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Introduction

Constraints: Only some subsets of variables can be

non-zero at the same time

@ SOSI: X € [0,1]™ such that at most one \; is non-zero.

e SOS2: (A ) o € [0,1]""! such that at most two \;'s are
non-zero. Two non-zero \;'s must be adjacent:

v (0,1,3,0,0) X (0,1,0,3,0)

@ In general, for finite set J and finite family {S;}icr C J
relJacs
il

where Q(S;) = {A € [0,1]7 : X; <O0Vj ¢ S;}.
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Standard MIP models have |I| binaries and |.J| extra
constraints.
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One-to-One correspondence between elements of I and
vectors in {0, 1}°e21

B:I— {0, 1}f10g2 111

o Easy to get a formulation with
[log, |I]] binary variables and
|I| extra constraints (e.g.
Ibaraki 1976).

o]

(2)«—{1]0]0][0] o In general, an injective function:
o]
o]
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Log number of binary variables extra constraints for

SOSlover A\ e AV CRY, (I=J={1,...,4})

i S B(i)
)\2 + )\4 S X1

M+ < (1—aq)

A1+ A2 < (1 —x9)

o
HE
HH

A3+ Ay < 9

z1 z2  €{0,1}
AMAX+ A3+ <10 A, A, A3, >0

@ In general [log, |I|] binaries and 2[log, ||] extra constraints.
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@ )9 does not show in any constraint!
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@ First Option: Add Mo < z1+ 9, X <2—x1 — 20.
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Logarithmic Model for SOS2 over ();)j_, € A” C R’

o J={0,...,4}, [ ={1,...,4}.
B(i)

s,
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2 Mo+ A < (1—ay)
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e Condition: B(i) and B(i + 1) only differ in one component
(Gray codes).
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Logarithmic Model and Independent Branching
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Independent Branching Scheme for A € | J,.; Q(S;)

@ Independent Branching: Ly, Ry C J s.t.

Jas)

el k:l

D&

Q(Lr) U Q(Rk))
(Q(S;) ={re A : \; <0V ¢ S;})

e Formulation: A € A7 plus Vk € {1,...,d}

JELk JERE

@ Independent branchings for SOS1 and SOS2 have “depth”
d = [log, |1]].
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Application: Piecewiselinear Functions

o Single variable: SOS2 on A € A7 for J = {0,..., K}.

f(d2)
f(d1)
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Application: Piecewiselinear Functions

o Single variable: SOS2 on A € A7 for J = {0,..., K}.
e Extension for f(z,y) : [0, K]*> — R (Lee and Wilson 01,
Martin et. al 06)

Y
4
e’
3 relJews)
el
2 o J=1{0,...,K}? = {vertices}.
o [ = {triangles},
1 S; = {vertices of triangle i}
0 T (ST:{(070)7(170)7(171)})'
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Independent Branching for Two Variable Functions

@ Select a triangle by forbidding the
use of vertices (J = {vertices}):

Z/\jﬁxk

J¢Lk
> A< (1 —ap)
JE Rk

X € {0, 1}
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Independent Branching for Two Variable Functions

@ Select a triangle by forbidding the
use of vertices (J = {vertices}):

Z Aj <y
JELy
> A< (1 —ap)
JER
T € {0, 1}
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Independent Branching for Two Variable Functions

@ Select a triangle by forbidding the
use of vertices (J = {vertices}):

Z)\jﬁl‘k

JEL
Z Aj < (1 —wp)
JERK

xp € {0,1}

o Ly =J\ Ly, Ry, = J\ Ry.
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Independent Branching for Two Variable Functions

@ Select a triangle by forbidding the
use of vertices (J = {vertices}):

Y Z)\jﬁl‘k

4 j€Lk
5 Z Aj < (1 —my)
JER

9 xp € {0,1}

o Lp=J\ Ly, R, =J\ Ry.
1

@ Two phases:

T @ Square selection: SOS2 for each

00 1 9 3 4 T component. (Tomlin 81 and

Martin et. al. 06)
K=4 @ Triangle selection.
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Triangle Selecting Independent Branching: Select one of

the two triangles in each square

@ Forbid white triangles in one
branch and grey triangles in the
other.

