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(Custom)	Product	Recommendations	via	CBCA
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Towards	Optimal	Product	Recommendation

MIP	Formulations	for	Non-convex	Optimization

• How	do	I	pick	the	next	(1st)	question	to	obtain	the	largest	
reduction	of	uncertainty	or	“variance”	on	preferences

Feature SX530 RX100

Zoom 50x 3.6x

Prize $249.99 $399.99

Weight 15.68	ounces 7.5	ounces

Prefer � �

Feature TG-4	 G9

Waterproof Yes No

Prize $249.99 $399.99

Weight 7.36	lb 7.5	lb

Prefer � �

Feature TG-4	 Galaxy	2

Waterproof Yes No

Prize $249.99 $399.99

Viewfinder Electronic Optical

Prefer � �

We	recommend:	

Feature SX530 RX100

Zoom 50x 3.6x

Prize $249.99 $399.99

Weight 15.68	lb 7.5	lb

Prefer � �

• Find	enough	information	about	preferences	to	recommend
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Choice-based	Conjoint	Analysis
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MNL	Preference	Model

• Utilities	for	2	products,	n	features	(e.g.	n	=	12)

part-worths

product profile noise (gumbel)

• Noise	can	result	in	response	error:
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Next	Question	To	Reduce	“Variance”:	Bayesian	
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• Black-box	objective:	Question	Selection	=	Enumeration	☹	
• Question	selection	by	Mixed	Integer	Programming	(MIP)
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Avoiding	Enumeration	with	MIP



Traveling	Salesman	Problem	(TSP):	Visit	Cities	Fast
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How	about	49	cities?
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• Number	of	tours	
• Fastest	supercomputer
• Assuming	one	floating	point	operation	per	tour:

• How	long	does	it	take	on	an	iphone?
– Less	than	a	second!
– 4	iterations	of	cutting	plane	method!
– Dantzig,	Fulkerson	and	Johnson	1954	did	it	by	hand!
– For	more	info	see	tutorial	in	ConcordeTSP app
– Cutting	planes	are	the	key	for	effectively	solving	(even	NP-
hard)	MIP	problems	in	practice.
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50+	Years	of	MIP	=	Significant	Solver	Speedups	
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• Algorithmic	Improvements	(Machine	Independent):
– CPLEX	v1.2	(1991)	– v11	(2007):	29,000x	speedup
– Gurobi v1	(2009)	– v6.5	(2015):	48.7x	speedup	
– Commercial,	but	free	for	academic	use

• (Reasonably)	effective	free	/	open	source	solvers:
– GLPK,	CBC	and	SCIP	(free	only	for	non-commercial)	

• Easy	to	use,	fast	and	versatile	modeling	languages
– Julia	based	JuMP modelling	language

• Linear	MIP	solvers	very	mature	and	effective:
– Convex	nonlinear	MIP	getting	there	(quadratic	nearly	there)
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Question	Selection	with	MIP



Bayesian	Update	and	Geometric	Updates
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• “Variance”	=	D-Efficiency:
•
• Non-convex	function
• Even	evaluating	expected	
D-Efficiency	for	a	question													
requires	multidimensional	
integration

D-Efficiency	and	Posterior	Covariance	Matrix

� ⇠ N(µ,⌃)
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Standard	Question	Selection	Criteria	

• Choice	balance:
–Minimize	distance to	center	

• Postchoice symmetry:
–Maximize	variance of	question
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D-efficiency:	Balance	Question	Trade-off

• D-efficiency		=	Non-convex	function	 of

MIP	Formulations	for	Non-convex	Optimization
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min f(d, v)
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Technique	1:	Binary	Quadratic
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Technique	1:	Binary	Quadratic
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Technique	2:	Piecewise	Linear	Functions

• D-efficiency		=	Non-convex	function	 of
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Vielma, Ahmed and Nemhauser: Mixed-Integer Models for Piecewise Linear Optimization
Article submitted to ; manuscript no. 3

2. Modeling Piecewise Linear Functions

An appropriate way of modeling a piecewise linear function f :D ⇢ Rn ! R is to model its epi-

graph given by epi(f) := {(x, z) 2D⇥R : f(x) z}. For example, the epigraph of the function in

Figure 2(a) is depicted in Figure 2(b).
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Figure 1 A continuous piecewise linear function and its epigraph as the union of polyhedra.
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Figure 2 A continuous piecewise linear function and its epigraph as the union of polyhedra.

For simplicity, we assume that the function domain D is bounded and f is only used in a

constraint of the form f(x) 0 or as an objective function that is being minimized. We then need

a model of epi(f) since f(x) 0 can be modeled as (x, z) 2 epi(f), z  0 and the minimization of

f can be achieved by minimizing z subject to (x, z)2 epi(f). For continuous functions we can also

work with its graph, but modeling the epigraph will allow us to extend most of the results to some

discontinuous functions and will simplify the analysis of formulation properties.
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Simple	Formulation	for	Univariate	Functions
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2. Modeling Piecewise Linear Functions

An appropriate way of modeling a piecewise linear function f :D ⇢ Rn ! R is to model its epi-

graph given by epi(f) := {(x, z) 2D⇥R : f(x) z}. For example, the epigraph of the function in

Figure 2(a) is depicted in Figure 2(b).
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For simplicity, we assume that the function domain D is bounded and f is only used in a

constraint of the form f(x) 0 or as an objective function that is being minimized. We then need

a model of epi(f) since f(x) 0 can be modeled as (x, z) 2 epi(f), z  0 and the minimization of

f can be achieved by minimizing z subject to (x, z)2 epi(f). For continuous functions we can also

work with its graph, but modeling the epigraph will allow us to extend most of the results to some

discontinuous functions and will simplify the analysis of formulation properties.
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Advanced	Formulation	for	Univariate	Functions
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Computational	Performance	
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• Advanced	formulations	
provide	an	computational	
advantage

• Advantage	is	significantly	
more	important	for	free	
solvers

• State	of	the	art	commercial	
solvers	can	be	significantly	
better	that	free	solvers

• Still,	free	is	free!
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Summary	and	Main	Messages

• Always	choose	Chewbacca!

• MIP	can	solve	very	challenging	problems	in	practice
• Commercial	solvers	best,	but	free	solvers		reasonable
– Easily	accessible	and	integrated	into	complex	systems	through	
the	JuMP modeling	language	github.com/JuliaOpt/JuMP.jl

• Formulations	=	speed-ups	and	are	(relatively)	easy	to	learn
– Mixed	integer	linear	programming	formulation	techniques.	J.	P.	
Vielma.	SIAM	Review	57,	2015.	pp.	3-57.

• CBC	application:	http://ssrn.com/abstract=2798984
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