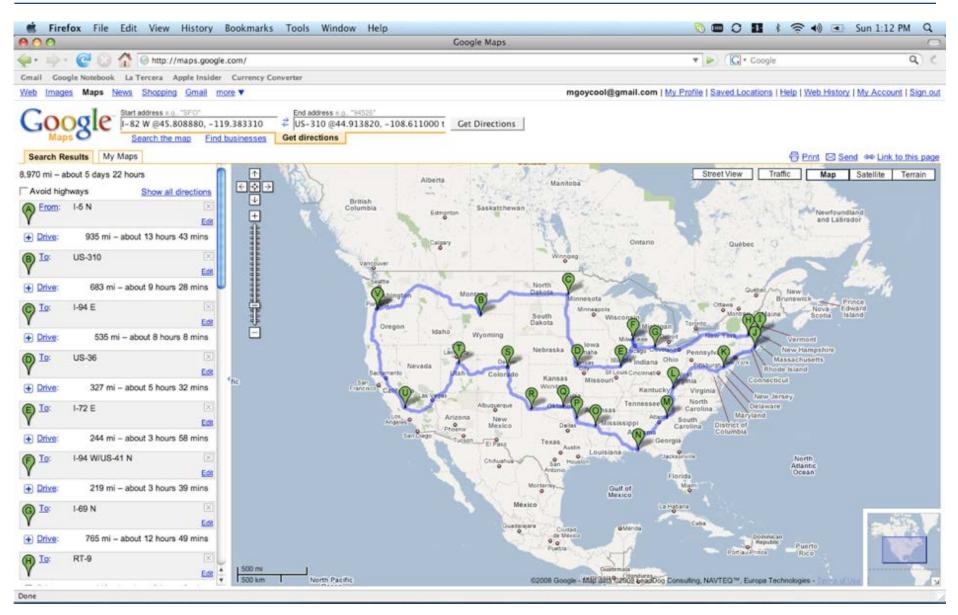
# Advanced Mixed Integer Programming (MIP) Formulation Techniques

#### Juan Pablo Vielma

Massachusetts Institute of Technology

Center for Nonlinear Studies, Los Alamos National Laboratory. Los Alamos, New Mexico, August, 2016.

# Traveling Salesman Problem (TSP): Visit Cities Fast



#### MIP = Avoid Enumeration

- Number of tours for 49 cities =  $48!/2 \approx 10^{60}$
- Fastest supercomputer  $\approx 10^{17} \mathrm{flops}$
- Assuming one floating point operation per tour:
  - $> 10^{35}$  years  $\approx 10^{25}$  times the age of the universe!
- How long does it take on an iphone?
  - Less than a second!
  - 4 iterations of cutting plane method!
  - Dantzig, Fulkerson and Johnson 1954 did it by hand!
  - For more info see tutorial in ConcordeTSP app
  - Cutting planes are the key for effectively solving (even NP-hard) MIP problems in practice.

## 50+ Years of MIP = Significant Solver Speedups

- Algorithmic Improvements (Machine Independent):
  - CPLEX v1.2 (1991) v11 (2007): 29,000x speedup
  - Gurobi v1 (2009) v6.5 (2015): 48.7x speedup
  - Commercial, but free for academic use
- (Reasonably) effective free / open source solvers:
  - GLPK, CBC and SCIP (free only for non-commercial)
- Easy to use, fast and versatile modeling languages
  - Julia based JuMP modelling language
- Linear MIP solvers very mature and effective:
  - Convex nonlinear MIP getting there (quadratic nearly there)

#### What do YOU need to do to use MIP?

- 1. Use JuMP
- 2. Construct a MIP formulation of your problem
- This talk:
  - From non-convex constraints to linear MIP formulations
  - One illustrative example
- Beyond linear MIP:
  - Convex nonlinear MIP
  - See Miles talk on Thursday



# Example: Experimental Design in Marketing

Think "Simulation-Based" Optimization

# (Custom) Product Recommendations via CBCA









| Feature | SX530        | RX100      |
|---------|--------------|------------|
| Zoom    | 50x          | 3.6x       |
| Prize   | \$249.99     | \$399.99   |
| Weight  | 15.68 ounces | 7.5 ounces |
| Prefer  |              |            |

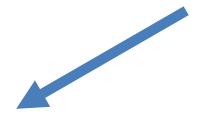


| Feature    | TG-4     | G9       |
|------------|----------|----------|
| Waterproof | Yes      | No       |
| Prize      | \$249.99 | \$399.99 |
| Weight     | 7.36 lb  | 7.5 lb   |
| Prefer     |          |          |





| Feature    | TG-4       | Galaxy 2 |
|------------|------------|----------|
| Waterproof | Yes        | No       |
| Prize      | \$249.99   | \$399.99 |
| Viewfinder | Electronic | Optical  |
| Prefer     |            |          |



