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Problem 1: Classical

max

x,y
āy

s.t.

||Q1/2y||
2

 �
nX

j=1

yj = 1

yj  xj 8j 2 {1, . . . , n}
nX

j=1

xj  10

x 2 {0, 1}n

y 2 n
+

y fraction of the portfolio
invested in each of n
assets.
ā expected returns of
assets.
Q1/2 positive semidefinite
square root of the
covariance matrix Q of
returns.
Hold at most 10 assets.
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Avg. of Solve Times [s] for n 2 {20, 30} (CPLEX v11)
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Approximation of Second 
Order Cone by Ben-Tal and 
Nemirovski (Glineur).
                     variables and 
constraints for quality   . 
Problem:

Fixed a-priori quality:      
no dynamic improvement.
e.g.               for portfolio 
had to be calibrated. 

                     variables and 
constraints for quality   . 

e.g.               for portfolio 
/30
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Problem 2 : Shortfall

max

x,y
āy

s.t.

||Q1/2y||
2

 āy�Wlow
i

��1(⌘i)
i 2 {1, 2}

nX

j=1

yj = 1

yj  xj 8j 2 {1, . . . , n}
nX

j=1

xj  K

x 2 {0, 1}n

y 2 n
+

y fraction of the portfolio
invested in each of n
assets.
ā expected returns of
assets.
Q1/2 positive semidefinite
square root of the
covariance matrix Q of
returns.
K maximum number of
assets to hold.
Approximation of
Prob(āy � Wlow

i ) � ⌘i
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Computational Results

Averages over 20 instances: 
Classical and Shortfall. 40, 50 and 60 stocks.

Solvers: 
CPLEX/Gurobi QCP-BB on original formulation .
Lifted LP: Implemented in JuMP using CPLEX’s 
branch, incumbent and heuristic callback.
CPLEX/Gurobi LP-BB on extended “separable” 
reformulation.
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LiftedLP v/s Dynamic : Classical
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Summary 
Lifted LP: 200 lines of JuMP code in a weekend.

Developed by ORC students Iain Dunning, Joey 
Huchette and Miles Lubin
https://github.com/JuliaOpt/JuMP.jl
Poster at MIP 2014. OSU, July 21st
Talk at INFORMS. San Francisco, November

Dynamic Lifted LP:
Comparable performance with simple 
reformulation. /242424




