \cap F_{2}^{k}=\emptyset
$$

Smaller MIPs

Rewrite disjunction = reduce binaries.

$$
\lambda \in \bigcup_{i=1}^{m} P\left(F_{i}\right)=\bigcap_{k=1}^{\left\lceil\log _{2} m\right\rceil}\left(P\left(F_{1}^{k}\right) \cup P\left(F_{2}^{k}\right)\right) \quad F_{1}^{k} \cap F_{2}^{k}=\emptyset
$$

$\lambda \in \Delta^{n}$

$$
\begin{array}{lll}
\lambda_{j} \leq y_{1}^{k} & \forall j \in F_{2}^{k} & \\
\lambda_{j} \leq y_{2}^{k} & \forall j \in F_{1}^{k} & y_{1}^{k}+y_{2}^{k}=1 \\
\lambda_{j} \leq y_{1}^{k}+y_{2}^{k} & \forall j \notin F_{1}^{k} \cup F_{2}^{k} & y^{k} \in\{0,1\}^{2}
\end{array}
$$

Smaller MIPs

000000

Rewrite disjunction = reduce binaries.

$$
\lambda \in \bigcup_{i=1}^{m} P\left(F_{i}\right)=\bigcap_{k=1}^{\left\lceil\log _{2} m\right\rceil}\left(P\left(F_{1}^{k}\right) \cup P\left(F_{2}^{k}\right)\right) \quad F_{1}^{k} \cap F_{2}^{k}=\emptyset
$$

$\lambda \in \Delta^{n}$

$$
\begin{array}{lll}
\lambda_{j} \leq y_{1}^{k} & \forall j \in F_{2}^{k} & \\
\lambda_{j} \leq y_{2}^{k} & \forall j \in F_{1}^{k} & y_{1}^{k}+y_{2}^{k}=1 \\
\frac{\lambda}{J}=\frac{k}{9} & \frac{k}{g_{2}} & \cup j+\Gamma_{1} \cup \Gamma \frac{1}{2}
\end{array} y^{k} \in\{0,1\}^{2}
$$

Smaller MIPs

Rewrite disjunction = reduce binaries.

$$
\lambda \in \bigcup_{i=1}^{m} P\left(F_{i}\right)=\bigcap_{k=1}^{\left\lceil\log _{2} m\right\rceil}\left(P\left(F_{1}^{k}\right) \cup P\left(F_{2}^{k}\right)\right) \quad F_{1}^{k} \cap F_{2}^{k}=\emptyset
$$

$\lambda \in \Delta^{n}$

$$
\begin{array}{ll}
\sum_{j \in F_{2}^{k}} \lambda_{j} \leq y_{1}^{k} & \\
\sum_{j \in F_{1}^{k}} \lambda_{j} \leq y_{2}^{k} & y_{1}^{k}+y_{2}^{k}=1 \\
y^{k} \in\{0,1\}^{2}
\end{array}
$$

Smaller MIPs

Rewrite disjunction = reduce binaries.

$$
\lambda \in \bigcup_{i=1}^{m} P\left(F_{i}\right)=\bigcap_{k=1}^{\left\lceil\log _{2} m\right\rceil}\left(P\left(F_{1}^{k}\right) \cup P\left(F_{2}^{k}\right)\right) \quad F_{1}^{k} \cap F_{2}^{k}=\emptyset
$$

$\lambda \in \Delta^{n}$

$$
\begin{array}{rr}
\sum_{j \in F_{2}^{k}} \lambda_{j} \leq y_{1}^{k} & \forall k \in\left\{1, \ldots,\left\lceil\log _{2} m\right\rceil\right\} \\
\sum_{j \in F_{1}^{k}} \lambda_{j} \leq y_{2}^{k} & y_{1}^{k}+y_{2}^{k}=1 \\
y^{k} \in\{0,1\}^{2}
\end{array}
$$

Smaller MIPs

Rewrite disjunction = reduce binaries.

$$
\lambda \in \bigcup_{i=1}^{m} P\left(F_{i}\right)=\bigcap_{k=1}^{\left\lceil\log _{2} m\right\rceil}\left(P\left(F_{1}^{k}\right) \cup P\left(F_{2}^{k}\right)\right) \quad F_{1}^{k} \cap F_{2}^{k}=\emptyset
$$

$\lambda \in \Delta^{n}$

$$
\begin{array}{rr}
\sum_{j \in F_{2}^{k}} \lambda_{j} \leq y_{1}^{k} & \forall k \in\left\{1, \ldots,\left\lceil\log _{2} m\right\rceil\right\} \\
y_{j \in F_{1}^{k}} \lambda_{j} \leq y_{2}^{k}+y_{2}^{k}=1 \\
y^{k} \in\{0,1\}^{2}
\end{array}
$$

o $O\left(\log _{2} m\right)$ extra vars/constraints and locally ideal!
o Vielma and Nemhauser 08/09, Vielma et al. 09.

Rewrite = Independent Branching

- Special Branching Scheme (e.g. SOS2 branch):

O Both sides implemented by fixing vars to zero.