#### We recommend:







#### **Towards Optimal Product Recommendation**

Find enough information about preferences to recommend



 How do I pick the next (1<sup>st</sup>) question to obtain the largest reduction of uncertainty or "variance" on preferences

# **Choice-based Conjoint Analysis**





| Feature         | Chewbacca | BB-8  |
|-----------------|-----------|-------|
| Wookiee         | Yes       | No    |
| Droid           | No        | Yes   |
| Blaster         | Yes       | No    |
| I would buy toy |           |       |
| Product Profile | $x^1$     | $x^2$ |

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = x^2$$

#### **MNL Preference Model**

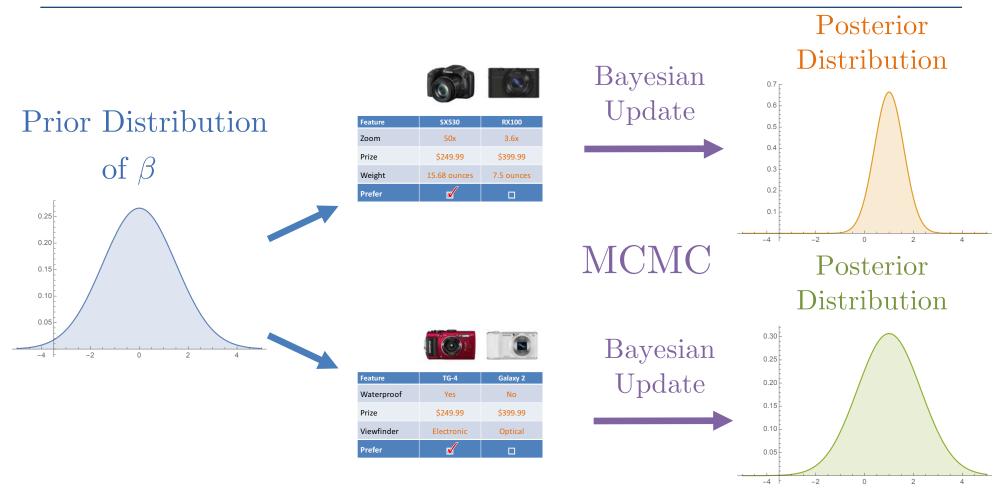
Utilities for 2 products, n features (e.g. n = 12)

$$U_1 = \beta \cdot x^1 + \epsilon_1 = \sum_{i=1}^n \beta_i x_i^1 + \epsilon_1$$
 
$$U_2 = \beta \cdot x^2 + \epsilon_2 = \sum_{i=1}^n \beta_i x_i^2 + \epsilon_2$$
 part-worths  $\uparrow$  noise (gumbel)

- Utility maximizing customer:  $x^1 \succeq x^2 \Leftrightarrow U_1 "\geq "U_2$
- Noise can result in response error:

$$L\left(\beta \mid x^{1} \succeq x^{2}\right) = \mathbb{P}\left(x^{1} \succeq x^{2} \mid \beta\right) = \frac{e^{\beta \cdot x^{1}}}{e^{\beta \cdot x^{1}} + e^{\beta \cdot x^{2}}}$$

#### Next Question To Reduce "Variance": Bayesian



Black-box objective: Question Selection = Enumeration



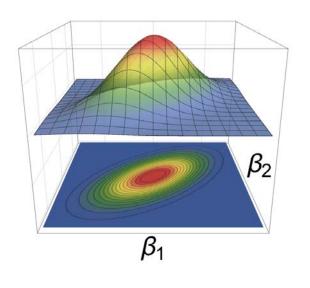
Question selection by Mixed Integer Programming (MIP)

