Modeling Disjunctive Constraints with a
Logarithmic Number of Binary Variables and
Constraints

Juan Pablo Vielma George L. Nemhauser

H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

INFORMS Annual Meeting 2008 Washington, DC

Outline

@ Introduction

@ Logarithmic Formulations
© Piecewiselinear Functions
@ Computational Results

e Final Remarks

Introduction

Constraints: Only some subsets of variables can be

non-zero at the same time

@ SOSI: X € [0,1]™ such that at most one \; is non-zero.

e SOS2: (A) o € [0,1]""! such that at most two \;'s are
non-zero. Two non-zero \;'s must be adjacent:

v (0,1,3,0,0) X (0,1,0,3,0)

@ In general, for finite set J and finite family {S;}icr C J
relJacs
il

where Q(S;) = {A € [0,1]7 : X; <O0Vj ¢ S;}.

Introduction

Constraints: Only some subsets of variables can be

non-zero at the same time

@ SOSI: X € [0,1]™ such that at most one \; is non-zero.

e SOS2: (A) o € [0,1]""! such that at most two \;'s are
non-zero. Two non-zero \;'s must be adjacent:

v (0,1,3,0,0) X (0,1,0,3,0)

@ In general, for finite set J and finite family {S;}icr C J

relJacs
i€l
where Q(S;) = {A € [0,1]7 : X; <0Vj ¢ S;}.

e For ' SImp|ICIty we restrict to the simplex
Al :={NeR]: djes N < 1)

Introduction

Constraints: Only some subsets of variables can be

non-zero at the same time

@ SOSI: X € [0,1]™ such that at most one \; is non-zero.

e SOS2: (A) o € [0,1]""! such that at most two \;'s are
non-zero. Two non-zero \;'s must be adjacent:

v (0,1,3,0,0) X (0,1,0,3,0)

@ In general, for finite set J and finite family {S;}icr C J

relJas) ca’
i€l
where Q(S;) = {Ae AT 1 X; <0Vj ¢ S}

e For ' SImp|ICIty we restrict to the simplex
Al :={NeR]: djes N < 1)

Introduction

Constraints: Only some subsets of variables can be

non-zero at the same time

@ SOSI: X € [0,1]™ such that at most one \; is non-zero.
e SOS2: (A) o € [0,1]""! such that at most two \;'s are

non-zero. Two non-zero \;'s must be adjacent:

v (0,1,3,0,0) X (0,1,0,3,0)

In general, for finite set J and finite family {S;}icr C J

relJas) ca’
i€l
where Q(S;) = {Ae AT 1 X; <0Vj ¢ S}

For SImp|ICIty we restrict to the simplex

Al :={NeR]: djes N < 1)

Standard MIP models have |I| binaries and |.J| extra
constraints.

Logarithmic Formulations
@00000

One-to-One correspondence between elements of I and
vectors in {0, 1}°e21

B:I— {0, 1}f10g2 111

o Easy to get a formulation with
[log, |I]] binary variables and
|I| extra constraints (e.g.
Ibaraki 1976).

o]

(2)«—{1]0]0][0] o In general, an injective function:
o]
o]

Logarithmic Formulations
0e0000

Log number of binary variables extra constraints for

SOSlover A\ e AV CRY, (I=J={1,...,4})

i S B(i)

o
HE
HH

z1 z2 €{0,1}

AMAA+A3+A <1 AL A2, A3, >0

Logarithmic Formulations
0e0000

Log number of binary variables extra constraints for

SOSlover A\ e AV CRY, (I=J={1,...,4})

i S B(i)

o
HE
HH

z1 z2 €{0,1}
L |

AMAA+A3+A <1 AL A2, A3, >0

Logarithmic Formulations
0e0000

Log number of binary variables extra constraints for

SOSlover A\ e AV CRY, (I=J={1,...,4})

:

s

&)
1
~|

=]

z1 z2 €{0,1}
L |

AMAA+A3+A <1 AL A2, A3, >0

Logarithmic Formulations
0e0000

Log number of binary variables extra constraints for

SOSlover A\ e AV CRY, (I=J={1,...,4})

14

z1 z2 €{0,1}
L |

AMAA+A3+A <1 AL A2, A3, >0

Logarithmic Formulations
0e0000

Log number of binary variables

extra constraints for

SOSlover A\ e AV CRY, (I=J={1,...,4})

i S B(i)

(\) —
B
-] {2
—

BRE]

