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Introduction
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Disjunctive Constraint:

Union of Polyhedra

@ For a finite index set [
ze|JP CcR™
el
o P={zeR": Az <b'}.
@ Assume P;'s are polytopes for simplicity.

e Balas (79), Blair (76), Jeroslow (77),
Sherali and Shetty (80),. ..
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Modeling a Disjunctive Constraint as an MIP

e For finite index set I, z € (J;c; {z € R® : A’z < b'} can be
modeled as the following standard MIP

z = Z 24,
el
Al <abt Viel,

in = 1,

2 €{0,1} Viel,
2l e R® Viel.

@ Balas (79), Jeroslow and Lowe (84), ...

@ Number of binary variables and constraints are linear in |I|.
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The Standard MIP is Tight

Projection of LP relaxation into original z

variables is
conv (U PZ-> .
iel

Having multiple copies of continuous
variables is usually necessary for a tight
formulation.

Reducing the number of continuous
variables has been studied by Balas (88),
Blair (90), Jeroslow (88).

Reducing the number of binary variables
has received little attention Ibaraki (76).
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Reducing the Number of Binary Variables

For I =[0,ulNZ
€ [0,unZ = J{i}
icl
the traditional model can be simplified to
= im, Y m=1, z€{0,1} Viel
iel el
But we can reduce the number of binaries from |I| = u + 1 to

[logy u]

Z 2x;, z<u, xz;€{0,1} Vie{0,...,|logyul}.



Logarithmic Formulations
00000000000

Special Type of Disjunctive Constraints: Only some

subsets of variables can be non-zero at the same time

e SOS1: A € [0,1]" such that at most one \; is non-zero.
@ SOS2: ()i, € [0, 1]"*1 such that at most two \;'s are
non-zero. Two non-zero \;’'s must be adjacent.

v (0,1,%,0,0)
X (0,1,0,3,0)
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Special Type of Disjunctive Constraints: Only some

subsets of variables can be non-zero at the same time

e SOS1: A € [0,1]" such that at most one \; is non-zero.

@ SOS2: ()i, € [0, 1]"*1 such that at most two \;'s are
non-zero. Two non-zero \;’'s must be adjacent.
v (0,1,%,0,0)
X (0,1,0,3,0)
@ In general, for finite set J and finite family {S;};c; C J

relJews) cr]
i€l
where Q(S;) = {AeR] : A\; <0Vj ¢ S;}.

e For SOS1: J—I—{l,...,n} and S; = {i} for all i € I.

e For SOS2: J={0,...,n}, I ={1,...,n} and S; = {i — 1,4}
for all ¢ € I.
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First MIP Model

o For “simplicity” we restrict to the simplex
Al ={NeR]: >_jesAj < 1} and consider

relJoes) ca’
i€l
where Q {)\GAJ : )\j <0Vjy ¢ Sl}

e Standard MIP simplifies to:
Ae A

NS> w Vield
{i:j€S:}
Zmi =1
el
z; € {0,1} Viel
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First MIP Model

o For “simplicity” we restrict to the simplex
Al ={NeR]: >_jesAj < 1} and consider

relJoes) ca’
el
whereQ {)\GAJ : )\JSOV]¢51}
e Standard MIP simplifies to:
Ae A
NS> w Vield
{l]ESZ}
iel
z; € {0,1} Viel

@ |I| binaries and |J| extra constraints.
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First MIP Model

o For “simplicity” we restrict to the simplex
Al ={NeR]: >_jesAj < 1} and consider

relJoes) ca’
i€l
where Q {)\GAJ : )\j <0Vjy ¢ Sl}

e Standard MIP simplifies to:
J
1G)={iel:jesy AEA

z; € {0,1} Viel

@ |I| binaries and |J| extra constraints.



