Extended Formulations for Quadratic Mixed Integer Programming

Juan Pablo Vielma

Sloan School of Business, Massachusetts Institute of Technology

IP for Lunch,
IBM T. J. Watson Research Center,
Yorktown Heights, NY. December, 2014.

Supported by NSF grants CMMI-1233441 and CMMI-1351619

• NLP (QCP) Based B&B

$$\max \sum_{i=1}^{n} c_{i} x_{i}$$

$$s.t.$$

$$g_{i}(x) \leq 0, i \in I, \quad x \in \mathbb{Z}^{n}$$

$$x \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}$$
•

• • •

• NLP (QCP) Based B&B

$$\max \sum_{i=1}^{n} c_{i}x_{i}$$

$$s.t.$$

$$g_{i}(x) \leq 0, i \in I, \quad x \in \mathbb{Z}^{n}$$

$$x \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}$$

$$\vdots$$

$$c$$

• NLP (QCP) Based B&B

Extended Formulations for MIQCP

• NLP (QCP) Based B&B

$$\max \sum_{i=1}^{n} c_{i} x_{i}$$

$$s.t.$$

$$g_{i}(x) \leq 0, i \in I, \quad x \in \mathbb{Z}^{n}$$

$$x \in \mathbb{Z}^{n_{1}} \times \mathbb{R}^{n_{2}}$$
•

• • •

- NLP (QCP) Based B&B
- (Dynamic) LP Based B&B
 - Few cuts = high speed.
 - Possible slow convergence.

$$\max \sum_{i=1}^{n} c_i x_i$$

$$s.t.$$

$$g_i(x) \le 0, i \in I, \quad x \in \mathbb{Z}^n$$

$$x \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}$$

- NLP (QCP) Based B&B
- (Dynamic) LP Based B&B
 - Few cuts = high speed.
 - Possible slow convergence.

$$\max \sum_{i=1}^{n} c_i x_i$$

$$s.t.$$

$$g_i(x) \le 0, i \in I, \quad x \in \mathbb{Z}^n$$

$$x \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}$$

- NLP (QCP) Based B&B
- (Dynamic) LP Based B&B
 - Few cuts = high speed.
 - Possible slow convergence.

$$\max \sum_{i=1}^{n} c_i x_i$$

$$s.t.$$

$$g_i(x) \le 0, i \in I, \quad x \in \mathbb{Z}^n$$

$$x \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}$$

- NLP (QCP) Based B&B
- (Dynamic) LP Based B&B
 - Few cuts = high speed.
 - Possible slow convergence.

$$\max \sum_{i=1}^{n} c_i x_i$$

$$s.t.$$

$$g_i(x) \le 0, i \in I, \quad x \in \mathbb{Z}^n$$

$$x \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}$$

- NLP (QCP) Based B&B
- (Dynamic) LP Based B&B
 - Few cuts = high speed.
 - Possible slow convergence.

$$\max \sum_{i=1}^{n} c_i x_i$$

$$s.t.$$

$$g_i(x) \le 0, i \in I, \quad x \in \mathbb{Z}^n$$

$$x \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}$$

- NLP (QCP) Based B&B
- (Dynamic) LP Based B&B
 - Few cuts = high speed.
 - Possible slow convergence.

$$\max \sum_{i=1}^{n} c_i x_i$$

$$s.t.$$

$$g_i(x) \le 0, i \in I, \quad x \in \mathbb{Z}^n$$

$$x \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}$$

- NLP (QCP) Based B&B
- (Dynamic) LP Based B&B
 - Few cuts = high speed.
 - Possible slow convergence.

$$\max \sum_{i=1}^{n} c_i x_i$$

s.t.

$$g_i(x) \le 0, i \in I, \quad x \in \mathbb{Z}^n$$

$$x \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}$$

Extended Formulations for MIQCP

- NLP (QCP) Based B&B
- (Dynamic) LP Based B&B
 - Few cuts = high speed.
 - Possible slow convergence.
- Lifted LP B&B
 - Extended or Lifted relaxation.
 - Static relaxation
 - Mimic NLP B&B.
 - Dynamic relaxation
 - Standard LP B&B

$$\max \sum_{i=1}^{n} c_i x_i$$

$$s.t.$$

$$g_i(x) \le 0, i \in I, \quad x \in \mathbb{Z}^n$$

$$x \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}$$

- NLP (QCP) Based B&B
- (Dynamic) LP Based B&B
 - Few cuts = high speed.
 - Possible slow convergence.
- Lifted LP B&B
 - Extended or Lifted relaxation.
 - Static relaxation
 - Mimic NLP B&B.
 - Dynamic relaxation
 - Standard LP B&B