\
/|

i/
kv
H H

w

S
-]

z1 z2 €{0,1}
L |

M+ A+ A3+ A4 < 1,

)\2+)\4§x1

AL, A2, A3, A4 >0

Logarithmic Formulations
0e0000

Log number of binary variables extra constraints for
SOSlover A\ e AV CRY, (I=J={1,...,4})

z1 z2 €{0,1}
L |

AMAA+A3+A <1 AL A2, A3, >0

Logarithmic Formulations
0e0000

Log number of binary variables extra constraints for

SOSlover A\ e AV CRY, (I=J={1,...,4})

i S B(i)
)\2 +)\4 S X1

M+ < (1—aq)

o
HE
HH

z1 z2 €{0,1}
L |

AMAA+A3+A <1 AL A2, A3, >0

Logarithmic Formulations
0e0000

Log number of binary variables extra constraints for

SOSlover A\ e AV CRY, (I=J={1,...,4})

i S B(i)
)\2 +)\4 S X1

M+ < (1—aq)

A1+ A2 < (1 —x9)

o
HE
HH

A3+ Ay < 9

z1 z2 €{0,1}
AMAX+ A3+ <10 A, A, A3, >0

Logarithmic Formulations
0e0000

Log number of binary variables extra constraints for

SOSlover A\ e AV CRY, (I=J={1,...,4})

i S B(i)
)\2 +)\4 S X1

M+ < (1—aq)

A1+ A2 < (1 —x9)

o
HE
HH

A3+ Ay < 9

z1 z2 €{0,1}
AMAX+ A3+ <10 A, A, A3, >0

@ In general [log, |I|] binaries and 2[log, ||] extra constraints.

Logarithmic Formulations
00e000

Logarithmic Model for SOS2 over ();)j_, € A” C R’

o J={0,...,4}, [={1,...,4}.
B(i)

1 ({01} «—{o]o]
> (0.2 =={1]0]
3 (23D =—{o]1]
¢ 4D {1]1]

1 z2 - €{0,1}
A+ AL+ A+ A3+ A <1, Ao, A, A2, A3, >0

Logarithmic Formulations
00e000

Logarithmic Model for SOS2 over ();)j_, € A” C R’

o J={0,...,4}, [={1,...,4}.
i S B(i)

{1
—{o]1)
—{1]1), “<u

1 z2 € {0,1}

—_

[\)

w

e

AFAMFX+ A3+ <1 Ao, A, A2, A3,04 >0

Logarithmic Formulations
00e000

Logarithmic Model for SOS2 over ();)j_, € A” C R’

o J={0,...,4}, [={1,...,4}.
i S B(i)

{0.11) «—{o]o]
.3 (ol 1)
@(_)@3 A <@y

1 z2 € {0,1}

—_

[\)

w

e

AFAMFX+ A3+ <1 Ao, A, A2, A3,04 >0

Logarithmic Formulations
00e000

Logarithmic Model for SOS2 over ();)j_, € A” C R’

o J={0,...,4}, [={1,...,4}.
i S B(i)

1 {01 =—>{o]o]

EEDES RN s+ M < @

1 z2 € {0,1}
A+ AL+ A+ A3+ A <1, Ao, A, A2, A3, >0

Logarithmic Formulations
00e000

Logarithmic Model for SOS2 over ();)j_, € A” C R’

o J={0,...,4}, [={1,...,4}.
' B(i)

| @1 efo]0
2

4 (—)'11) A3+ Ay <o

1 z2 € {0,1}
AFAMFX+ A3+ <1 Ao, A, A2, A3, 04 >0

Logarithmic Formulations
[e]e]e] le]e)

Logarithmic Model for SOS2 over ();)j_, € A” C R’

o J={0,...,4}, [={1,...,4}.
B(i)

i M <y
2 Xo < (1 — 1)
3 Ao+ A1 < (1—a2)
4 As + A < a2

ry x2 €{0,1}
AFAMFX+ A3+ <1 Ao, A, A2, A3,04 >0

Logarithmic Formulations
[e]e]e] le]e)

Logarithmic Model for SOS2 over ();)j_, € A” C R’

o J={0,...,4}, [={1,...,4}.
B(i)

i M <y
2 Xo < (1 — 1)
3 Ao+ A1 < (1—a2)
4 As + A < a2

ry x2 €{0,1}
AFAMFX+ A3+ <1 Ao, A, A2, A3,04 >0

@)9 does not show in any constraint!

Logarithmic Formulations
[e]e]e] le]e)

Logarithmic Model for SOS2 over ();)j_, € A” C R’

o J={0,...,4}, [={1,...,4}.
B(i)

i M <y
2 Xo < (1 — 1)
3 Ao+ A1 < (1—a2)
4 As + A < a2

ry x2 €{0,1}
A+ AL+ A+ A3+ A <1, Ao, A, A2, A3, >0
@ First Option: Add Mo < z1+ 9, X <2—x1 — 20.