Logarithmic Formulations

Using Binary Expansion for z € [0,u] NZ for u = 2F — 1

z — logyu ——

@ @ One-to-One correspondence
between integers in [0, u] and
o nn @ vectors in {0, 1}o82
(2)«—{0]1]0][0]
(3)e—{1[1]0][0]
1
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z — logy |I| —

0 nnn @ @ One-to-One correspondence

between integers in [0, u] and

o o nn @ vectors in {0, 1}o82

@ One-to-One correspondence

e 9 nn @ between elements of I and

vectors in {0, 1}z /],
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Using Binary Expansion for z € [0,u] NZ for u = 2F — 1

1

z — logy |I| —

0 nnn @ @ One-to-One correspondence

between integers in [0, u] and

o o nn @ vectors in {0, 1}o82

@ One-to-One correspondence

e 9 nn @ between elements of I and

vectors in {0, 1}z ],

o 9 n @ @ In general, we need an injective

function:

B: 1 — {0,1} sz /1]

O O FIFIFIE Y

1I| = 2%
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Model for SOS1 over A € AT C RY, (I =J={1,...,4})

e For injective function B : I — {0, 1}o82 111
i S B(7)

(Whe—{o]o]
(@)e—{1]0]

>\1+)\2+)\3+)\4§17 )\17>\27/\37>\420

—_

[\)

w

W
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Model for SOS1 over A € AT C RY, (I =J={1,...,4})

e For injective function B : I — {0, 1}o82 111
i S B(7)

(Whe—{o]o]
(@)e—{1]0]

z1 z2  €{0,1}

—_

[\)

w

W

>\1+)\2+)\3+)\4§17 )\17>\27/\37>\420
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Model for SOS1 over A € AT C RY, (I =J={1,...,4})

e For injective function B : I — {0, 1}o82 111
i S B(7)

1 (e={0]0] Notrg+ <o+
2 ((2)e—{1]0]
3
4

z1 z2  €{0,1}

>\1+)\2+)\3+)\4§17 )\17>\27/\37>\420
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Model for SOS1 over A € AT C RY, (I =J={1,...,4})

e For injective function B : I — {0, 1}o82 111
i S B(7)

1 (e={0]0] Notrg+ <o+

2 (2he={1]0] M+A+M<(Q—a1)+a
:

4

z1 z2  €{0,1}

>\1+)\2+)\3+)\4§17 )\17>\27/\37>\420
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Model for SOS1 over A € AT C RY, (I =J={1,...,4})

e For injective function B : I — {0, 1}o82 111
i S B(7)

1 @ A+ A3+ M <21+ 29
2 @ )\1+)\3+)\4§(1—$1)+I2

3 AL+ s+ A < a4 (1—29)
4 M+ X+ A3 < (1—x1)+ (1 —22)

z1 z2  €{0,1}
AMAA+FA3+A <1 A A2, A3, >0
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Model for SOS1 over A € AT C RY, (I =J={1,...,4})

e For injective function B : I — {0, 1}o82 111
i S B(7)

1 @ A+ A3+ M <21+ 29
2 @ )\1+)\3+)\4§(1—$1)+I2

3 AL+ s+ A < a4 (1—29)
4 M+ X+ A3 < (1—x1)+ (1 —22)

z1 z2  €{0,1}
AMAA+FA3+A <1 A A2, A3, >0

@ In general: [log, |I|] binaries and |I| extra constraints.
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Reducing the Number of Constraints for SOS1 over

NeATCRYE, (I=J={1,...,4})

o For injective function B : I — {0, 1}o82 111
i S B(7)

(We—{o]0]
@)e—{1]0]

z1 z2  €{0,1}

[y

[\)

w

.

)\1+)\2+)\3+)\4S17 )\17)\27)\37)\420
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Reducing the Number of Constraints for SOS1 over

NeATCRYE, (I=J={1,...,4})

o For injective function B : I — {0, 1}o82 111
i S B(7)

(We—{o]0]
@)e—{1]0]

z1 z2  €{0,1}
L |

[y

[\)

w

.

)\1+)\2+)\3+)\4S17 )\17)\27)\37)\420
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Reducing the Number of Constraints for SOS1 over

NeATCRYE, (I=J={1,...,4})

o For injective function B : I — {0, 1}o82 111
i S B(7)

{1he—{o]o]
E—(1o
O=pn

r1 z2  €{0,1}
L |

[y

[\)

w

.

