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Nonlinear MIP B&B Algorithms

+ NLP (QCP) Based B&B max ey
* (Dynamic) LP Based B&B 8.2

— Few cuts = high speed. gi(x)<0,ie€l, z€Z

— Possible slow convergence. x e Z" x R™?
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Nonlinear MIP B&B Algorithms

* NLP (QCP) Based B&B max Zizl Ci
* (Dynamic) LP Based B&B 5t.
— Few cuts = high speed. gi(x)<0,ie€l, ze€Z"
— Possible slow convergence. x € 7™M x R™2
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Nonlinear MIP B&B Algorithms

+ NLP (QCP) Based B&B max  } e

* (Dynamic) LP Based B&B 8.2
— Few cuts = high speed. gi(x)<0,i€l, xeZ”
— Possible slow convergence. x € 7" x R

e Lifted LP B&B . . . .
— Extended or Lifted relaxation.
— Static relaxation . . T

* Mimic NLP B&B. C

— Dynamic relaxation . . .

e Standard LP B&B
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Nonlinear MIP B&B Algorithms

+ NLP (QCP) Based B&B max ) e
 (Dynamic) LP Based B&B st. Ax + Dz<D,
— Few cuts = high speed. gi(x)< 0,0 €1, weZ”
— Possible slow convergence. x e Z" x R™?
e Lifted LP B&B . . . .
— Extended or Lifted relaxation.
— Static relaxation . . T
* Mimic NLP B&B. C

— Dynamic relaxation
e Standard LP B&B
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Static Lifted LP for Conic Quadratic MIP

* Approximation of Second Order
Cone of dimension n by Ben-Tal and
Nemirovski (Glineur).

e O(nlog(1/¢)) variables and
constraints for quality £.
— Exponential increment in # of
constraints through projection.
* Problem:

— Fixed a-priori quality: no dynamic
improvement (e.g. € = 0.01 best for
some portfolio optimization problems)
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Correct Quality = Significant Improvement

 Results from V., Ahmed and Nemhauser '08.
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Dynamic Lifted LP for Separable Problems

* Motivating example from Hijazi et al. ‘14

- 1\? n—1
"= R™ : g i— = <
{CBE (:U 2) < 1 }

1=1

Showing I NZ" = () requires 2" cuts.
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Dynamic Lifted LP for Separable Problems

* Motivating example from Hijazi et al. ‘14

- 1\? n—1
"= R™ : E i— =] <
{CBE (:E 2) < 1 }

1=1

Extended formulation of F™;
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Dynamic Lifted LP for Separable Problems

* Motivating example from Hijazi et al. ‘14

i 1 2 n—1
n o .__ n . = i
F" = {azER : E (wz 2) < 1 }0.51

1=1

Extended formulation of F™;

1 2 0.25-
(azi — —) < z Vi € |n]
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Dynamic Lifted LP for Separable Problems

* Motivating example from Hijazi et al. ‘14

i 1 2 n—1
n o .__ n . = i
F" = {azER : E (xz 2) < 1 }0.51

1=1

Extended formulation of F™;
2 0.25-
1 .
(azi — 5) < z Vi € |n]
n n 1 0
Z Zi < 1
1=1

B"NZ" = () with only 2n cuts

on extended formulation.
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Significant Improvement For Many Problems

e Tawarmalani and Sahinidis '05:

Ji : R = R convex differentiable

n

Lifted Relaxation of ' := {(yo,y) c R . Z fiy;) < yo}I

j=1

fin)+ 00 —v) Sw; VyeTly, jeln]
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Significant Improvement For Many Problems

e Tawarmalani and Sahinidis '05:

f; : R — R convex differentiable

Lifted Relaxation of F' := {(yo,y) c R" . Zn_ Ii (y]) < yo}i

i)+ )y —v) Sw; Vyely, jeln]
ijle < %o

Projection to (yo,y) = up to [[;_; || constraints

* Polynomial (degree n) increment in # of constraints through
projection
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Separable Approach for Conic Quadratic?