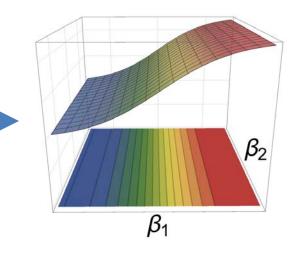
# Bayesian Update and Geometric Updates

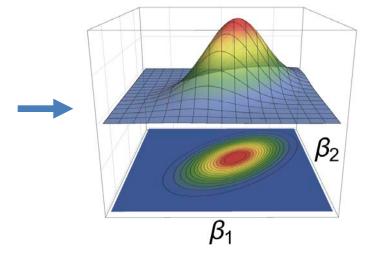
#### Prior distribution

#### Answer likelihood

#### Posterior distribution







$$\beta \sim N(\mu, \Sigma)$$

$$x^1 \succeq x^2$$

$$f\left(\beta \mid x^1 \succeq x^2\right)$$

$$\phi(\beta; \mu, \Sigma)$$

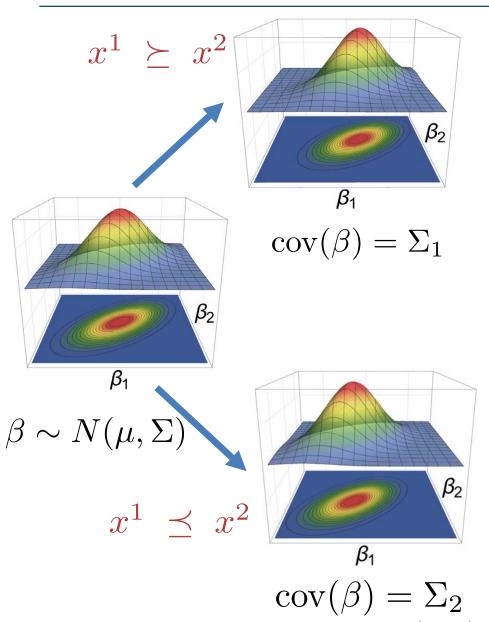
$$L\left(\beta \mid x^1 \succeq x^2\right)$$

Multidimension al Integration?

$$f\left(\beta\mid x^{1}\succeq x^{2}\right) = \frac{\left(\phi\left(\beta\;;\;\mu,\Sigma\right)L\left(\beta\mid x^{1}\succeq x^{2}\right)\right)}{\int_{\mathbb{R}}\phi\left(\beta\;;\;\mu,\Sigma\right)L\left(\beta\mid x^{1}\succeq x^{2}\right)d\beta} \quad \begin{array}{c} \text{non-convex on} \\ x^{1},x^{2}\in\{0,1\}^{n} \end{array}$$

non-convex on 
$$x^1, x^2 \in \{0, 1\}^n$$

#### D-Efficiency and Posterior Covariance Matrix



- "Variance" = D-Efficiency:
- $f\left(x^1, x^2\right) := \mathbb{E}_{\beta, x^1 \preceq /\succeq x^2} \left(\det(\Sigma_i)^{1/p}\right)$
- Non-convex function
- Even evaluating expected
   D-Efficiency for a question
   requires multidimensional
   integration

#### Standard Question Selection Criteria

$$(\beta - \mu)' \cdot \Sigma^{-1} \cdot (\beta - \mu) \le r$$

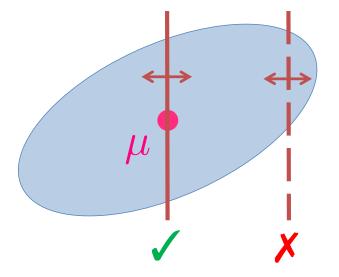
- Choice balance:
  - Minimize distance to center

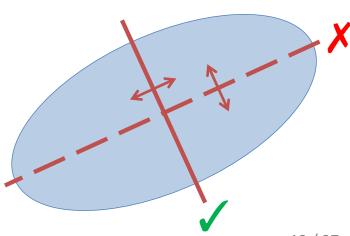
$$\mu \cdot (x^1 - x^2)$$



Maximize variance of question

$$(x^1 - x^2)' \cdot \sum \cdot (x^1 - x^2)$$



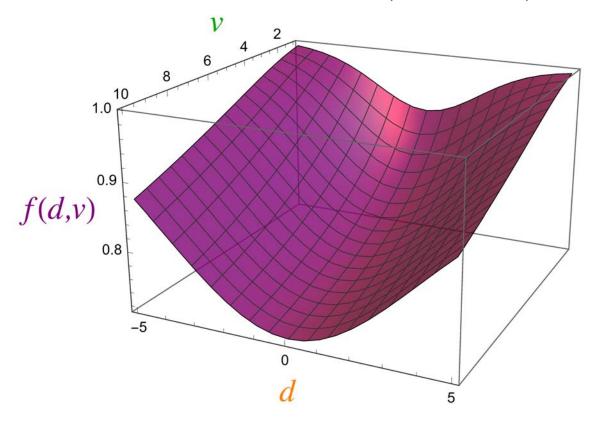


# D-efficiency: Balance Question Trade-off

• D-efficiency = Non-convex function  $f(\mathbf{d}, v)$  of

distance: 
$$d := \mu \cdot (x^1 - x^2)$$

variance: 
$$v := (x^1 - x^2)' \cdot \sum (x^1 - x^2)$$



Can evaluate f(d, v) with 1-dim integral  $\odot$ 

## **Optimization Model**

min

$$f(\mathbf{d}, v)$$

X

s.t.