)\1+)\2+)\3+)\4S17 )\17)\27>\37)\420
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Reducing the Number of Constraints for SOS1 over

NeATCRYE, (I=J={1,...,4})

o For injective function B : I — {0, 1}o82 111
i S B(7)

(e—folo]  nnen
@S nG
(11

r1 z2  €{0,1}
L |

[y

[\)

w

.

)\1+)\2+)\3+)\4S17 )\17)\27>\37)\420
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Reducing the Number of Constraints for SOS1 over

NeATCRYE, (I=J={1,...,4})

o For injective function B : I — {0, 1}o82 111
i S B(7)

1 Ao+ <z
2 (2] 0]

s (&1

t ({2 1]

z1 z2  €{0,1}
L |

)\1+)\2+)\3+)\4S17 )\17)\27)\37)\420



Logarithmic Formulations
0000e000000

Reducing the Number of Constraints for SOS1 over

NeATCRYE, (I=J={1,...,4})

o For injective function B : I — {0, 1}o82 111
B(i)

1 Sl

1 Ao+ <y

2 @\)\1+)\3§(1—x1)
Yo Woral

t ({2 1]

z1 z2  €{0,1}
L |

)\1+)\2+)\3+)\4S17 )\17)\27)\37)\420
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Reducing the Number of Constraints for SOS1 over

NeATCRYE, (I=J={1,...,4})

o For injective function B : I — {0, 1}o82 111
i S B(7)

(100 Ao+ A <
(2h—{1]0] M+ < (1—y)

z1 z2  €{0,1}
L |

[y

[\)

w

.

)\1+)\2+)\3+)\4S17 )\17)\27>\37)\420
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Reducing the Number of Constraints for SOS1 over

NeATCRYE, (I=J={1,...,4})

o For injective function B : I — {0, 1}o82 111
i S B(7)

1 (1)e—fo]0] o+ A <1
2 ({2he—{1]0] M+ < (1—ay)
3 AL+ g < (1 - )
4 s+ A < 2

z1 z2  €{0,1}
MAA+A3+A <1 A, A2, A3, >0
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Model with a Logarithmic Number of Binary Variables and

Extra Constraints

o I*(l):={iel: B(i) =1}
(1) B(i) A >0 Vied
S <1
|I+(l)‘ g " " .

z;€{0,1} Vie{l,...,L}

<
[
E
N
N_»H
=
h

L = [log, |1]]
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Model with a Logarithmic Number of Binary Variables and

Extra Constraints

o I"(l):={iel: B(i)) =1}

(1) B(i) A>0 VjelJ
<1
i€l

[17(1)

zef{0,1} Wiefl,... L}

E
5]
y ===
o
<]

>
<.
|

o

If I(j) C IT(1), 2 = L = [log, |1]]
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Model with a Logarithmic Number

Extra Constraints

of Binary Variables and

o I*(l):={ic I : B(i) =1}.
() B(i)

<

[
E
N

N_»H .
@ -
h

T ={je s I(j) c 1" (1)}

A >0 Vel

ZAjgl

Jje€J

z €{0,1} Vie{l,...,

[logs [1]]

L}
L=
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Model with a Logarithmic Number of Binary Variables and

Extra Constraints

o It():={iel: B(i), =1}
(1) B(i) A >0 Vied
<1
ieJ
|I+<z> = 2 s
. JEJT()

z;€{0,1} Vie{l,...,L}

<
[
E
N
N_»H
=
h

JH):={jeJ: I(j) cIti)} L = [log, |1[]



Logarithmic Formulations
00000800000

Model with a Logarithmic Number of Binary Variables and

Extra Constraints

(1) B(i) A >0 Yield
(Si,Je—{bn [0 ] [0 ] b <1
@ @ i€t
\IO(Z)\ 2 " . 4 Z )\j <
je+()
Gy ~[2]
t ne{0,1} Vie{l,.. . L}

JO) :={jeJ:I(j) cI°l)} L = [log, 1]
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Model with a Logarithmic Number of Binary Variables and
Extra Constraints

11°(1)

