Advanced Mixed Integer Programming (MIP) Formulation Techniques

Juan Pablo Vielma
Massachusetts Institute of Technology

Center for Nonlinear Studies, Los Alamos National Laboratory. Los Alamos, New Mexico, August, 2016.

Traveling Salesman Problem (TSP): Visit Cities Fast

MIP = Avoid Enumeration

- Number of tours for 49 cities $=48!/ 2 \approx 10^{60}$
- Fastest supercomputer $\approx 10^{17}$ flops
- Assuming one floating point operation per tour:
$>10^{35}$ years $\approx 10^{25}$ times the age of the universe!
- How long does it take on an iphone?
- Less than a second!
- 4 iterations of cutting plane method!
- Dantzig, Fulkerson and Johnson 1954 did it by hand!
- For more info see tutorial in ConcordeTSP app
- Cutting planes are the key for effectively solving (even NPhard) MIP problems in practice.

50+ Years of MIP = Significant Solver Speedups

- Algorithmic Improvements (Machine Independent):
- CPLEX v1.2 (1991) - v11 (2007): 29,000x speedup
- Gurobi v1 (2009) - v6.5 (2015): 48.7x speedup
- Commercial, but free for academic use
- (Reasonably) effective free / open source solvers:
- GLPK, CBC and SCIP (free only for non-commercial)
- Easy to use, fast and versatile modeling languages
- Julia based JuMP modelling language
- Linear MIP solvers very mature and effective:
- Convex nonlinear MIP getting there (quadratic nearly there)

What do YOU need to do to use MIP?

1. Use JuMP

2. Construct a MIP formulation of your problem

- This talk:
- From non-convex constraints to linear MIP formulations
- One illustrative example
- Beyond linear MIP:

- Convex nonlinear MIP
- See Miles talk on Thursday

Example: Experimental Design in Marketing

Think "Simulation-Based" Optimization

(Custom) Product Recommendations via CBCA

	SX530	RX100
Feature	$50 x$	$3.6 x$
Zoom	\$249.99	\$399.99
Prize	15.68 ounces	7.5 ounces
Weight		\square
Prefer		

Feature	TG-4	Galaxy 2
Waterproof	Yes	No
Prize	$\$ 249.99$	$\$ 399.99$
Viewfinder	Electronic	Optical
Prefer		\square

Feature	TG-4	G9
Waterproof	Yes	No
Prize	$\$ 249.99$	$\$ 399.99$
Weight	7.36 lb	7.5 lb
Prefer	\square	a

We recommend:

Towards Optimal Product Recommendation

- Find enough information about preferences to recommend

- How do I pick the next ($\left.{ }^{\text {st }}\right)$ question to obtain the largest reduction of uncertainty or "variance" on preferences

Choice-based Conjoint Analysis

MNL Preference Model

- Utilities for 2 products, n features (e.g. $\mathrm{n}=12$)

$$
\begin{aligned}
& U_{1}=\beta \cdot x^{1}+\epsilon_{1}=\sum_{i=1}^{n} \beta_{i} x_{i}^{1}+\epsilon_{1} \\
& U_{2}=\beta \cdot x^{2}+\epsilon_{2}=\sum_{i=1}^{n} \beta_{i} x_{i}^{2}+\epsilon_{2}
\end{aligned}
$$

$\underset{\text { product profile }}{\text { part-worths }} \uparrow \uparrow \underset{\text { noise (gumbel) }}{ }$

- Utility maximizing customer: $x^{1} \succeq x^{2} \Leftrightarrow U_{1}{ }^{"} \geq$ " U_{2}
- Noise can result in response error:

$$
L\left(\beta \mid x^{1} \succeq x^{2}\right)=\mathbb{P}\left(x^{1} \succeq x^{2} \mid \beta\right)=\frac{e^{\beta \cdot x^{1}}}{e^{\beta \cdot x^{1}}+e^{\beta \cdot x^{2}}}
$$

Next Question To Reduce "Variance": Bayesian

- Black-box objective: Question Selection = Enumeration
- Question selection by Mixed Integer Programming (MIP)

Bayesian Update and Geometric Updates

D-Efficiency and Posterior Covariance Matrix

- "Variance" = D-Efficiency:
- $f\left(x^{1}, x^{2}\right):=\mathbb{E}_{\beta, x^{1}} \leq / \succeq x^{2}\left(\operatorname{det}\left(\Sigma_{i}\right)^{1 / p}\right)$
- Non-convex function
- Even evaluating expected D-Efficiency for a question requires multidimensional integration
$\beta \sim N(\mu, \Sigma)$

$$
\operatorname{cov}(\beta)=\Sigma_{1}
$$

$$
\operatorname{COV}(\beta)=\sum_{\text {Advanced }} 2
$$

Standard Question Selection Criteria

$$
(\beta-\mu)^{\prime} \cdot \Sigma^{-1} \cdot(\beta-\mu) \leq r
$$

- Choice balance:
- Minimize distance to center

$$
\mu \cdot\left(x^{1}-x^{2}\right)
$$

- Postchoice symmetry:
- Maximize variance of question

$$
\left(x^{1}-x^{2}\right)^{\prime} \cdot \sum \cdot\left(x^{1}-x^{2}\right)
$$

D-efficiency: Balance Question Trade-off

- D-efficiency $=$ Non-convex function $f(d, v)$ of distance: $d:=\mu \cdot\left(x^{1}-x^{2}\right)$ variance: $\quad v:=\left(x^{1}-x^{2}\right)^{\prime} \cdot \sum \cdot\left(x^{1}-x^{2}\right)$

