Extended Formulations for Quadratic Mixed Integer Programming

Juan Pablo Vielma

Massachusetts Institute of Technology
SIAM Conference on Optimization, May 2014 - San Diego, California

Introduction

Nonlinear MIP B\&B Algorithms

$$
\max \quad \sum_{i=1}^{n} c_{i} x_{i}
$$

s.t.

$$
\begin{aligned}
g_{i}(x) & \leq 0, i \in I \\
x & \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}
\end{aligned}
$$

\uparrow

Introduction

Nonlinear MIP B\&B Algorithms

- NLP (QCP) Based B\&B

$$
\max \quad \sum_{i=1}^{n} c_{i} x_{i}
$$

s.t.

$$
\begin{aligned}
g_{i}(x) & \leq 0, i \in I \\
x & \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}
\end{aligned}
$$

$$
\cdot \quad .
$$

\uparrow c

Introduction

Nonlinear MIP B\&B Algorithms

- NLP (QCP) Based B\&B

$$
\max \quad \sum_{i=1}^{n} c_{i} x_{i}
$$

s.t.

$$
\begin{aligned}
g_{i}(x) & \leq 0, i \in I \\
x & \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}
\end{aligned}
$$

$$
\cdot
$$

\uparrow
c

Introduction

Nonlinear MIP B\&B Algorithms

- NLP (QCP) Based B\&B

$$
\max \sum_{i=1}^{n} c_{i} x_{i}
$$

$$
\begin{aligned}
& \text { s.t. } \\
& \qquad \begin{aligned}
g_{i}(x) & \leq 0, i \in I \\
x & \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}
\end{aligned}
\end{aligned}
$$

Introduction

MINLP B\&B Algorithms

- NLP (QCP) Based B\&B
- (Dynamic) LP Based B\&B
- Few cuts = high speed.
- Possible slow convergence.

$$
\max \sum_{i=1}^{n} c_{i} x_{i}
$$

$$
s . t
$$

$$
\begin{aligned}
g_{i}(x) & \leq 0, i \in I \\
x & \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}
\end{aligned}
$$

Introduction

MINLP B\&B Algorithms

- NLP (QCP) Based B\&B
- (Dynamic) LP Based B\&B
- Few cuts = high speed.
- Possible slow convergence.

$$
\max \sum_{i=1}^{n} c_{i} x_{i}
$$

s.t.

$$
\begin{aligned}
g_{i}(x) & \leq 0, i \in I \\
x & \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}
\end{aligned}
$$

\uparrow

Introduction

MINLP B\&B Algorithms

- NLP (QCP) Based B\&B
- (Dynamic) LP Based B\&B
- Few cuts = high speed.
- Possible slow convergence.

$$
\max \sum_{i=1}^{n} c_{i} x_{i}
$$

$$
s . t
$$

$$
\begin{aligned}
g_{i}(x) & \leq 0, i \in I, \\
x & \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}
\end{aligned}
$$

\uparrow

Introduction

MINLP B\&B Algorithms

- NLP (QCP) Based B\&B
- (Dynamic) LP Based B\&B
- Few cuts = high speed.
- Possible slow convergence.

$$
\max \sum_{i=1}^{n} c_{i} x_{i}
$$

s.t.

$$
\begin{aligned}
g_{i}(x) & \leq 0, i \in I \\
x & \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}
\end{aligned}
$$

\uparrow

Introduction

MINLP B\&B Algorithms

- NLP (QCP) Based B\&B
- (Dynamic) LP Based B\&B
- Few cuts = high speed.
- Possible slow convergence.

$$
\max \sum_{i=1}^{n} c_{i} x_{i}
$$

s.t.

$$
\left.\begin{array}{l}
g_{i}(x) \leq 0, i \in I \\
x
\end{array}\right)=\mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}} \quad .
$$

Introduction

MINLP B\&B Algorithms

- NLP (QCP) Based B\&B
- (Dynamic) LP Based B\&B
- Few cuts = high speed.
- Possible slow convergence.

$$
\max \sum_{i=1}^{n} c_{i} x_{i}
$$

s.t.

$$
\left.\begin{array}{l}
g_{i}(x) \leq 0, i \in I \\
x
\end{array}\right)=\mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}} \quad .
$$