A20 Vied
PBRYES
JjeJ
Z Aj <1y
jeJ*t @)
Yoo l-m
jeJo )

ze{0,1} Vie{l,... L}

L = [log, |1]]
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Model with a Logarithmic Number
Extra Constraints

of Binary Variables and

A >0 Vied
S <
” jeJ

Z Aj <

jeJ*t ()

11°(D)

_ Yooy <-m)

JEJO()
zef{0,1} Wiefl,... L}

[log, |I]] binary variables and 2[log, |I|] extra constraints.
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Logarithmic Model for SOS2 over ();)j_, € A” C R%.

o J={0,...,4}, I =1{1,...,4}.
B(i)

i M <y
2 Mo < (1-21)
3 Ao+ A1 < (11— a2)
4 As + A < a2

ry x2  €{0,1}
AFAMFX+ A3+ <1 Ao, A, A2, A3,04 >0
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Logarithmic Model for SOS2 over ();)j_, € A” C R%.

o J={0,...,4}, I =1{1,...,4}.
B(i)

i M <y
2 Mo < (1-21)
3 Ao+ A1 < (11— a2)
4 As + A < a2

ry x2  €{0,1}
AFAMFX+ A3+ <1 Ao, A, A2, A3,04 >0

@ )y does not show in any constraint!
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Logarithmic Model for SOS2 over ();)j_, € A” C R%.

o J={0,...,4}, I =1{1,...,4}.
B(i)

i M <y
2 Mo < (1-21)
3 Ao+ A1 < (11— a2)
4 As + A < a2

ry x2  €{0,1}
A+ AL+ A+ A3+ A <1, Ao, A, A2, A3, >0
@ First Option: Add Mo < z1+ 9, X <2—x1 — 20.
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Logarithmic Model for SOS2 over ();)j_, € A” C R%.

o J={0,...,4}, I =1{1,...,4}.
B(i)

s
i M <@

2 o < (1— 1)
3 Mo+ A1 < (1— )

ry x2  €{0,1}
A FAL+ A+ A3+ A <1 Ao, A, A2, Az, A > 0
@ Second Option: Modify B(7).
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Logarithmic Model for SOS2 over ();)j_, € A” C R%.

o J={0,...,4}, I =1{1,...,4}.
B(i)

i A < m
2 20—
3 Mo+ M < (1 — )

ry x2  €{0,1}
A FAL+ A+ A3+ A <1 Ao, A, A2, Az, A > 0
@ Second Option: Modify B(7).
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Logarithmic Model for SOS2 over ();)j_, € A” C R%.

o J={0,...,4}, I =1{1,...,4}.
B(i)

i Ay < 1y
2 Mo+ As < (1— )
3 Mo+ A1 < (1— )
4 As + As <

ry x2  €{0,1}
AFAMFX+ A3+ <1 Ao, A, A2, A3, 04 >0

@ Second Option: Modify B(7).
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Logarithmic Model for SOS2 over ();)j_, € A” C R%.

o J={0,...,4}, I =1{1,...,4}.
B(i)

i Ay < 1y
2 Mo+ As < (1— )
3 Mo+ A1 < (1— )
4 As + As <

ry x2  €{0,1}
AFAMFX+ A3+ <1 Ao, A, A2, A3, 04 >0

e Condition: B(i) and B(i + 1) only differ in one component.
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Logarithmic Model and Independent Branching
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Independent Branching Scheme for A € | J,.; Q(S;)

d
e = M (@QLr) UQ(R))

el k=1

For {Ly, Ry }¢_, with
Ly, R, C J.

d = "“depth”
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Independent Branching Scheme for A € | J,.; Q(S;)

d
e = M (@QLr) UQ(R))

el k=1

For {Ly, Ry }¢_, with

B :U €T :l
Ly, Ry C J. v !

322:0

d = "“depth”

Q0,11 U Q(1,2}) U Q({2,3) U Q({3,4}) =
(QU0.1,2huQ({2.3,4) )n(QU0. 1,3.4)UQ({1,2.3}))
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Formulation from Independent Branching Scheme

@ For an independent branching {Lk,Rk}gzl of
A€ Uier Q(S):
Aj >0 VjeJ
A<t
J€J
>N < Vke{1,...,d}
JELk
Z AN <(Q—x) VEe{l,...,d}
JER
zp €{0,1} Vk e {l,...,d}

@ d binary variables and 2d extra constraints.