$$\max \sum_{i=1}^{n} c_i x_i$$

$$s.t. \quad Ax + Dz \leq b,$$

$$g_i(x) \leq 0, i \in I, \quad x \in \mathbb{Z}^n$$

$$x \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}$$

Static Lifted LP for Conic Quadratic MIP

Approximation of Second Order
 Cone of dimension n by Ben-Tal and
 Nemirovski (Glineur).

- $O(n \log(1/\varepsilon))$ variables and constraints for quality ε .
 - Exponential increment in # of constraints through projection.

• Problem:

— Fixed a-priori quality: no dynamic improvement (e.g. $\varepsilon=0.01$ best for some portfolio optimization problems)

Correct Quality = Significant Improvement

Results from V., Ahmed and Nemhauser '08.

Average Solve Times [s]

Motivating example from Hijazi et al. '14

$$F^n := \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n \left(x_i - \frac{1}{2} \right)^2 \le \frac{n-1}{4} \right\}$$

Showing $F^n \cap \mathbb{Z}^n = \emptyset$ requires 2^n cuts.

Motivating example from Hijazi et al. '14

$$F^n := \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n \left(x_i - \frac{1}{2} \right)^2 \le \frac{n-1}{4} \right\}$$

Extended formulation of F^n :

$$\left(x_i - \frac{1}{2}\right)^2 \le z_i \qquad \forall i \in [n]$$

$$\sum_{i=1}^n z_i \le \frac{n-1}{4}$$

Motivating example from Hijazi et al. '14

$$F^{n} := \left\{ x \in \mathbb{R}^{n} : \sum_{i=1}^{n} \left(x_{i} - \frac{1}{2} \right)^{2} \le \frac{n-1}{4} \right\}_{0.5}^{\mathcal{Z}_{i}}$$

Extended formulation of F^n :

$$\left(x_i - \frac{1}{2}\right)^2 \le z_i \qquad \forall i \in [n]$$

$$\sum_{i=1}^{n} z_i \le \frac{n-1}{4}$$

• Motivating example from Hijazi et al. '14

$$F^{n} := \left\{ x \in \mathbb{R}^{n} : \sum_{i=1}^{n} \left(x_{i} - \frac{1}{2} \right)^{2} \le \frac{n-1}{4} \right\}_{0.5}^{z_{i}}$$

Extended formulation of F^n :

$$\left(x_i - \frac{1}{2}\right)^2 \le z_i \qquad \forall i \in [n]$$

$$\sum_{i=1}^n z_i \le \frac{n-1}{4}$$

 $B^n \cap \mathbb{Z}^n = \emptyset$ with only 2n cuts

on extended formulation.

Significant Improvement For Many Problems

Tawarmalani and Sahinidis '05:

 $f_j: \mathbb{R} \to \mathbb{R}$ convex differentiable

Lifted Relaxation of
$$F:=\left\{(y_0,y)\in\mathbb{R}^{n+1}\,:\,\sum\nolimits_{j=1}^nf_j(y_j)\leq y_0\right\}$$
 :

$$f_j(\gamma) + f'_j(\gamma)(y_j - \gamma) \le w_j \quad \forall \gamma \in \Gamma_j, \quad j \in [n]$$

$$\sum_{j=1}^n w_j \le y_0$$

Significant Improvement For Many Problems

Tawarmalani and Sahinidis '05:

 $f_j: \mathbb{R} \to \mathbb{R}$ convex differentiable

Lifted Relaxation of
$$F:=\left\{(y_0,y)\in\mathbb{R}^{n+1}\,:\,\sum\nolimits_{j=1}^nf_j(y_j)\leq y_0\right\}$$
 :

$$f_j(\gamma) + f'_j(\gamma)(y_j - \gamma) \le w_j \quad \forall \gamma \in \Gamma_j, \quad j \in [n]$$

$$\sum_{j=1}^n w_j \le y_0$$

Projection to $(y_0, y) = \text{up to } \prod_{j=1}^n |\Gamma_j| \text{ constraints}$

Significant Improvement For Many Problems

Tawarmalani and Sahinidis '05:

 $f_j: \mathbb{R} \to \mathbb{R}$ convex differentiable

Lifted Relaxation of
$$F:=\left\{(y_0,y)\in\mathbb{R}^{n+1}\,:\,\sum\nolimits_{j=1}^nf_j(y_j)\leq y_0\right\}$$
 :

$$f_j(\gamma) + f'_j(\gamma)(y_j - \gamma) \le w_j \quad \forall \gamma \in \Gamma_j, \quad j \in [n]$$

$$\sum_{j=1}^n w_j \le y_0$$

Projection to $(y_0, y) = \text{up to } \prod_{j=1}^n |\Gamma_j| \text{ constraints}$

 Polynomial (degree n) increment in # of constraints through projection

Separable Approach for Conic Quadratic?

- "Separable Sets" include many quadratics:
 - Euclidean Ball

$$B^n := \left\{ y \in \mathbb{R}^n : \sum_{j=1}^n y_j^2 \le 1 \right\}$$

Paraboloids

$$Q^{n} := \left\{ (y_{0}, y) \in \mathbb{R}^{n+1} : \sum_{j=1}^{n} y_{j}^{2} \le y_{0} \right\}$$

Does not include Lorentz/SOCP cone:

$$L^{n} := \left\{ (y_{0}, y) \in \mathbb{R}^{n+1} : \sqrt{\sum_{j=1}^{n} y_{j}^{2}} \le y_{0} \right\}$$

Separable to Conic: Homogenize

From Euclid to Lorentz

$$B^n := \left\{ y \in \mathbb{R}^n : \sum_{j=1}^n y_j^2 \le 1 \right\}$$

$$L^{n} := \left\{ (y_{0}, y) \in \mathbb{R}^{n+1} : \sqrt{\sum_{j=1}^{n} y_{j}^{2}} \le y_{0} \right\}$$

$$L^n = \operatorname{cone}(\{1\} \times B^n)$$

Separable to Conic: Homogenize

From Euclid to Lorentz

$$B^n := \left\{ y \in \mathbb{R}^n : \sum_{j=1}^n y_j^2 \le 1 \right\}$$

$$L^{n} := \left\{ (y_{0}, y) \in \mathbb{R}^{n+1} : \sqrt{\sum_{j=1}^{n} y_{j}^{2}} \le y_{0} \right\}$$

$$L^n = \operatorname{cone}(\{1\} \times B^n)$$

Separable to Conic: Homogenize

From Euclid to Lorentz

$$B^n := \left\{ y \in \mathbb{R}^n : \sum_{j=1}^n y_j^2 \le 1 \right\}$$

$$L^n := \left\{ (y_0, y) \in \mathbb{R}^{n+1} : \sqrt{\sum_{j=1}^n y_j^2} \le y_0 \right\}$$

$$L^n = \operatorname{cone}(\{1\} \times B^n)$$

$$B^n \subseteq P \Rightarrow L^n \subseteq \operatorname{cone}(\{1\} \times P)$$

Lifted Relaxation for Separable Conic Sets

 $f_j: \mathbb{R} \to \mathbb{R}$ convex, differentiable and 1-coercive

$$C := \left\{ y \in \mathbb{R}^n : \sum_{j=1}^n f_j(y_j) \le 1 \right\}$$

Lifted Relaxation of cone $(\{1\} \times C)$:

$$(f(\gamma) - \gamma f'(\gamma)) y_0 + f'(\gamma) y \le w_j \quad \forall \gamma \in \Gamma_j, j \in [n]$$

$$\sum_{j=1}^n w_j \le y_0$$

$$0 \le y_0$$

Lifted Reformulation for Conic Quadratic Sets

• Lifted Reformulation of $L^n:=\left\{(y_0,y)\in\mathbb{R}^{n+1}\,:\,\|y\|_2\leq y_0\right\}$:

$$y_i^2 \le z_i \cdot y_0 \qquad \forall i \in [n]$$

$$\sum_{i=1}^{n} z_i \le y_0$$

Lifted Reformulation for Conic Quadratic Sets

• Lifted Reformulation of $L^n:=ig\{(y_0,y)\in\mathbb{R}^{n+1}\,:\,\|y\|_2\leq y_0ig\}$:

$$\sum_{i=1}^{n} z_i \leq z_i \cdot y_0 \qquad \forall i \in [n]$$

$$\sum_{i=1}^{n} z_i \leq y_0 \qquad \text{Rotated SOCP cone}$$

Lifted Reformulation for Conic Quadratic Sets

• Lifted Reformulation of $L^n:=ig\{(y_0,y)\in\mathbb{R}^{n+1}\,:\,\|y\|_2\leq y_0ig\}$:

$$\sum_{i=1}^{n} z_i \le z_i \cdot y_0 \qquad \forall i \in [n]$$

$$\sum_{i=1}^{n} z_i \le y_0$$
Rotated SOCP cone

- Lifted polyhedral relaxation automatic from standard polyhedral approximation of (rotated) SOCP cone:
 - Dynamic Lifted LP-based algorithm:
 - 1. Replace every SOCP cone with lifted reformulation
 - 2. Solve with standard LP-based algorithm

- NLP-based Branch-and-Bound:
 - CPLEXCP : MIQCPSTRAT = 1
 - GurobiCP : MIQCPMethod = 0

- NLP-based Branch-and-Bound:
 - CPLEXCP : MIQCPSTRAT = 1
 - GurobiCP : MIQCPMethod = 0
- Traditional LP-based Branch-and-Bound:
 - CPLEXLP : MIQCPSTRAT = 2
 - GurobiLP : MIQCPMethod = 1

- NLP-based Branch-and-Bound:
 - CPLEXCP : MIQCPSTRAT = 1
 - GurobiCP : MIQCPMethod = 0
- Traditional LP-based Branch-and-Bound:
 - CPLEXLP : MIQCPSTRAT = 2
 - GurobiLP : MIQCPMethod = 1
- Dynamic Lifted LP-based Branch-and-Bound:
 - CPLEXSepLP : CPLEXLP on lifted reformulation
 - GurobiSepLP: GurobiLP on lifted reformulation

Computational Experiments 1: Solvers

- NLP-based Branch-and-Bound:
 - CPLEXCP : MIQCPSTRAT = 1
 - GurobiCP : MIQCPMethod = 0
- Traditional LP-based Branch-and-Bound:
 - CPLEXLP : MIQCPSTRAT = 2
 - GurobiLP : MIQCPMethod = 1
- Dynamic Lifted LP-based Branch-and-Bound:
 - CPLEXSepLP : CPLEXLP on lifted reformulation
 - GurobiSepLP: GurobiLP on lifted reformulation
- CPLEX v 12.6 and Gurobi v 5.6.3

Computational Experiments 1: Solvers

- NLP-based Branch-and-Bound:
 - CPLEXCP : MIQCPSTRAT = 1
 - GurobiCP : MIQCPMethod = 0
- Traditional LP-based Branch-and-Bound:
 - CPLEXLP : MIQCPSTRAT = 2
 - GurobiLP : MIQCPMethod = 1
- Dynamic Lifted LP-based Branch-and-Bound:
 - CPLEXSepLP : CPLEXLP on lifted reformulation
 - GurobiSepLP: GurobiLP on lifted reformulation
- CPLEX v 12.6 and Gurobi v 5.6.3
- Time limit of 3,600 s on i7-3770 3.40GHz

Computational Experiments 1: Instances

Portfolio optimization problems:

Classical:

 $\max_{s.t.} \bar{a}x$ s.t. $\|Q^{1/2}x\|_{2} \le \sigma$ $\sum_{j=1}^{n} x_{j} = 1, \quad x \in \mathbb{R}^{n}_{+}$ $x_{j} \le z_{j} \quad \forall j \in [n]$ $\sum_{j=1}^{n} z_{j} \le K, \quad z \in \{0, 1\}^{n}$

- \bar{a} expected returns.
- $Q^{1/2}$ square root of covariance matrix.
- K maximum number of assets.
- σ maximum risk.

Results for CPLEX: 100 instances per n

Results for Gurobi: 100 instances per n

Computational Experiments 2: More Solvers

- Static Lifted LP-based Branch-and-Bound:
 - LiftedLP: from V., Ahmed and Nemhauser '08
 - Fixed approximation by Ben-Tal and Nemirovski (Glineur)
 - No refinement: integer nodes = solve NLP and process
 - Heuristic: Correct integral solutions (fix integers, solve NLP)
 - CPLEX Branch, heuristic and incumbent callbacks in JuMP