* “Separable Sets” include many quadratics:
— Euclidean Ball

B" = {yER” : 2:21%2 < 1}

— Paraboloids

Q" = {(yo,y) cR™ )

* Does not include Lorentz/SOCP cone:

L™ = {(yo,y) cR™ \/ijl y; < yo}

n

i ?ng < yo}
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Separable to Conic: Homogenize

e From Euclid to Lorentz

L™ = cone ({1} x B")
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Separable to Conic: Homogenize

e From Euclid to Lorentz

B™ .= {yER”:Zy?<1}

j=1
L™ := {(yo y) ER™L L Z?ﬁ < yo} y..
L™ = cone ({1} x B") _. )

B"CP

Extended Formulations for MIQCP 7/25



Separable to Conic: Homogenize

e From Euclid to Lorentz

B™ .= {yER”:Zy?<1}

j=1

L" = {(yo y Rn+1 : A Zy? < yO} )'lo.oll:

L™ = cone ({1} x B")

B" C P= L" Ccone ({1} x P)
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Lifted Relaxation for Separable Conic Sets

Ji : R = R convex, differentiable and 1-coercive

Coi={yer 3" fily) <1}

g=1

Lifted Relaxation of cone ({1} x () :

fO) = v+ (Vy<w; Vyely, jen]

n
Z w; < Yo
j=1

0 < o
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Lifted Reformulation for Conic Quadratic Sets

» Lifted Reformulation of L™ := {(yo,y) € R™*' : ||ly|l, <o}

y? < 2 * Yo Vi € [n]

mn
Z Zi < Yo
i=1
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Lifted Reformulation for Conic Quadratic Sets

» Lifted Reformulation of L™ := {(yo,y) € R™*' : ||ly|l, <o}

Zzi < Yo \
i=1

Rotated SOCP cone
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Lifted Reformulation for Conic Quadratic Sets

» Lifted Reformulation of L™ := {(yo,y) € R™*' : ||ly|l, <o}

Zzi < Yo \
i=1

* Lifted polyhedral relaxation automatic from standard polyhedral
approximation of (rotated) SOCP cone:

Rotated SOCP cone

— Dynamic Lifted LP-based algorithm:
1. Replace every SOCP cone with lifted reformulation
2. Solve with standard LP-based algorithm
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Computational Experiments 1: Solvers
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Computational Experiments 1: Solvers

e NLP-based Branch-and-Bound:
— CPLEXCP : MIQCPSTRAT =1
— GurobiCP : MIQCPMethod =0
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Computational Experiments 1: Solvers

NLP-based Branch-and-Bound:

— CPLEXCP : MIQCPSTRAT =1

— GurobiCP : MIQCPMethod =0

* Traditional LP-based Branch-and-Bound:
— CPLEXLP : MIQCPSTRAT =2

— GurobilLP : MIQCPMethod =1

 Dynamic Lifted LP-based Branch-and-Bound:
— CPLEXSepLP : CPLEXLP on lifted reformulation
— GurobiSepLP: GurobilP on lifted reformulation

CPLEX v 12.6 and Gurobiv 5.6.3
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Computational Experiments 1: Solvers

 NLP-based Branch-and-Bound:
— CPLEXCP : MIQCPSTRAT =1
— GurobiCP : MIQCPMethod =0
* Traditional LP-based Branch-and-Bound:
— CPLEXLP : MIQCPSTRAT =2
— GurobilLP : MIQCPMethod =1

 Dynamic Lifted LP-based Branch-and-Bound:
— CPLEXSepLP : CPLEXLP on lifted reformulation
— GurobiSepLP: GurobilP on lifted reformulation

CPLEX v 12.6 and Gurobi v 5.6.3
* Time limit of 3,600 s on i7-3770 3.40GHz

Extended Formulations for MIQCP 10/ 25



Computational Experiments 1: Instances

e Portfolio optimization problems:

Classical:

S

Extended Formulations for MIQCP

a expected returns.