@ Independent branchings for SOS1 and SOS2 have
d = [log, |1]].



Logarithmic Formulations
000000000 0e

Independent Branching Formulation is Tight

o Formulation:

Ae A
dod<a, > N < (-,
Pl J¢Lk J¢ Ry

zp €{0,1} Vke{l,...,d}

@ Projection of LP relaxation into A
variables is

P3 conv <U Q(Si)) =AY,

iel

@ Might not hold if A” is replaced by a box
in R.



Piecewiselinear Functions
@0000

SOS2 Model for Continuous Non-convex Piecewiselinear

Functions

f(d2)
f(dy)

Aj >0 vj e {0,...,K}
(M), is SOS2
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SOS2 Model for Continuous Non-convex Piecewiselinear

Functions

f(d2)

Aj >0 vj€{0,...,K}
K=3 (M), is SOS2
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SOS2 Model for Continuous Non-convex Piecewiselinear

Functions

f(da) Zdj/\j .
f(dy) jeJ

> fdj)Ay = f(x)

jeJ

doa=1
f(do) jed
f(ds) A >0 vjeJ
0

(M) is SOS2

o J={0,...,K}.
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SOS2 Model for Continuous Non-convex Piecewiselinear

Functions

f(da) Zdj/\j .
f(dy) jet

> fdj)Ay = f(x)

jed

d =1
f(do) jed
f(ds) Aj =0 vjedJ
0

(M) is SOS2

o J={0,...,K}.
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SOS2 Model for Continuous Non-convex Piecewiselinear

Functions

f(da) Zdj)\j .
f(dy) jeJ

D AN = f(=)

jed

d a1
f(do) jed
f(ds) Ae A
0

(Aj)1, is SOS2

K=3 @ Log formulation for SOS2 yields
formulation with [log, K| binary variables
o J={0,...,K}. and extra constraints.
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Extension to Non-Separable Piecewiselinear Functions of

Two Variables: f(z,v)

do di da ds
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Extension to Non-Separable Piecewiselinear Functions of
Two Variables: f(x,y)

D fGd2)A = fz,y)

) ,
4 jeJ
d a1

5 jeJ

Ae A’
2 A€ U Q(S:)

el

1 o J={0,...,K}? = {vertices}.
0 T o I = {triangles},

0 1 9 3 4 xS = {vertices of triangle i}

(ST = {(070)7 (17 0)7 (17 1)})
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Independent Branching for Two Variable Functions

@ Select a triangle by forbidding the
use of vertices (J = {vertices}):

Y Z)\jﬁxk

4 J¢Lk

5 Z Aj < (1 —xy)
J¢ R

€ {0,1
5 zy € {0,1}
1
T
0
0 1 3 4 T
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Independent Branching for Two Variable Functions

@ Select a triangle by forbidding the
use of vertices (J = {vertices}):

Y Z)\jﬁxk

4 J¢Lk

5 Z Aj < (1 —xy)
ngk:

€ {0,1
5 zy € {0,1}
1
T
0
0 1 3 4 T
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Independent Branching for Two Variable Functions

@ Select a triangle by forbidding the
use of vertices (J = {vertices}):

Y Z)\jﬁl‘k

4 jefk

3 Z A 1 —l‘k
JER

9 xp € {0,1}

) o Tp=J\ Ly, Ry =J\ Ry

T
0
0 1 3 4 T
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Independent Branching for Two Variable Functions

@ Select a triangle by forbidding the
use of vertices (J = {vertices}):

Y Z)\jﬁl‘k

4 j€Lk
5 Z Aj < (1 —my)
JERy

9 xp € {0,1}
) o Lp=J\ Ly, R, =J\ Ry.

@ Two phases:

T @ Square selection: applying SOS2
0 0 1 2 3 4 independent branching to each
component.

K=4 @ Triangle selection.
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Triangle Selecting Independent Branching

o Forbid white triangles in one
branch and grey triangles in the
other.