$$\mu \cdot (x^1 - x^2) = d$$
 $(x^1 - x^2)' \cdot \sum \cdot (x^1 - x^2) = v$ 
 $A^1x^1 + A^2x^2 \le b$ 
 $x^1 \ne x^2$ 
 $x^1, x^2 \in \{0, 1\}^n$ 

# Technique 1: Binary Quadratic $x^1, x^2 \in \{0, 1\}^n$

$$(x^{1} - x^{2})' \cdot \sum \cdot (x^{1} - x^{2}) = v$$

$$X_{i,j}^{l} = x_{i}^{l} \cdot x_{j}^{l} \quad (l \in \{1,2\}, \quad i, j \in \{1,\dots,n\}) :$$

$$X_{i,j}^{l} \le x_{i}^{l}, \quad X_{i,j}^{l} \le x_{j}^{l}, \quad X_{i,j}^{l} \ge x_{i}^{l} + x_{j}^{l} - 1, \quad X_{i,j}^{l} \ge 0$$

$$W_{i,j} = x_{i}^{1} \cdot x_{j}^{2} :$$

$$W_{i,j} = x_{i}^{1} \cdot x_{j}^{2} :$$

$$W_{i,j} \le x_i^1$$
,  $W_{i,j} \le x_j^2$ ,  $W_{i,j} \ge x_i^1 + x_j^2 - 1$ ,  $W_{i,j} \ge 0$ 

$$\sum_{i,j=1}^{n} (X_{i,j}^{1} + X_{i,j}^{2} - W_{i,j} - W_{j,i}) \sum_{i,j} = v$$

# Technique 1: Binary Quadratic $x^1, x^2 \in \{0, 1\}^n$

$$x^1 \neq x^2 \Leftrightarrow ||x^1 - x^2||_2^2 \geq 1$$

$$X_{i,j}^l = x_i^l \cdot x_j^l \quad (l \in \{1, 2\}, \quad i, j \in \{1, \dots, n\}):$$

$$X_{i,j}^{l} \le x_{i}^{l}, \quad X_{i,j}^{l} \le x_{j}^{l}, \quad X_{i,j}^{l} \ge x_{i}^{l} + x_{j}^{l} - 1, \quad X_{i,j}^{l} \ge 0$$

$$W_{i,j} = x_i^1 \cdot x_j^2 :$$

$$W_{i,j} \le x_i^1$$
,  $W_{i,j} \le x_j^2$ ,  $W_{i,j} \ge x_i^1 + x_j^2 - 1$ ,  $W_{i,j} \ge 0$ 

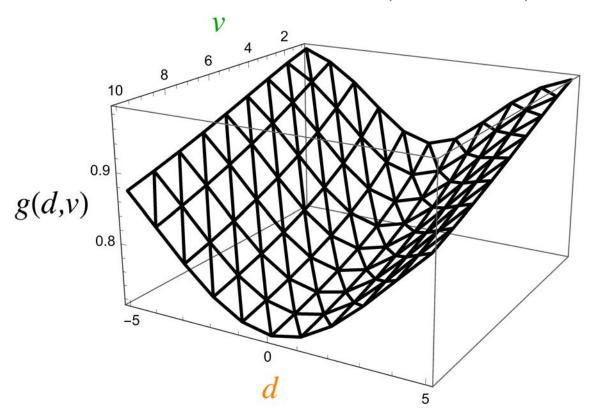
$$\sum_{i,j=1}^{n} \left( X_{i,j}^{1} + X_{i,j}^{2} - W_{i,j} - W_{j,i} \right) \ge 1$$

#### Technique 2: Piecewise Linear Functions

• D-efficiency = Non-convex function  $f(\mathbf{d}, v)$  of

distance: 
$$d := \mu \cdot (x^1 - x^2)$$

variance: 
$$v := (x^1 - x^2)' \cdot \sum (x^1 - x^2)$$



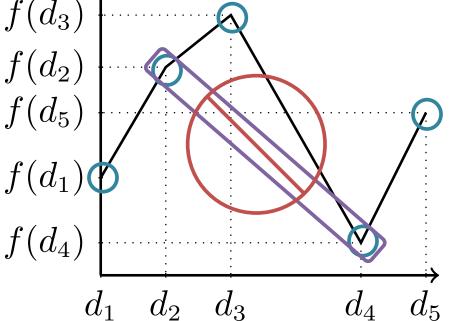
Can evaluate f(d, v) with 1-dim integral  $\odot$ 

Piecewise Linear Interpolation

MIP formulation

#### Simple Formulation for Univariate Functions

$$z = f(x)$$



Size = O (# of segments)