Introduction

MINLP B\&B Algorithms

- NLP (QCP) Based B\&B
- (Dynamic) LP Based B\&B
- Few cuts = high speed.
- Possible slow convergence.

$$
\max \sum_{i=1}^{n} c_{i} x_{i}
$$

s.t.

$$
g_{i}(x) \leq 0, i \in I
$$

$$
x \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}
$$

$$
\overbrace{}^{\circ}
$$

Introduction

MINLP B\&B Algorithms

- NLP (QCP) Based B\&B
- (Dynamic) LP Based B\&B
- Few cuts = high speed.
- Possible slow convergence.
- Lifted LP B\&B
- Fixed extended relaxation.
- Mimic NLP B\&B.

$$
\max \sum_{i=1}^{n} c_{i} x_{i}
$$

s.t.

$$
\begin{aligned}
g_{i}(x) & \leq 0, i \in I \\
x & \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}
\end{aligned}
$$

Introduction

MINLP B\&B Algorithms

- NLP (QCP) Based B\&B
- (Dynamic) LP Based B\&B
- Few cuts = high speed.
- Possible slow convergence.
- Lifted LP B\&B
- Fixed extended relaxation.
- Mimic NLP B\&B.
$\max \sum_{i=1}^{n} c_{i} x_{i}$

$$
\mathscr{C} \subset \mathbb{T}^{n_{1}} \times \mathbb{R}^{n_{2}}
$$

Introduction

MINLP B\&B Algorithms

- NLP (QCP) Based B\&B
- (Dynamic) LP Based B\&B
- Few cuts = high speed.
- Possible slow convergence.
- Lifted LP B\&B
- Fixed extended relaxation.
- Mimic NLP B\&B.
$\max \sum_{i=1}^{n} c_{i} x_{i}$

$$
\text { s.t. } \quad A x+D z \leq b,
$$

$$
x \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}
$$

Problem 1: Classical

$\max _{x, y} \quad \bar{a} y$
s.t.

$$
\begin{aligned}
\left\|Q^{1 / 2} y\right\|_{2} & \leq \sigma \\
\sum_{j=1}^{n} y_{j} & =1
\end{aligned}
$$

$$
y_{j} \leq x_{j} \quad \forall j \in\{1, \ldots, n\}
$$

$$
\sum_{j=1}^{n} x_{j} \leq 10
$$

$$
x \in\{0,1\}^{n}
$$

$$
y \in \mathbb{R}_{+}^{n}
$$

- y fraction of the portfolio invested in each of n assets.
- \bar{a} expected returns of assets.
- $Q^{1 / 2}$ positive semidefinite square root of the covariance matrix Q of returns.
- Hold at most 10 assets.

Avg. of Solve Times [s] for $n \in\{20,30\}$ (CPLEX v11)

Introduction

Extended Formulation for Lifted LP

- Approximation of Second

Order Cone by Ben-Tal and Nemirovski (Glineur).

- $O(d \log (1 / \varepsilon))$ variables and constraints for quality ε.
o Problem:
o Fixed a-priori quality: no dynamic improvement.

oe.g. $\varepsilon=0.01$ for portfolio had to be calibrated.

Dynamic Lifted Approximations

Towards a Dynamic Lifted LP

- Separable approach by Tawarmalani and Sahinidis '05 and Hijazi et al. '14
$B^{n}:=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left(x_{i}-\frac{1}{2}\right)^{2} \leq \frac{n-1}{4}\right\}$
Showing $B^{n} \cap \mathbb{Z}^{n}=\emptyset$ requires 2^{n} cuts. ${ }_{0.8}$

Towards a Dynamic Lifted LP

- Separable approach by Tawarmalani and Sahinidis '05 and Hijazi et al. '14
$B^{n}:=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left(x_{i}-\frac{1}{2}\right)^{2} \leq \frac{n-1}{4}\right\}$
Showing $B^{n} \cap \mathbb{Z}^{n}=\emptyset$ requires 2^{n} cuts. ${ }_{0.8}$

Towards a Dynamic Lifted LP

- Separable approach by Tawarmalani and Sahinidis '05 and Hijazi et al. '14
$B^{n}:=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left(x_{i}-\frac{1}{2}\right)^{2} \leq \frac{n-1}{4}\right\}$
Showing $B^{n} \cap \mathbb{Z}^{n}=\emptyset$ requires 2^{n} cuts. ${ }_{0.8}$