Logarithmic Formulations
[e]e]e] le]e)

Logarithmic Model for SOS2 over ();)j_, € A” C R’

o J={0,...,4}, [={1,...,4}.
B(i)

s
i M <@

2 Mo < (1— 1)
3 Xo+ A < (1—a2)

ry x2 €{0,1}

Ao+ AL+A+ A3+ A <1, Ao, A1, A2, A3, A4 >0
@ Second Option: Modify B(7).

Logarithmic Formulations
[e]e]e] le]e)

Logarithmic Model for SOS2 over ();)j_, € A” C R’

o J={0,...,4}, [={1,...,4}.
B(i)

i M <y
; =0
3 Ao+ M < (1—)

ry x2 €{0,1}

Ao+ AL+A+ A3+ A <1, Ao, A1, A2, A3, A4 >0
@ Second Option: Modify B(7).

Logarithmic Formulations
[e]e]e] le]e)

Logarithmic Model for SOS2 over ();)j_, € A” C R’

o J={0,...,4}, [={1,...,4}.
B(i)

i Ay < 3y
2 Mo+ A < (1—ay)
3 Xo+ A < (1—a2)
4 As + As <

ry x2 €{0,1}
AFAMFX+ A3+ <1 Ao, A, A2, A3, 04 >0

@ Second Option: Modify B(7).

Logarithmic Formulations
[e]e]e] le]e)

Logarithmic Model for SOS2 over ();)j_, € A” C R’

o J={0,...,4}, [={1,...,4}.
B(i)

s,
i A2 < @
2 Mo+ A < (1—ay)
3 Xo+ A < (1—a2)
4 As + As <

ry x2 €{0,1}
AFAMFX+ A3+ <1 Ao, A, A2, A3, 04 >0

e Condition: B(i) and B(i + 1) only differ in one component
(Gray codes).

Logarithmic Formulations
[e]e]e]e] o)

Logarithmic Model and Independent Branching

Logarithmic Formulations
[e]e]e]e]e])

Independent Branching Scheme for A € | J,.; Q(S;)

@ Independent Branching: Ly, Ry C J s.t.

Jas)

el k:l

D&

Q(Lr) U Q(Rk))
(Q(S;) ={re A : \; <0V ¢ S;})

e Formulation: A € A7 plus Vk € {1,...,d}

JELk JERE

@ Independent branchings for SOS1 and SOS2 have “depth”
d = [log, |1]].

Piecewiselinear Functions

000

Application: Piecewiselinear Functions

o Single variable: SOS2 on A € A7 for J = {0,..., K}.

f(d2)
f(d1)

Piecewiselinear Functions
@00

Application: Piecewiselinear Functions

o Single variable: SOS2 on A € A7 for J = {0,..., K}.
e Extension for f(z,y) : [0, K]*> — R (Lee and Wilson 01,
Martin et. al 06)

Y
4
e’
3 relJews)
el
2 o J=1{0,...,K}? = {vertices}.
o [= {triangles},
1 S; = {vertices of triangle i}
0 T (ST:{(070)7(170)7(171)})'

Piecewiselinear Functions

oeo

Independent Branching for Two Variable Functions

@ Select a triangle by forbidding the
use of vertices (J = {vertices}):

Z/\jﬁxk

J¢Lk
> A< (1 —ap)
JE Rk

X € {0, 1}

Piecewiselinear Functions

oeo

Independent Branching for Two Variable Functions

@ Select a triangle by forbidding the
use of vertices (J = {vertices}):

Z Aj <y
JELy
> A< (1 —ap)
JER
T € {0, 1}

Piecewiselinear Functions

oeo

Independent Branching for Two Variable Functions

@ Select a triangle by forbidding the
use of vertices (J = {vertices}):

Z)\jﬁl‘k

JEL
Z Aj < (1 —wp)
JERK

xp € {0,1}

o Ly =J\ Ly, Ry, = J\ Ry.

Piecewiselinear Functions
oeo

Independent Branching for Two Variable Functions

@ Select a triangle by forbidding the
use of vertices (J = {vertices}):

Y Z)\jﬁl‘k

4 j€Lk
5 Z Aj < (1 —my)
JER

9 xp € {0,1}

o Lp=J\ Ly, R, =J\ Ry.
1

@ Two phases:

T @ Square selection: SOS2 for each

00 1 9 3 4 T component. (Tomlin 81 and

Martin et. al. 06)
K=4 @ Triangle selection.

Piecewiselinear Functions
[e]e]]

Triangle Selecting Independent Branching: Select one of

the two triangles in each square

@ Forbid white triangles in one
branch and grey triangles in the
other.