- Levels are independent.
o Formulation: 1 binary for each dichotomy.
o For SOS1/SOS2 and Univariate/Multivariate Continuous/Discontinuous Piecewise Linear Functions.

Smaller MIPs

SOS2: Non-zero = two adjacent vars.

- Standard Branching: $V<\begin{aligned} & x_{j}=0 \forall j<k \\ & x_{j}=0 \forall j>k\end{aligned}$

x_{j}	non-zero
x_{j}	zero

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}

Smaller MIPs

SOS2: Non-zero = two adjacent vars.

- Standard Branching: $V<\begin{aligned} & x_{j}=0 \forall j<k \\ & x_{j}=0 \forall j>k\end{aligned}$

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\hline
\end{array} \\
& x_{1}=x_{2}=0 \quad x_{4}=x_{5}=0 \\
& \begin{array}{|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\hline
\end{array} \quad \begin{array}{|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\hline
\end{array}
\end{aligned}
$$

SOS2: Non-zero = two adjacent vars.

- Standard Branching: $V<_{\substack{x_{j}=0 \forall j<k \\ x_{j}=0 \forall j>k}}^{\substack{\text { a }}}$

$$
\begin{array}{ll}
\begin{array}{|l|}
x_{j} \\
\text { non-zero } \\
\boxed{x_{j}}
\end{array} & \text { zero }
\end{array}
$$

SOS2: Non-zero = two adjacent vars.

- Standard Branching: $\mathrm{V}<\begin{gathered}x_{j}=0 \forall j<k \\ x_{j}=0 \forall j>k\end{gathered}$

O Total independent dichotomies = m := \# vars.

Independent Branching for SOS2

$$
\begin{array}{|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\hline
\end{array}
$$

$$
x_{1}=x_{2}=0
$$

$$
\begin{array}{|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\hline
\end{array} \quad \begin{array}{|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\hline
\end{array}
$$

Smaller MIPs

000000

Independent Branching for SOS2

x_{j} non-zero
 $x_{j} \quad$ zero

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\hline
\end{array} \\
& x_{1}=x_{2}=0 \\
& \begin{array}{|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\hline
\end{array} \quad \begin{array}{|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\hline
\end{array}
\end{aligned}
$$

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}

$$
x_{3}=0 \quad x_{1}=x_{5}=0
$$

$$
\begin{array}{|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\hline
\end{array} \quad \begin{array}{|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\hline
\end{array}
$$

Smaller MIPs

Independent Branching for SOS2

x_{j}	non-zero
x_{j}	zero

$$
\begin{array}{|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
\hline
\end{array}
$$

$$
x_{1}=x_{2}=0 \quad x_{4}=x_{5}=0
$$

| x_{1} | x_{2} | x_{3} | x_{4} | x_{5} |
| :--- | :--- | :--- | :--- | :--- |\quad| x_{1} | x_{2} | x_{3} | x_{4} | x_{5} |
| :--- | :--- | :--- | :--- | :--- |

$$
\begin{aligned}
& \hline x_{1} \\
& x_{2} \\
& x_{3}=0
\end{aligned} x_{3}\left|x_{4}\right| x_{5} \begin{aligned}
& x_{1}=x_{5}=0
\end{aligned}
$$

| x_{1} | x_{2} | x_{3} | x_{4} | x_{5} |
| :--- | :--- | :--- | :--- | :--- |\quad| x_{1} | x_{2} | x_{3} | x_{4} | x_{5} |
| :--- | :--- | :--- | :--- | :--- |

O Based on Gray Codes $=$ More than one choice.

Computational Experiments

O Instances: Transp. probs. w. piecewise linear cost.

- CPLEX 11, 2.4GHz Xeon with 2GB of RAM.
- Log: Log size Ind. Branch. for SOS2.

O LB1: Linear size Ind. Br. for SOS2 (Shields, 07)
o SOS2: CPLEX 11 specialized SOS2 branch.
o CC: Standard formulation for SOS2.
OMC: Non-SOS2 formulation for piecewise linear.

Multivariate Piecewise Linear Functions

Multivariate Piecewise Linear Functions

- Variables = Vertices.

Multivariate Piecewise Linear Functions

- Variables $=$ Vertices.

O Allowed non-zero variables = Vertices of a triangle.

Independent Branching PWL Function

- Select Triangle by forbidding vertices.
- 2 stages:
- Select Square by SOS2 on each variable.
- Select 1 triangle from each square.

Independent Branching PWL Function

- Select Triangle by forbidding vertices.
- 2 stages:
- Select Square by SOS2 on each variable.
- Select 1 triangle from each square.

Independent Branching PWL Function

- Select Triangle by forbidding vertices.
- 2 stages:
- Select Square by SOS2 on each variable.
- Select 1 triangle from each square.

$$
\begin{aligned}
\bar{L}= & \{(r, s) \in J: \\
& r \text { even and } s \text { odd }\} \\
= & \{\text { square vertices }\} \\
\bar{R}= & \{(r, s) \in J: \\
& r \text { odd and } s \text { even }\} \\
= & \{\text { diamond vertices }\}
\end{aligned}
$$