Non-Ideal: Fractional Extreme Points

$$\begin{pmatrix} x \\ z \end{pmatrix} = \sum_{j=1}^{5} \begin{pmatrix} d_j \\ f(d_j) \end{pmatrix} \lambda_j$$

$$1 = \sum_{j=1}^{5} \lambda_j, \quad \lambda_j \ge 0$$

$$y \in \{0, 1\}^4, \quad \sum_{i=1}^{4} y_i = 1$$

$$0 \le \lambda_1 \le y_1$$

$$0 \le \lambda_2 \le y_1 + y_2$$

$$0 \le \lambda_3 \le y_2 + y_3$$

$$0 \le \lambda_4 \le y_3 + y_4$$
ents 
$$0 \le \lambda_5 \le y_4$$

#### Advanced Formulation for Univariate Functions

$$z = f(x)$$

$$\begin{pmatrix} x \\ z \end{pmatrix} = \sum_{j=1}^{5} \begin{pmatrix} d_j \\ f(d_j) \end{pmatrix} \lambda_j$$

$$1 = \sum_{j=1}^{5} \lambda_j, \quad \lambda_j \ge 0$$

$$y \in \{0, 1\}^2$$

$$0 \le \lambda_1 + \lambda_5 \le 1 - y_1$$

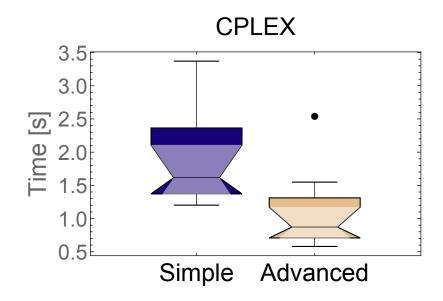
$$0 \le \lambda_3 \qquad \le y_1$$

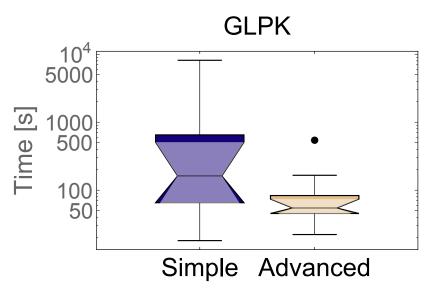
$$0 \le \lambda_4 + \lambda_5 \le 1 - y_2$$
Size =  $O(\log_2 \# \text{ of segments})$   $0 \le \lambda_1 + \lambda_2 \le y_2$ 

Ideal: Integral Extreme Points

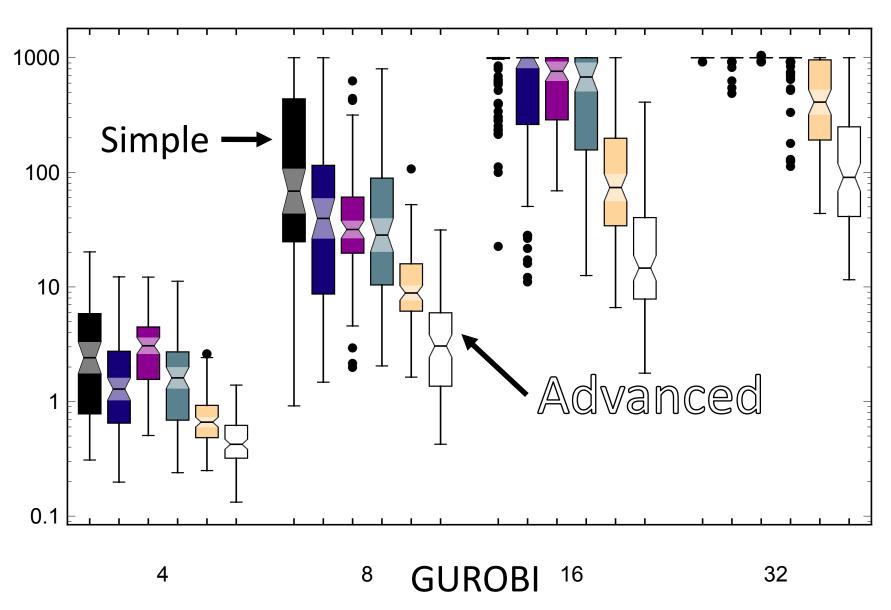
# **Computational Performance**

- Advanced formulations provide an computational advantage
- Advantage is significantly more important for free solvers
- State of the art commercial solvers can be significantly better that free solvers
- Still, free is free!