L={(r,s)€J : revenand s odd}
3m u | = {square vertices}
R={(r,s) €J : roddand s even}

2] = {diamond vertices}
1 n .
0 L 4 .4

0 1 2 3 4

Piecewiselinear Functions
[e]e]]

Triangle Selecting Independent Branching: Select one of

the two triangles in each square

@ Forbid white triangles in one
branch and grey triangles in the
other.

L={(r,s)€J : revenand s odd}
3m u | = {square vertices}
R={(r,s) €J : roddand s even}

2] = {diamond vertices}
Im N u @ Depth of independent branching is
[log, 7] for
0 4 * = i
0 $ 5 2 1 T = total # of triangles.

Computational Results
90000

Computational Experiments (Instances)

@ Single Variable:

10 x 10 transportation problems.

Minimize) . fe(®e). ze = flow in arc e.

fe(xe) non-decreasing continuous concave piecewiselinear.
Number of segments where f.(z.) is linear: K = {4, 8,16, 32}.

@ Two Variables:
e 5 X 5 two-commodity transportation problems.
o Minimize Y . fe(al, 22). i = flow of commodity i in arc e.
o fo(xl,22) interpolation on grid of g (||(:ci,:cf)”2)
g non-decreasing continuous concave piecewiselinear.
o Interpolation grid resolution: 4 x 4, 8 x 8 and 16 x 16.

@ 100 instances for each K or grid resolution.

Computational Results
0@000

Computational Experiments (Solver and Formulations)

@ Solver and Machine Stats:
e CPLEX 11.
e Dual 2.4GHz Xeon Linux workstation with 2GB of RAM.
e Time Limit of 10,000 seconds.

@ Formulations:

(Log) Logarithmic formulation.

(LB1) Independent branching formulations of linear
depth (Shields 2007). Only for single variable.

(LB2) Independent branching formulations of linear
depth (Martin et. al. 2006).

(SOS2) SOS2 based formulation. Only for single

variable.

(MC) Multiple choice formulation (Jeroslow and Lowe
1984, Balakrishnan and Graves 1989, Croxton
et. al 2003).

Computational Results
[e]e] le]e]

Average Solve Times for One Variable Functions

10000
(Log)
(LB1)
(S0S2)
—_ (MC)
2 1000 F E
[0]
>
—
(0]
n
g 100 5
-
B
[0)
o
G
o
o 10 E
<
1

4 8 16 32

Number of Segments

Computational Results
[e]e]e] Jo]

Average Solve Times for Two Variable Functions

Average Time Solve [s]

10000

1000

100 ¢

10 ¢

(Log) mmmm
(LB2) o
(MC) ———

4x4 8x8 16x16

Grid Resolution

Computational Results
[e]e]ele]]

Advantage of Independent Branching Formulations

@ Independent branching formulations effectively turn CPLEX's
binary branching into a specialized branching scheme (e.g.
SOS2 branching).

@ Independent branching formulations are “as tight as possible":

o Projection of LP relaxation into A variables is
conv (U Q(Sﬁ) =AY,
icl

o Might not hold if A’ is replaced by a box in R”.

Final Remarks
e0

LP Relaxation Tightness and Disjunctive Programming:

A€ Uies Q(S), Q(S:) = {\ € 2 A <0V ¢S}

@ Traditional Linear Size Formulations:

A< Z{i:jesi} z, VjeJ
Zidxi =1, =z €{0,1} Viel

o Simplification of standard Lifted Disjunctive Formulation.
o Preserves Convex Hull Property (Jeroslow 88).

@ Independent Branching: [U;c; Q(S:) = Nz, (Q(Lx) U Q(Ry))
e For A € Q(Lk) U Q(Rk)

Nj<axp VigdLy, N<(1—-xp) Vji¢Ry

© Constraint Aggregation:

ngsz Aj <IN\ Li| e, ngsz Aj [T\ R (1=)

Final Remarks
oe

Summary

@ First logarithmic formulations for SOS1-SOS2 constraints and
piecewiselinear functions of one variable.
@ Independent Branching Scheme:
o Sufficient condition for logarithmic formulation.
o First logarithmic formulation for piecewiselinear functions of
two variables.
@ Logarithmic formulations can provide a significant
computational advantage.
@ Is independent branching a necessary condition?
e Cardinality constraints: No independent branching, yet
standard formulation is logarithmic.
@ Extension to piecewise linear function of n variables:

/ Logarithmic on K (for fixed n).
X Not Logarithmic on n.

	Introduction
	

	Logarithmic Formulations
	

	Piecewiselinear Functions
	

	Computational Results
	

	Final Remarks
	