Q'/2 square root of
covariance matrix.

K maximum number
of assets.

o maximum risk.
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Results for CPLEX: 100 instances per n
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Results for Gurobi: 100 instances per n
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Computational Experiments 2: More Solvers

 Static Lifted LP-based Branch-and-Bound:
— LiftedLP: from V., Ahmed and Nemhauser ‘08
— Fixed approximation by Ben-Tal and Nemirovski (Glineur)
— No refinement: integer nodes = solve NLP and process
— Heuristic: Correct integral solutions (fix integers, solve NLP)
— CPLEX Branch, heuristic and incumbent callbacks in JuMP
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— LiftedLP: from V., Ahmed and Nemhauser ‘08
— Fixed approximation by Ben-Tal and Nemirovski (Glineur)
— No refinement: integer nodes = solve NLP and process
— Heuristic: Correct integral solutions (fix integers, solve NLP)
— CPLEX Branch, heuristic and incumbent callbacks in JuMP

 Static/Dynamic Lifted LP-based Branch-and-Bound:

— CPLEXSeplazy / GurobiSeplazy : LiftedLP + Refinement
through Separable extended formulation

— Solver independent implementation in JuMP
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Computational Experiments 2: More Solvers

 Static Lifted LP-based Branch-and-Bound:
— LiftedLP: from V., Ahmed and Nemhauser ‘08
— Fixed approximation by Ben-Tal and Nemirovski (Glineur)
— No refinement: integer nodes = solve NLP and process
— Heuristic: Correct integral solutions (fix integers, solve NLP)
— CPLEX Branch, heuristic and incumbent callbacks in JuMP

 Static/Dynamic Lifted LP-based Branch-and-Bound:

— CPLEXSeplazy / GurobiSeplazy : LiftedLP + Refinement
through Separable extended formulation

— Solver independent implementation in JuMP

e ~ 400 lines of JuMP code in about a week
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JUMP : Julia for Mathematical Programming

“‘JUMP

* Developed by ORC students: lain Dunning, Joey Huchette
and Miles Lubin.

 “As easy as AMPL and faster than C++” (JPV 2014).

* Linear/Quadratic MIP and general nonlinear

— Cbc/Clp, CPLEX, ECOS, GLPK, Gurobi, Ipopt, KNITRO, MOSEK, and
Nlopt.

* Automatic differentiation, solver independent MIP
callbacks, etc.

e https://github.com/JuliaOpt/JuMP.jl
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Computational Experiments 2 : More Instances

e Portfolio optimization problems:

Classical:

S
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Computational Experiments 2 : More Instances

e Portfolio optimization problems:

Shortfall:
max azx e o expected returns.
s.1. e (Q'/? square root of
<I>_1(77i) .Q1/2y|‘ <ay — Wz.low = {17 2} covariance matrix.
2
o e K maximum number
mn
ij =1, zeRl} of assets.
j=1

—~ — low _
i < z; VjeE|n] o~ P (az > W) =,

sz <K, ze{0,1}"
j=1
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Computational Experiments 2 : More Instances

e Portfolio optimization problems:

Robust:
max ax—aHR1/2yH
2
S.t.
@], <o
2
n
ij =1, xzeRY
j=1

S

Extended Formulations for MIQCP

a expected returns.

Q'/2 square root of
covariance matrix.

K maximum number
of assets.

o maximum risk.

Robust objective.

16 /25



Performance Profile for n “=“ 20-60, 100 and 200
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Summary

 Extended Formulations can help in
— LP-based B&B: Both in theory and practice.

* Most ideas can be extended beyond quadratic
— p-order cones almost directly
— General nonlinear through perspective functions

* You should definitely try:

‘Q‘JUMP
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