L={(r,s) €J : revenand s odd}
51 L u = {square vertices}
R={(r,s)€J : rodd and s even}

2] = {diamond vertices}
1m L .
0 4 .4

0 1 2 3 4
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Triangle Selecting Independent Branching

o Forbid white triangles in one
branch and grey triangles in the
other.

L={(r,s) €J : revenand s odd}
51 L u = {square vertices}
R={(r,s)€J : rodd and s even}

2] = {diamond vertices}
Im L u @ Triangle branching allows only one
triangle in each square.
0 & ¢
0 1 2 3 4
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Triangle Selecting Independent Branching

o Forbid white triangles in one
branch and grey triangles in the
other.

L={(r,s) €J : revenand s odd}
51 L u = {square vertices}
R={(r,s)€J : rodd and s even}

2] = {diamond vertices}

Im L u @ Triangle branching allows only one
triangle in each square.

00 Y 9 g 4 @ Depth of independent branching is

[logy, 7] for
T = total # of triangles.
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Example for Two Variable Function

A0,0) T A0,1) T A0,2) < T(1,1)

A2,0 T A2 T A2 <1 -2,
A0,0) T A1,0) T A2,0) < Z@2,1)

A2 TA12) T A2 <1 -0

Ao,1) + A1) < Zo,
A0 +Aa2) < 1— 0.
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Computational Experiments (Instances)

@ Single Variable:

10 x 10 transportation problems.

Minimize ) . fe(®e). . flow in arc e.

fe(xe) non-decreasing continuous concave piecewiselinear.
Number of segments where f.(z.) is linear: K = {4, 8,16, 32}.
5 base instances. 20 randomly generated objectives for each
base instance and each K. Total of 100 instances for each K.

@ Two Variables:

5 x 5 two-commodity transportation problems.

Minimize >y fe(xl, 2). 2% flow of commodity i in arc e.
fe(zl, x2) interpolation on grid of g (||(z!,22)]). g
non-decreasing continuous concave piecewiselinear.
Interpolation grid resolution: 4 x 4, 8 x 8 and 16 x 16.

5 base instances. 20 randomly generated objectives for each
base instance and gird resolution. Total of 100 instances per
grid resolution.
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Computational Experiments (Solver and Formulations)

@ Solver and Machine Stats:

e CPLEX 11.
e Dual 2.4GHz Linux workstation with 2GB of RAM.
e Time Limit of 10,000 seconds.

@ Formulations:

(Log) Logarithmic formulation.

(LB1) Independent branching formulations of linear
depth (Fuqua 2007). Only for single variable.

(LB2) Independent branching formulations of linear
depth (Martin et. al. 2006).

(SOS2) SOS2 based formulation. Only for single

variable.

(MC) Multiple choice formulation (Jeroslow and Lowe
1984, Balakrishnan and Graves 1989, Croxton
et. al 2003).
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Summary

@ Modeling a class of disjunctive constraints with a logarithmic
number of binary variables and constraints:
o First logarithmic formulations for SOS1-SOS2 constraints and
piecewiselinear functions of one variable.
@ Independent Branching Scheme:
e Sufficient condition for logarithmic formulation.
o First logarithmic formulation for piecewiselinear functions of
two variables.
@ Logarithmic formulations can provide a significant
computational advantage.
o Independent branching effectively turns CPLEX'’s variable
branching into a specialized branching (e.g. SOS2 branching).
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Future Work

@ Formulation for piecewiselinear can be extended to functions
of n variables in a K™ grid.
e Only works for specific triangulation.
o For fixed n, variable K,

# of variables and extra constr ~ log, (# simplices),
but for fixed K, variable n,

log, (# simplices) = o(# of variables and extra constr),
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o For fixed n, variable K,
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@ Independent branching is not a necessary condition for
logarithmic formulation:
o Cardinality constraints: limit at most K components of
A €[0,1]" to be non-zero. J = {1,...,n}, |I| = (j)
o Doesn't have independent branching, but for K = n/2 has
formulation of size O(log,(]1])):

doxy<K; Nel0d], A <a, a; {01} Vjeld
j=1
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