Towards a Dynamic Lifted LP

- Separable approach by Tawarmalani and Sahinidis '05 and Hijazi et al. '14
$B^{n}:=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left(x_{i}-\frac{1}{2}\right)^{2} \leq \frac{n-1}{4}\right\}$
Showing $B^{n} \cap \mathbb{Z}^{n}=\emptyset$ requires 2^{n} cuts. ${ }_{0.8}$

Towards a Dynamic Lifted LP

- Separable approach by Tawarmalani and Sahinidis '05 and Hijazi et al. '14
$B^{n}:=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left(x_{i}-\frac{1}{2}\right)^{2} \leq \frac{n-1}{4}\right\}$
Showing $B^{n} \cap \mathbb{Z}^{n}=\emptyset$ requires 2^{n} cuts. ${ }_{0.8}$

Towards a Dynamic Lifted LP

- Separable approach by Tawarmalani and Sahinidis '05 and Hijazi et al. '14

$$
B^{n}:=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left(x_{i}-\frac{1}{2}\right)^{2} \leq \frac{n-1}{4}\right\}
$$

Extended formulation of B^{n} :

$$
\begin{aligned}
\left(x_{i}-\frac{1}{2}\right)^{2} & \leq z_{i} \quad \forall i \in[n] \\
\sum_{i=1}^{n} z_{i} & \leq \frac{n-1}{4}
\end{aligned}
$$

Towards a Dynamic Lifted LP

- Separable approach by Tawarmalani and Sahinidis '05 and Hijazi et al. '14

$$
B^{n}:=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left(x_{i}-\frac{1}{2}\right)^{2} \leq \frac{n-1}{4}\right\}_{0.4}^{z_{i}}
$$

Extended formulation of B^{n} :

$$
\left(x_{i}-\frac{1}{2}\right)^{2} \leq z_{i} \quad \forall i \in[n]
$$

$$
\sum_{i=1}^{n} z_{i} \leq \frac{n-1}{4}
$$

$B^{n} \cap \mathbb{Z}^{n}=\emptyset$ with only $2 n$ cuts on extended formulation.

Towards a Dynamic Lifted LP

- Separable approach by Tawarmalani and Sahinidis '05 and Hijazi et al. '14

Separable approach works for any set of the form:

$$
C=\left\{x \in \mathbb{R}: \sum_{i=1}^{n} f_{i}\left(x_{i}\right) \leq 1\right\}
$$

or

$$
C=\left\{(x, t) \in \mathbb{R} \times \mathbb{R}: \sum_{i=1}^{n} f_{i}\left(x_{i}\right) \leq t\right\}
$$

for convex $f_{i}: \mathbb{R} \rightarrow \mathbb{R}$

Problem 1: Classical

$$
\begin{aligned}
& \max _{x, y} \\
& \text { s.t. }
\end{aligned}
$$

$$
\begin{aligned}
\left\|Q^{1 / 2} y\right\|_{2} & \leq \sigma \\
\sum_{j=1}^{n} y_{j} & =1
\end{aligned}
$$

$$
y_{j} \leq x_{j}
$$

$$
\sum_{j=1}^{n} x_{j} \leq K
$$

$$
x \in\{0,1\}^{n}
$$

$$
y \in \mathbb{R}_{+}^{n}
$$

- y fraction of the portfolio invested in each of n assets.
- \bar{a} expected returns of assets.
- $Q^{1 / 2}$ positive semidefinite square root of the covariance matrix Q of returns.
- K maximum number of assets to hold.

Problem 2 : Shortfall

$\max _{x, y}$
S.t.

$$
\begin{aligned}
\left\|Q^{1 / 2} y\right\|_{2} & \leq \sigma \\
\sum_{j=1}^{n} y_{j} & =1 \\
y_{j} & \leq x_{j} \\
\sum_{j=1}^{n} x_{j} & \leq K
\end{aligned}
$$

$$
x \in\{0,1\}^{n}
$$

$$
y \in \mathbb{R}_{+}^{n}
$$

- y fraction of the portfolio invested in each of n assets.
- \bar{a} expected returns of assets.
- $Q^{1 / 2}$ positive semidefinite square root of the covariance matrix Q of returns.
- K maximum number of assets to hold.