L={(r,s)€J : revenand s odd}
3m u | = {square vertices}
R={(r,s) €J : roddand s even}

2] = {diamond vertices}
1 n .
0 L 4 .4

0 1 2 3 4
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Triangle Selecting Independent Branching: Select one of

the two triangles in each square

@ Forbid white triangles in one
branch and grey triangles in the
other.

L={(r,s)€J : revenand s odd}
3m u | = {square vertices}
R={(r,s) €J : roddand s even}

2] = {diamond vertices}
Im N u @ Depth of independent branching is
[log, 7] for
0 4 * = i
0 $ 5 2 1 T = total # of triangles.
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Computational Experiments (Instances)

@ Single Variable:

10 x 10 transportation problems.

Minimize ) . fe(®e). ze = flow in arc e.

fe(xe) non-decreasing continuous concave piecewiselinear.
Number of segments where f.(z.) is linear: K = {4, 8,16, 32}.

@ Two Variables:
e 5 X 5 two-commodity transportation problems.
o Minimize Y . fe(al, 22). i = flow of commodity i in arc e.
o fo(xl,22) interpolation on grid of g (||(:ci,:cf)”2)
g non-decreasing continuous concave piecewiselinear.
o Interpolation grid resolution: 4 x 4, 8 x 8 and 16 x 16.

@ 100 instances for each K or grid resolution.
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Computational Experiments (Solver and Formulations)

@ Solver and Machine Stats:
e CPLEX 11.
e Dual 2.4GHz Xeon Linux workstation with 2GB of RAM.
e Time Limit of 10,000 seconds.

@ Formulations:

(Log) Logarithmic formulation.

(LB1) Independent branching formulations of linear
depth (Shields 2007). Only for single variable.

(LB2) Independent branching formulations of linear
depth (Martin et. al. 2006).

(SOS2) SOS2 based formulation. Only for single

variable.

(MC) Multiple choice formulation (Jeroslow and Lowe
1984, Balakrishnan and Graves 1989, Croxton
et. al 2003).



Computational Results
[e]e] le]e]

Average Solve Times for One Variable Functions
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Average Solve Times for Two Variable Functions

Average Time Solve [s]

10000

1000

100 ¢

10 ¢
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Advantage of Independent Branching Formulations

@ Independent branching formulations effectively turn CPLEX's
binary branching into a specialized branching scheme (e.g.
SOS2 branching).

@ Independent branching formulations are “as tight as possible":

o Projection of LP relaxation into A variables is
conv (U Q(Sﬁ) =AY,
icl

o Might not hold if A’ is replaced by a box in R”.
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LP Relaxation Tightness and Disjunctive Programming:

A€ Uies Q(S), Q(S:) = {\ € 2 A <0V ¢S}

@ Traditional Linear Size Formulations:

A< Z{i:jesi} z, VjeJ
Zidxi =1, =z €{0,1} Viel

o Simplification of standard Lifted Disjunctive Formulation.
o Preserves Convex Hull Property (Jeroslow 88).

@ Independent Branching: [U;c; Q(S:) = Nz, (Q(Lx) U Q(Ry))
e For A € Q(Lk) U Q(Rk)

Nj<axp VigdLy, N<(1—-xp) Vji¢Ry

© Constraint Aggregation:

ngsz Aj <IN\ Li| e, ngsz Aj [T\ R (1= )



Final Remarks
oe

Summary

@ First logarithmic formulations for SOS1-SOS2 constraints and
piecewiselinear functions of one variable.
@ Independent Branching Scheme:
o Sufficient condition for logarithmic formulation.
o First logarithmic formulation for piecewiselinear functions of
two variables.
@ Logarithmic formulations can provide a significant
computational advantage.
@ Is independent branching a necessary condition?
e Cardinality constraints: No independent branching, yet
standard formulation is logarithmic.
@ Extension to piecewise linear function of n variables:

/ Logarithmic on K (for fixed n).
X Not Logarithmic on n.
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