Can evaluate $f(d, v)$ with 1-dim integral :

Optimization Model

min

$f(d, v)$
x
s.t.

$$
\begin{aligned}
\mu \cdot\left(x^{1}-x^{2}\right) & =d \\
\left(x^{1}-x^{2}\right)^{\prime} \cdot \sum \cdot\left(x^{1}-x^{2}\right) & =v \quad \boldsymbol{X} \\
A^{1} x^{1}+A^{2} x^{2} & \leq b \\
x^{1} & \neq x^{2} \quad \boldsymbol{X} \\
x^{1}, x^{2} & \in\{0,1\}^{n}
\end{aligned}
$$

Technique 1: Binary Quadratic $x^{1}, x^{2} \in\{0,1\}^{n}$

$$
\begin{aligned}
& \left(x^{1}-x^{2}\right)^{\prime} \cdot \sum \cdot\left(x^{1}-x^{2}\right)=v \\
& X_{i, j}^{l}=x_{i}^{l} \cdot x_{j}^{l} \quad(l \in\{1,2\}, \quad i, j \in\{1, \ldots, n\}): \\
& X_{i, j}^{l} \leq x_{i}^{l}, \quad X_{i, j}^{l} \leq x_{j}^{l}, \quad X_{i, j}^{l} \geq x_{i}^{l}+x_{j}^{l}-1, \quad X_{i, j}^{l} \geq 0 \\
& W_{i, j}=x_{i}^{1} \cdot x_{j}^{2}: \\
& W_{i, j} \leq x_{i}^{1}, \quad W_{i, j} \leq x_{j}^{2}, \quad W_{i, j} \geq x_{i}^{1}+x_{j}^{2}-1, \quad W_{i, j} \geq 0 \\
& \quad \sum_{i, j=1}^{n}\left(X_{i, j}^{1}+X_{i, j}^{2}-W_{i, j}-W_{j, i}\right) \sum_{i, j}=v
\end{aligned}
$$

Technique 1: Binary Quadratic $x^{1}, x^{2} \in\{0,1\}^{n}$

$$
\begin{aligned}
& x^{1} \neq x^{2} \quad \Leftrightarrow \quad\left\|x^{1}-x^{2}\right\|_{2}^{2} \geq 1 \\
& X_{i, j}^{l}=x_{i}^{l} \cdot x_{j}^{l} \quad(l \in\{1,2\}, \quad i, j \in\{1, \ldots, n\}): \\
& X_{i, j}^{l} \leq x_{i}^{l}, \quad X_{i, j}^{l} \leq x_{j}^{l}, \quad X_{i, j}^{l} \geq x_{i}^{l}+x_{j}^{l}-1, \quad X_{i, j}^{l} \geq 0 \\
& W_{i, j}=x_{i}^{1} \cdot x_{j}^{2}: \\
& W_{i, j} \leq x_{i}^{1}, \quad W_{i, j} \leq x_{j}^{2}, \quad W_{i, j} \geq x_{i}^{1}+x_{j}^{2}-1, \quad W_{i, j} \geq 0 \\
& \quad \sum_{i, j=1}^{n}\left(X_{i, j}^{1}+X_{i, j}^{2}-W_{i, j}-W_{j, i}\right) \geq 1
\end{aligned}
$$

Technique 2: Piecewise Linear Functions

- D-efficiency $=$ Non-convex function $f(d, v)$ of
distance: $d:=\mu \cdot\left(x^{1}-x^{2}\right)$
variance: $\quad v:=\left(x^{1}-x^{2}\right)^{\prime} \cdot \sum \cdot\left(x^{1}-x^{2}\right)$

Can evaluate $f(d, v)$ with 1-dim integral :

Piecewise Linear Interpolation

MIP formulation

Simple Formulation for Univariate Functions

$$
z=f(x)
$$

$$
\binom{x}{z}=\sum_{j=1}^{5}\binom{d_{j}}{f\left(d_{j}\right)} \lambda_{j}
$$

$$
1=\sum_{j=1}^{5} \lambda_{j}, \quad \lambda_{j} \geq 0
$$

$$
y \in\{0,1\}^{4}, \quad \sum_{i=1}^{4} y_{i}=1
$$

$$
0 \leq \lambda_{1} \leq y_{1}
$$

$$
0 \leq \lambda_{2} \leq y_{1}+y_{2}
$$

$$
0 \leq \lambda_{3} \leq y_{2}+y_{3}
$$

Size $=O$ (\# of segments)

$$
0 \leq \lambda_{4} \leq y_{3}+y_{4}
$$

$$
0 \leq \lambda_{5} \leq y_{4}
$$

Advanced Formulation for Univariate Functions

$$
\begin{aligned}
& z=f(x) \quad\binom{x}{z}=\sum_{j=1}^{5}\binom{d_{j}}{f\left(d_{j}\right)} \lambda_{j} \\
& 1=\sum_{j=1}^{5} \lambda_{j}, \quad \lambda_{j} \geq 0 \\
& f\left(d_{3}\right) \uparrow \\
& f\left(d_{2}\right) \\
& f\left(d_{5}\right) \\
& f\left(d_{1}\right) め \\
& f\left(d_{4}\right) y
\end{aligned}
$$

Computational Performance

- Advanced formulations provide an computational advantage
- Advantage is significantly more important for free
 solvers
- State of the art commercial solvers can be significantly better that free solvers
- Still, free is free!

Formulation Improvements can be Significant

Constructing Advanced Formulations

Abstracting Univariate Functions

Abstraction Works for Multivariate Functions

$$
P_{i}:=\left\{\lambda \in \Delta^{m}: \lambda_{j}=0 \quad \forall v_{j} \notin T_{i}\right\}
$$

Complete Abstraction

- $\Delta^{V}:=\left\{\lambda \in \mathbb{R}_{+}^{V}: \sum_{v \in V} \lambda_{v}=1\right\}$,
- $P_{i}=\left\{\lambda \in \Delta^{V}: \lambda_{v}=0 \quad \forall v \notin T_{i}\right\}$
- $\lambda \in \bigcup_{i=1}^{n} P_{i}$
- $T_{i}=$ cliques of a graph

From Cliques to (Complement) Conflict Graph

From Conflict Graph to Bi-clique Cover

From Bi-clique Cover to Formulation

$0 \leq \lambda_{1}+\lambda_{2} \leq y_{2}$

$$
0 \leq \lambda_{4}+\lambda_{5} \leq 1-y_{2}
$$

$$
\begin{aligned}
& 0 \leq \lambda_{1}+\lambda_{5} \leq 1-y_{1} \\
& 0 \leq \lambda_{3} \quad \leq y_{1}
\end{aligned}
$$

Ideal Formulation from Bi-clique Cover

- Conflict Graph $G=(V, E)$
$E=\left\{(u, v): u, v \in V, u \neq v, \quad \nexists i\right.$ s.t. $\left.u, v \in T_{i}\right\}$
- Bi-clique cover $\left\{\left(A^{j}, B^{j}\right)\right\}_{j=1}^{t}, \quad A^{j}, B^{j} \subseteq V$

$$
\forall\{u, v\} \in E \quad \exists j \text { s.t. } u \in A^{j} \wedge v \in B^{j}
$$

- Formulation

$$
\begin{aligned}
\sum_{v \in A^{j}} \lambda_{v} & \leq 1-y_{j} & \forall j \in[t] \\
\sum_{v \in B^{j}} \lambda_{v} & \leq y_{j} & \forall j \in[t] \\
y & \in\{0,1\}^{t} &
\end{aligned}
$$

Recursive Construction of Cover for SOS2, Step 1

Base case $n=2^{1}$:

Step 1 recursion :

Recursive Construction of Cover for SOS2, Step 2

Only edges missing are those between first and last half of conflict graph

Step 2 : Add one more bi-clique

Cover has $\log _{2} n$ bi-cliques.

For non-power of two just delete extra nodes.

Grid Triangulations: Step 1 = SOS2 for Inter-Box

Covers all arcs between boxes

Advanced MIP Formulations

Grid Triangulations: Step 2 = Ad-hoc Intra-Box

Covers all arcs within boxes

Sometimes 1 additional cover

Grid Triangulations: Step 2 = Ad-hoc Intra-Box

Sometimes 2
additional covers

Sometimes more, but always less than 9

Simple rules to get (near) optimal in Fall '16

Summary and Main Messages

- Always choose Chewbacca!

- MIP can solve very challenging problems in practice
- Commercial solvers best, but free solvers reasonable
- Both easily accessible and integrated into complex systems through the JuMP
- Advanced formulations yield important speed-ups and are (relatively) easy to learn

More Information

- JuMP:
- Ask Miles and https://github.com/JuliaOpt/JuMP.jl
- MIP Formulations:
- Mixed integer linear programming formulation techniques. V. SIAM Review 57, 2015. pp. 3-57.
- Advanced Formulation:
- Small independent branching formulations for unions of Vpolyhedra. Joey Huchette and V. 2016. arXiv:1607.04803
- Marketing Application:
- Ellipsoidal methods for adaptive choice-based conjoint analysis. Denis Saure and V. 2016. http://ssrn.com/abstract=2798984

