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MINLP B&B Algorithms

® NLP (QCP) Based B&B
® (Dynamic) LP Based B&B

Few cuts = high speed.

P0ossible slow convergence.
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MINLP B&B Algorithms

® NLP (QCP) Based B&B
® (Dynamic) LP Based B&B

Few cuts = high speed.

r e Z" x R"2

20ossible slow convergence.
® | ifted LP B&B

Fixed extended relaxation.
Mimic NLP B&B.




Computational Results
0@000

Problem 1: Classical

ay

y fraction of the portfolio

1/2 invested in each of n
10 y|[2< o pssets.

a expected returns of
assets.

Q'/2 positive semidefinite
square root of the

covariance matrix Q of
returns.

Hold at most 10 assets.
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Extended Formulation for Lifted LP

® Approximation of Second
Order Cone by Ben-Tal and
Nemirovski (Glineur).

® O(dlog(1/¢)) variables and
constraints for quality .

® Problem:
® Fixed a-priori quality:
No dynamic improvement.
® e.g. € = 0.01 for portfolio
had to be calibrated.
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Dynamic Lifted Approximations



Towards a Dynamic Lifted LP

® Separable approach by Tawarmalani and Sahinidis 05
and Hijazi et al. ‘14
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Towards a Dynamic Lifted LP

® Separable approach by Tawarmalani and Sahinidis 05
and Hijazi et al. ‘14
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1
B" = c R™ : i— =] =
{x E <x 2) <

1=1

Extended formulation of B™:
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Towards a Dynamic Lifted LP

® Separable approach by Tawarmalani and Sahinidis 05
and Hijazi et al. ‘14

2
1
B" = c R™ : i— =] =
{x E (a:' 2> <

1=1
Extended formulation of B™:

-0.2"

B™"NZ" = () with only 2n cuts

on extended formulation.




Towards a Dynamic Lifted LP

® Separable approach by Tawarmalani and Sahinidis 05
and Hijazi et al. ‘14

Separable approach works for any set of the form:

1=1
or

Cz{(x,t)GRxR : f:fz(a;‘z)<t}

for convex f; : R — R




Problem 1: Classical

y fraction of the portfolio
invested in each of n
assets.

a expected returns of
assets.

0'/? positive semidefinite
square root of the
covariance maitrix Q of
returns.

K maximum number of
assets to hold.
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Problem 2 : Shortfall

y fraction of the portfolio
iInvested in each of n
assets.

a expected returns of
assets.

0'/2 positive semidefinite
square root of the
covariance maitrix Q of
returns.

K maximum number of
assets to hold.

Approximation of
Prob(ay > Wl-lOW) > 1




Extended Formulation for SOCP

L" ={(z,t) eRx R : ||z]| <t}

Extended formulation of L" =
homogenization of B" formulation:

ZE? Zi T Vi € [TL]

>




Extended Formulation for SOCP

L" ={(z,t) eRx R : ||z]| <t}

Extended formulation of L" =
homogenization of B" formulation:
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Rotated SOCP cone
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Computational Results

® Averages over 20 instances:
Classical and Shortfall. 40, 50 and 60 stocks.

® Solvers:

CPLEX/Gurobi QCP-BB on original formulation .

Lifted LP: Implemented in JuUMP using CPLEX’s
branch, iIncumbent and heuristic callback.

CPLEX/Gurobi LP-BB on extended “separable”
reformulation.
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LiftedLP v/s QCP: Shortfall
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LiftedLP v/s Dynamic : Classical
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- LiftedLP v/s Dynamic : Shortfall
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Summary
® | ifted LP; 200 lines of JUMP code in a weekend.

Developed by ORC students lain Dunning, Joey
uchette and Miles Lubin

https://github.com/JuliaOpt/JuMP,j
Poster at MIP 2014. OSU, July 21st

Talk at INFORMS. San Francisco, November
® Dynamic Litted LP:

Comparable performance with simple
reformulation.