Problem 2 : Shortfall

$\max _{x, y}$
s.t.

$$
\begin{aligned}
\left\|Q^{1 / 2} y\right\|_{2} & \leq \frac{\bar{a} y-W_{i}^{l o w}}{\Phi^{-1}\left(\eta_{i}\right)} \quad i \in\{1,2\} \\
\sum_{j=1}^{n} y_{j} & =1 \\
y_{j} & \leq x_{j} \quad \forall j \in\{1, \ldots, n\} \\
\sum_{j=1}^{n} x_{j} & \leq K \\
x & \in\{0,1\}^{n} \\
y & \in \mathbb{R}_{+}^{n}
\end{aligned}
$$

- y fraction of the portfolio invested in each of n assets.
- \bar{a} expected returns of assets.
- $Q^{1 / 2}$ positive semidefinite square root of the covariance matrix Q of returns.
- K maximum number of assets to hold.
- Approximation of $\operatorname{Prob}\left(\bar{a} y \geq W_{i}^{l o w}\right) \geq \eta_{i}$

Extended Formulation for SOCP

$$
L^{n}=\{(x, t) \in \mathbb{R} \times \mathbb{R}:\|x\| \leq t\}
$$

Extended formulation of $L^{n}=$
homogenization of B^{n} formulation:

$$
\begin{aligned}
x_{i}^{2} & \leq z_{i} \cdot t \quad \forall i \in[n] \\
\sum_{i=1}^{n} z_{i} & \leq t
\end{aligned}
$$

Extended Formulation for SOCP

$$
L^{n}=\{(x, t) \in \mathbb{R} \times \mathbb{R}:\|x\| \leq t\}
$$

Extended formulation of $L^{n}=$
homogenization of B^{n} formulation:

$$
\sum_{i=1}^{n} z_{i} \leq t \quad \begin{aligned}
& x_{i}^{2} \leq z_{i} \cdot t
\end{aligned} \quad \forall i \in[n]
$$

MINLP B\&B Algorithms

- NLP (QCP) Based B\&B
- (Dynamic) LP Based B\&B
- Few cuts = high speed.
- Possible slow convergence.
- Lifted LP B\&B
- Fixed extended relaxation.
- Mimic NLP B\&B.
- Dynamic Lifted LP B\&B

O LP B\&B on extended form.

$$
\max \quad \sum_{i=1}^{n} c_{i} x_{i}
$$

s.t.

$$
\begin{aligned}
g_{i}(x) & \leq 0, i \in I \\
x & \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}
\end{aligned}
$$

MINLP B\&B Algorithms

- NLP (QCP) Based B\&B
- (Dynamic) LP Based B\&B
- Few cuts = high speed.
- Possible slow convergence.

O Lifted LP B\&B

- Fixed extended relaxation.
- Mimic NLP B\&B.
- Dynamic Lifted LP B\&B

O LP B\&B on extended form.

$$
\begin{aligned}
& \max \sum_{i=1}^{n} c_{i} x_{i} \\
& \text { s.t. } g_{i}(x, z) \leq 0, i \in I, \\
& \qquad x \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}
\end{aligned}
$$

Computational Results

Computational Results

- Averages over 20 instances:
- Classical and Shortfall. 40, 50 and 60 stocks.
- Solvers:
o CPLEX/Gurobi QCP-BB on original formulation .
- Lifted LP: Implemented in JuMP using CPLEX's branch, incumbent and heuristic callback.
o CPLEX/Gurobi LP-BB on extended "separable" reformulation.

LiftedLP v/s QCP: Classical

\square LiftedLP
\square CPLEX QCP
\square Gurobi QCP

LiftedLP v/s QCP: Shortfall

\square LiftedLP
\square CPLEX QCP
\square Gurobi QCP

LiftedLP v/s Dynamic : Classical

\square LiftedLP

- CPLEX SEP-LP
\square Gurobi SEP-LP

LiftedLP v/s Dynamic : Shortfall

\square LiftedLP
C CPLEX SEP-LP
\square Gurobi SEP-LP

Summary

- Lifted LP: 200 lines of JuMP code in a weekend.
- Developed by ORC students lain Dunning, Joey Huchette and Miles Lubin

O https://github.com/JuliaOpt/JuMP.jl

- Poster at MIP 2014. OSU, July 21st
- Talk at INFORMS. San Francisco, November
- Dynamic Lifted LP:
oComparable performance with simple reformulation.