# Formulation Improvements can be Significant



# **Constructing Advanced Formulations**

#### **Abstracting Univariate Functions**

$$P_{i_{\mathcal{Z}}} = \{ (x) \in \Delta^{5} : \lambda_{j} \neq x \} = \{ (x_{i}) \in A_{i} \}$$

$$T_{i} := \{ (x_{i}) \in A_{i} \}$$

$$f(d_{3}) = \{ (x_{i}) \in A_{i} \}$$

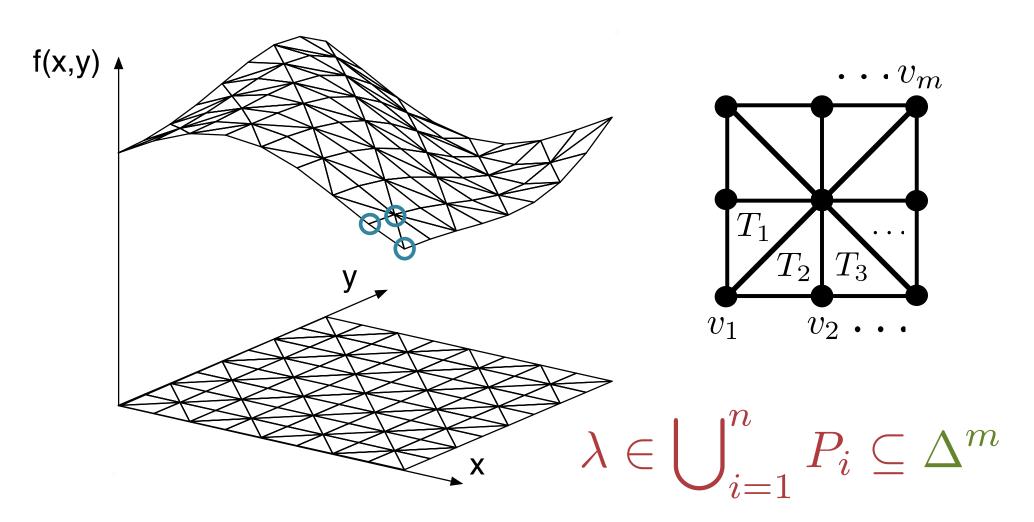
$$f(d_{2}) = \{ (x_{i}) \in A_{i} \}$$

$$f(d_{3}) = \{ (x_{i}) \in A_{i} \}$$

$$f(d_{3$$

#### **Abstraction Works for Multivariate Functions**

$$P_i := \{ \lambda \in \Delta^m : \lambda_j = 0 \quad \forall v_j \notin T_i \}$$

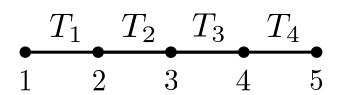


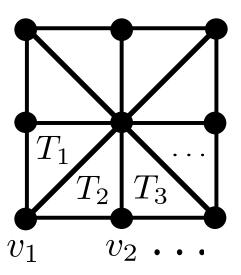
#### **Complete Abstraction**

• 
$$\Delta^V := \left\{ \lambda \in \mathbb{R}_+^V : \sum_{v \in V} \lambda_v = 1 \right\},$$

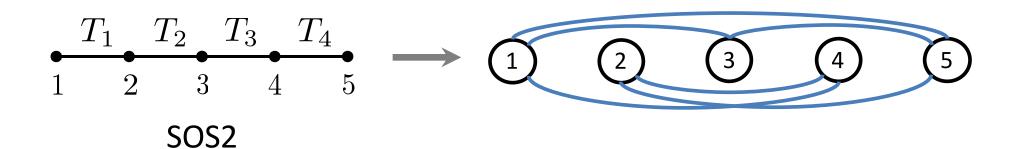
• 
$$P_i = \{ \lambda \in \Delta^V : \lambda_v = 0 \quad \forall v \notin T_i \}$$

- $\lambda \in \bigcup_{i=1}^n P_i$
- $T_i = \text{cliques of a graph}$

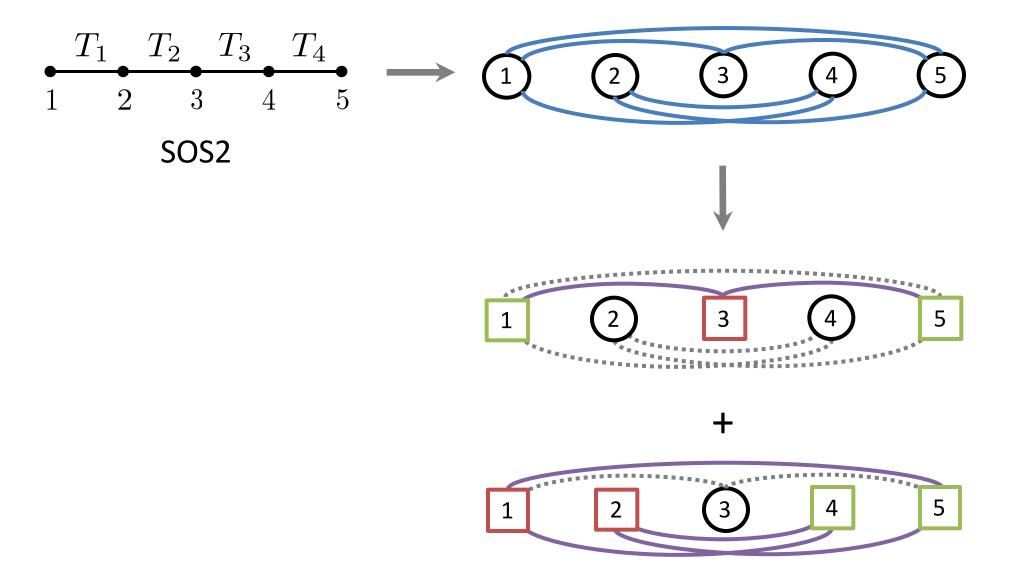




# From Cliques to (Complement) Conflict Graph



# From Conflict Graph to Bi-clique Cover



#### From Bi-clique Cover to Formulation

## Ideal Formulation from Bi-clique Cover

• Conflict Graph G = (V, E)

$$E = \{(u, v) : u, v \in V, u \neq v, \exists i \text{ s.t. } u, v \in T_i\}$$

• Bi-clique cover  $\{(A^j, B^j)\}_{j=1}^t$ ,  $A^j, B^j \subseteq V$ 

$$\forall \{u,v\} \in E \quad \exists j \text{ s.t. } u \in A^j \land v \in B^j$$

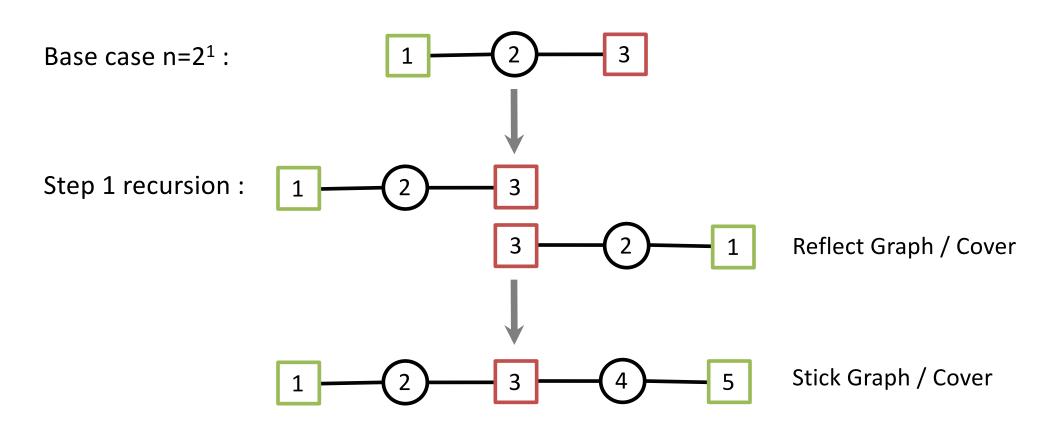
Formulation

$$\sum_{v \in A^j} \lambda_v \le 1 - y_j \quad \forall j \in [t]$$

$$\sum_{v \in B^j} \lambda_v \le y_j \quad \forall j \in [t]$$

$$y \in \{0, 1\}^t$$

#### Recursive Construction of Cover for SOS2, Step 1

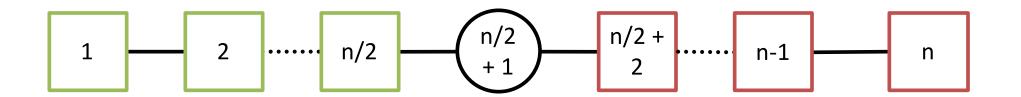


Repeat for all bi-cliques from 2<sup>k-1</sup> to cover all edges within first and last half of conflict graph

#### Recursive Construction of Cover for SOS2, Step 2

# Only edges missing are those between first and last half of conflict graph

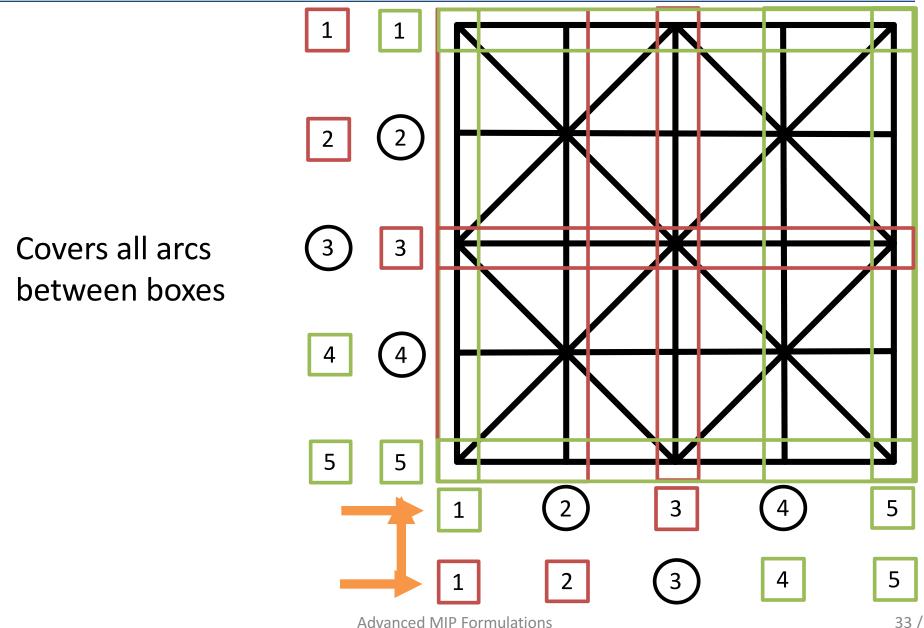
Step 2 : Add one more bi-clique



Cover has  $\log_2 n$  bi-cliques.

For non-power of two just delete extra nodes.

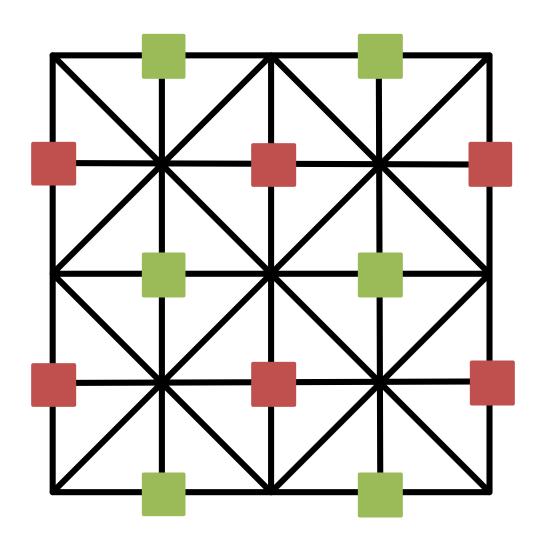
## Grid Triangulations: Step 1 = SOS2 for Inter-Box



# Grid Triangulations: Step 2 = Ad-hoc Intra-Box

Covers all arcs within boxes

Sometimes 1 additional cover

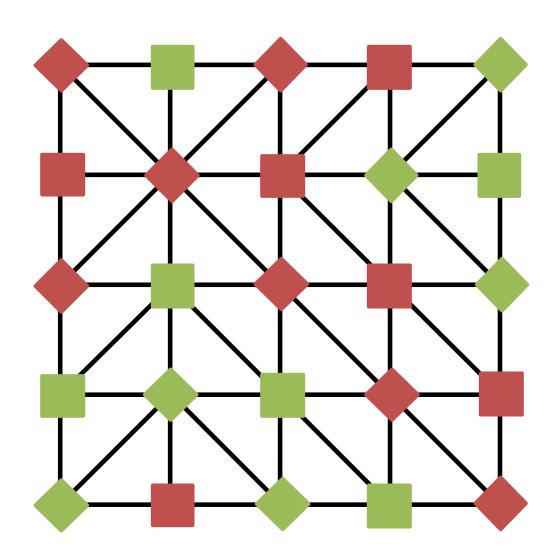


#### Grid Triangulations: Step 2 = Ad-hoc Intra-Box

Sometimes 2 additional covers

Sometimes more, but always less than 9

Simple rules to get (near) optimal in Fall '16



## Summary and Main Messages

Always choose Chewbacca!



- MIP can solve very challenging problems in practice
- Commercial solvers best, but free solvers reasonable
  - Both easily accessible and integrated into complex systems through the JuMP
- Advanced formulations yield important speed-ups and are (relatively) easy to learn

#### More Information

#### JuMP:

- Ask Miles and <a href="https://github.com/JuliaOpt/JuMP.jl">https://github.com/JuliaOpt/JuMP.jl</a>

#### MIP Formulations:

Mixed integer linear programming formulation techniques. V.
 SIAM Review 57, 2015. pp. 3-57.

#### Advanced Formulation:

Small independent branching formulations for unions of V-polyhedra. Joey Huchette and V. 2016. arXiv:1607.04803

#### Marketing Application:

Ellipsoidal methods for adaptive choice-based conjoint analysis.
 Denis Saure and V. 2016. http://ssrn.com/abstract=2798984