Computational Experiments 2: More Solvers

- Static Lifted LP-based Branch-and-Bound:
 - LiftedLP: from V., Ahmed and Nemhauser '08
 - Fixed approximation by Ben-Tal and Nemirovski (Glineur)
 - No refinement: integer nodes = solve NLP and process
 - Heuristic: Correct integral solutions (fix integers, solve NLP)
 - CPLEX Branch, heuristic and incumbent callbacks in JuMP
- Static/Dynamic Lifted LP-based Branch-and-Bound:
 - CPLEXSepLazy / GurobiSepLazy : LiftedLP + Refinement through Separable extended formulation
 - Solver independent implementation in JuMP

Computational Experiments 2: More Solvers

- Static Lifted LP-based Branch-and-Bound:
 - LiftedLP: from V., Ahmed and Nemhauser '08
 - Fixed approximation by Ben-Tal and Nemirovski (Glineur)
 - No refinement: integer nodes = solve NLP and process
 - Heuristic: Correct integral solutions (fix integers, solve NLP)
 - CPLEX Branch, heuristic and incumbent callbacks in JuMP
- Static/Dynamic Lifted LP-based Branch-and-Bound:
 - CPLEXSepLazy / GurobiSepLazy : LiftedLP + Refinement through Separable extended formulation
 - Solver independent implementation in JuMP
- ~ 400 lines of JuMP code in about a week

JuMP: Julia for Mathematical Programming

- Developed by ORC students: Iain Dunning, Joey Huchette and Miles Lubin.
- "As easy as AMPL and faster than C++" (JPV 2014).
- Linear/Quadratic MIP and general nonlinear
 - Cbc/Clp, CPLEX, ECOS, GLPK, Gurobi, Ipopt, KNITRO, MOSEK, and Nlopt.
- Automatic differentiation, solver independent MIP callbacks, etc.
- https://github.com/JuliaOpt/JuMP.jl

Computational Experiments 2 : More Instances

Portfolio optimization problems:

Classical:

 $\max_{s.t.} \bar{a}x$ s.t. $\|Q^{1/2}x\|_{2} \le \sigma$ $\sum_{j=1}^{n} x_{j} = 1, \quad x \in \mathbb{R}^{n}_{+}$ $x_{j} \le z_{j} \quad \forall j \in [n]$ $\sum_{j=1}^{n} z_{j} \le K, \quad z \in \{0, 1\}^{n}$

- \bar{a} expected returns.
- $Q^{1/2}$ square root of covariance matrix.
- K maximum number of assets.
- σ maximum risk.

Computational Experiments 2: More Instances

Portfolio optimization problems:

Shortfall:

$$\max_{s.t.} \bar{a}x$$

$$s.t.$$

$$\Phi^{-1}(\eta_i) \|Q^{1/2}y\|_2 \leq \bar{a}y - W_i^{low} \qquad i \in \{1, 2\}$$

$$\sum_{j=1}^n x_j = 1, \quad x \in \mathbb{R}_+^n$$

$$x_j \leq z_j \quad \forall j \in [n]$$

$$\sum_{j=1}^n z_j \leq K, \quad z \in \{0, 1\}^n$$

- \bar{a} expected returns.
- $Q^{1/2}$ square root of covariance matrix.
- K maximum number of assets.
- $\bullet \approx \mathbb{P}\left(\bar{a}x \ge W_i^{low}\right) \ge \eta_i$

Computational Experiments 2 : More Instances

Portfolio optimization problems:

Robust:

$$\max \quad \bar{a}x - \alpha \left\| R^{1/2}y \right\|_{2}$$
s.t.
$$\left\| Q^{1/2}x \right\|_{2} \le \sigma$$

$$\sum_{j=1}^{n} x_{j} = 1, \quad x \in \mathbb{R}^{n}_{+}$$

$$x_{j} \le z_{j} \quad \forall j \in [n]$$

$$\sum_{j=1}^{n} z_{j} \le K, \quad z \in \{0, 1\}^{n}$$

- \bar{a} expected returns.
- $Q^{1/2}$ square root of covariance matrix.
- K maximum number of assets.
- σ maximum risk.
- Robust objective.

- Extended Formulations can help in
 - LP-based B&B: Both in theory and practice.

- Extended Formulations can help in
 - LP-based B&B: Both in theory and practice.
- Most ideas can be extended beyond quadratic
 - p-order cones almost directly
 - General nonlinear through perspective functions

- Extended Formulations can help in
 - LP-based B&B: Both in theory and practice.
- Most ideas can be extended beyond quadratic
 - p-order cones almost directly
 - General nonlinear through perspective functions
- You should definitely try:

