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Towards Optimal Product Recommendation

* Find enough information about preferences to recommend

 How do | pick the next (1t) question to obtain the largest
reduction of uncertainty or “variance” on preferences
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Choice-based Conjoint Analysis
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MNL Preference Model

 Utilities for 2 products, n features (e.g. n = 12)
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product profile noise (gumbel)

- Utility maximizing customer: z° = 2% < U; “>"U,

* Noise can result in response error:
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Next Question To Reduce “Variance”: Bayesian

Posterior
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* Black-box objective: Question Selection = Enumeration &
e Question selection by Mixed Integer Programming (MIP)
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Avoiding Enumeration with MIP



Traveling Salesman Problem (TSP): Visit Cities Fast
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How about 49 cities?

* Number of tours = 48!/2 ~ 10"
* Fastest supercomputer = 10'"flops

* Assuming one floating point operation per tour:
> 10°° years ~ 10%° times the age of the universe!

* How long does it take on an iphone?
— Less than a second!
— 4 iterations of cutting plane method!
— Dantzig, Fulkerson and Johnson 1954 did it by hand!
— For more info see tutorial in ConcordeTSP app

— Cutting planes are the key for effectively solving (even NP-
hard) MIP problems in practice.
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50+ Years of MIP = Significant Solver Speedups

e Algorithmic Improvements (Machine Independent):
— CPLEX v1.2 (1991) —v11 (2007): 29,000x speedup
— Gurobi vl (2009) — v6.5 (2015): 48.7x speedup
— Commercial, but free for academic use

* (Reasonably) effective free / open source solvers:
— GLPK, CBC and SCIP (free only for non-commercial)

e Easy to use, fast and versatile modeling languages
— Julia based JuMP modelling language

* Linear MIP solvers very mature and effective:

— Convex nonlinear MIP getting there (quadratic nearly there)
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Question Selection with MIP



Bayesian Update and Geometric Updates

Prior distribution Answer likelihood Posterior distribution
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D-Efficiency and Posterior Covariance Matrix

* “Variance” = D-Efficiency:
° f (561,5132) = Eﬁ,wl =/ x2 <det(2i)1/p)

e Non-convex function

* Even evaluating expected
D-Efficiency for a question
requires multidimensional
Integration

cov(B) = X
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Standard Question Selection Criteria

B—p) -7 (B—p) <7

* Choice balance: o
— Minimize distance to center ®
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* Postchoice symmetry:

— Maximize variance of question
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D-efficiency: Balance Question Trade-off

* D-efficiency = Non-convex function f(d,v) of
distance: d:= - (xl — x2)

. /
variance: v = (xl — x2) : Z : (:zz'l — x2)

Can evaluate f(d, v)
with 1-dim integral ©®
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Optimization Model

min f(da U) X
S.t.
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Technique 1: Binary Quadratic :El, T° {0,1}"
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Technique 1: Binary Quadratic .:El, T° {0,1}"
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Technique 2: Piecewise Linear Functions

* D-efficiency = Non-convex function f(d,v) of

distance: d:= - (:131 — :132)

. /
variance: v = (xl — xQ) : Z . (xl — x2)

Can evaluate f(d, v)
with 1-dim integral ©

Piecewise Linear
Interpolation

MIP formulation
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Simple Formulation for Univariate Functions

— — 0< A2 <1y +
d dy ds d, d. > A3 > Y2 T Y3
0< A\ <ys+wus

Size = O (# of segments)
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Advanced Formulation for Univariate Functions

Size = O (log, # of segments) 0 <A +A <
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Computational Performance

* Advanced formulations
provide an computational
advantage

* Advantage is significantly
more important for free
solvers

e State of the art commercial
solvers can be significantly
better that free solvers

e Still, free is free!
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Summary and Main Messages

Always choose Chewbaccal

MIP can solve very challenging problems in practice

Commercial solvers best, but free solvers reasonable

— Easily accessible and integrated into complex systems through
the JuMP modeling language github.com/JuliaOpt/JuMP,jl

Formulations = speed-ups and are (relatively) easy to learn

— Mixed integer linear programming formulation techniques. J. P.
Vielma. SIAM Review 57, 2015. pp. 3-57.

CBC application: http://ssrn.com/abstract=2798984
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